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(Bellard et al. 2012; Nzei et al. 2021). Both human popula-
tions and biodiversity have been affected by climate change 
(Shivanna 2022; Mkala et al. 2022); examples of the lat-
ter include changes in species distribution (Tiamiyu et al. 

Introduction

Climate change has emerged as an apparent and develop-
ing global phenomenon in recent years, and severe effects 
on biotic components have been observed worldwide 

 
 Tao Deng
dengtao@mail.kib.ac.cn

 
 Hengchang Wang
hcwang@wbgcas.cn

1 CAS Key Laboratory for Plant Diversity and Biogeography 
of East Asia, Kunming Institute of Botany, Yunnan 
International Joint Laboratory for Bioaffiliationersity of 
Central Asia, Chinese Academy of Sciences,  
Kunming 650201, Yunnan, China

2 CAS Key Laboratory of Plant Germplasm Enhancement and 
Specialty Agriculture, Wuhan Botanical Garden, Chinese 
Academy of Sciences, Wuhan 430074, Hubei, China

3 Center of Conservation Biology, Core Botanical Gardens, 
Chinese Academy of Sciences, Wuhan 430074, Hubei, China

4 Centre for Integrative Conservation, Xishuangbanna Tropical 
Botanical Garden, Chinese Academy of Sciences,  
Menglun 666303, China

5 Sino-African Joint Research Center, Chinese Academy of 
Sciences, Wuhan 430074, China

6 Department of Plant Biology, University of Ilorin, 1515, 
P.M.B., Ilorin, Nigeria

Abstract
Global climate change is among the major anthropogenic factors impacting species distribution, with significant conser-
vation implications. Yet, little is known about the effects of climate warming on the distributional shifts of East Asian 
species. In the current study, we used the maximum entropy model (MaxEnt) to determine present and possible future 
habitats for five Meehania species occurring in the East Asian region. Our objectives were to assess how climate change 
would influence the species’ habitat under current and future climate scenarios (Representative Concentration Pathways 
4.5 and 8.5). The mean area under the curve ranged between 0.896 and 0.973, while the TSS values for all species varied 
between 0.811 and 0.891. The modelled current habitat of the species corresponded with the recorded distribution locali-
ties, confirming the model’s robustness. Analysis of variable contribution demonstrated that the distribution of the species 
had differential environmental requirements; however, isothermality, precipitation of driest month, and elevation variables 
were among the main influential variables. Based on present climatic conditions, the projected habitat suitability maps 
showed a total of 662,846.0 to 2,039,180.1 km2 as suitable regions for the distribution of Meehania species. In addition, 
there was a substantial loss in habitat range under future climatic scenarios for all the species. While the East Asian region 
is rich in biodiversity, more attention should be given to its management conservation. The current findings provide a 
scientific foundation for the conservation of Meehania and other species’ habitats in the region.

Keywords Climate change · East Asian biodiversity hotspot · Habitat suitability · Meehania · Spatial-temporal 
distribution, Species distribution modelling
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2021; Ngarega et al. 2022) and pest and disease outbreaks 
(Simons et al. 2019).

According to the Intergovernmental Panel on Climate 
Change (IPCC), global climate change is likely to persist, 
affecting the geographic range of numerous plant taxa 
(Sheldon 2019; Zellweger et al. 2020). Climate warm-
ing, for example, affects Quercus petraea, having a wide 
geographic distribution in various ways. This species has 
been observed to have a superior growing performance in 
the northern sections compared to the southern parts, as 
reported by Sáenz-Romero et al. (2017). Climate change 
may also decrease and reorganize the distributions of ani-
mal and plant species that contribute to natural community 
assembly and their functions and benefits (Tallis et al. 2008; 
Ali et al. 2021). Climate change effects on biodiversity may 
be assessed by linking precipitation and temperature trends 
with species distributional shifts (Weiskopf et al. 2020). In 
addition, predictions concerning the influence of climate 
change on species distribution could be used to address 
potential risks which might affect the distribution and abun-
dance of these species (Fadrique et al. 2018). As a result, 
acquiring high-grade distribution data is critical for estab-
lishing measures and enforcing practical preventive actions. 
However, the lack of bio-geographical information typically 
slowdown conservation plans (Pearson et al. 2007; Wan et 
al. 2021), such as those of some species in the East Asian 
region, which remain largely unexplored.

Meehania Britton. is a small genus of herbaceous, ever-
green plants in the Lamiaceae family with approximately 
seven species and five subspecies (Fig. 1, Li and Hedge 

1994; Deng et al. 2015). The species are either annuals or 
perennials, displaying a characteristic pattern of the Arcto-
Tertiary floristic disjunction with an altitudinal range of 
300–3,500 m (Xiang et al. 2000; Takano et al. 2020). Mem-
bers of this genus are endemic to the East Asiatic region, 
except for the Meehania cordata found in North America. 
It contains about 7 species (5 species in China) and 5 sub-
species, mainly distributed in temperate to subtropical Asia 
and North America (Deng et al. 2015). Due to the narrow 
distribution of most of the members of this genus, some are 
considered endangered (M. montis-koyae Ohwi and M. pin-
faensis), highly threatened species (M. cordata in the United 
States), and others have yet to be evaluated by the IUCN. 
Meehania species are typically found in highly humid, 
shady, mossy areas, valleys, forested hillsides, stream sides 
in mixed or pine forests, in mixed, coniferous forests, mon-
tane forests, and nonforested vegetation (e.g., steppe, grass-
lands) (Flora of China 2009; Deng et al. 2015; Takano et al. 
2020). For instance, the population of M. montis-koyae is 
often threatened as a result of human activities such as ille-
gal digging for commercial purposes and construction along 
rivers, which together may result in habitat disturbance and 
fragmentation, contributing to population declines in the 
species (Takano et al. 2020).

In China, some species (e.g., M. henryi and M. urticifolia) 
are used for culinary and as sources of traditional medicine 
for snake bites (Tanaka and Nakao 1976; Kunkel 1984). A 
recent biogeographic investigation of the genus Meeha-
nia showed that the genus is monophyletic and belonged 
to the tribe Menteae (Deng et al. 2015). The solitary North 

Fig. 1 The morphological features of five Meehania species (A–E). 
(A) Meehania faberi, (B) M. fargesii, (C) M. henryi, (D) M. montis-
koyae, (E) M. urticifolia (POWO 2022). The photographs (A, B, D) 

were provided by Zhang C.; (C) by Zhu R. and (E) from https://powo.
science.kew.org/taxon/urn:lsid:ipni.org:names:21010-1/images
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American species, M. cordata, is sister to a clade that 
includes the rest of the Asian species. Besides, the Bayes-
ian relaxed clock methods performed on the nuclear DNA 
sequence data indicated that divergence between the Asian 
clade and M. cordata occurred around 9.81 million years 
ago. Up to date, no study on the potential distribution using 
environmental variables of Meehania species in East Asia 
has been carried out. Considering the narrow distribution 
of Meehania species, habitat sensitivity and their vulner-
ability to climate change make them a good choice for this 
study. Therefore, investigating the relationships between 
Meehania and environmental variables and related factors 
affecting their distribution is important and would benefit 
land-use managers and planners for conservation efforts.

Environmental considerations are important in determin-
ing plant species distribution (Ngarega et al. 2021; Nzei et 
al. 2021). Ecological Niche Models (ENMs) of a species 
incorporate environmental covariates with occurrence data 
and display them on distribution maps that illustrate the spe-
cies’ potential range (Phillips et al. 2006; Elith et al. 2011). 
In addition, the models also indicate potential habitat suit-
ability under future climate scenarios, indicating where a 
particular species has expanded or lost its potential ranges 
(Wan et al. 2021). As a result, ENMs are critical for under-
standing the many environmental conditions that influence 
niche localisation for different plant species (Buonincon-
tri et al. 2023; Salako et al. 2021). ENMs can assess the 
relationship between species occurrence records and native 
habitat parameters (Cerrejón et al. 2022). Among the most 
popular species distribution models is the MaxEnt model-
ling technique. The maximum entropy (MaxEnt) is pre-
ferred for presence-only models and has been successfully 
used to forecast the distribution of many species (Elith et al. 
2011; Nzei et al. 2021; Chukwuma et al. 2023).

According to previous studies, MaxEnt has been shown 
to perform better than other algorithms and regression mod-
els for predicting species distribution (Elith et al. 2011; 
Kaky et al. 2020; Ahmadi et al. 2023), and could account 
for the multifaceted interactions between geographical fea-
tures (Phillips et al. 2006). It can predict the distribution 
of suitable habitats for range-restricted or endemic species 
with a distinct natural history spanning various habitats (i.e., 
terrestrial, or aquatic, e.g., Ancillotto et al. 2019; Tiamiyu et 
al. 2021; Ngarega et al. 2022). MaxEnt also has the ability 
to avoid commission and omission errors when projecting 
species distribution (Townsend et al. 2007). It has been used 
for species with small geographic distributions (Radomski 
et al. 2022). Much prior research has employed it for model-
ling the distributional range of genera and species such as 
Ottelia (Ngarega et al. 2022), water lilies (Nzei et al. 2021), 
and baobab (Wan et al. 2021).

Using the MaxEnt model and the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) data, we aimed to 
forecast the potential geographical distribution of five Mee-
hania species in East Asia. Specifically, the objectives of 
this study were to (i) predict the current and future habitat 
suitability distributions of Meehania species in relation to 
environmental variables and future climate change sce-
narios (Representative Concentration Pathways {RCP}); 
RCP 4.5 and RCP8.5 respectively, for the year 2050) and 
(ii) determine the most important environmental variables 
controlling the distribution of the species in the region.

Materials and methods

Occurrence distribution data

The study area included China, Japan, Korea, and South 
Korea, with a total surface area of approximately 7,092,321 
km2. It encompassed the East Asian geographical ranges 
of the five Meehania species (Li and Hedge 2000) that 
we evaluated for our study, but not the entire range. The 
occurrence localities data for Meehania were obtained from 
online sources, including the Global Biodiversity Infor-
mation Facility (GBIF, http://www.gbif.org/; accessed on 
10 January 2022), the Chinese Virtual Herbarium (CVH, 
http://www.cvh.org.cn/), past literature and the authors’ 
field notes. Occurrence data was restricted to the years 
1970–2022. Data lacking precise geographical coordinates 
were assigned to them using locality descriptors in Google 
Earth. Duplicate and invalid records were manually filtered 
in excel sheets. In addition, a spatial rarefication was per-
formed using the spThin package in R v.3.6.2 to screen the 
records for spatial autocorrelation, minimize spatial biases 
and ensure occurrence independence (Aiello-Lammens et 
al. 2015). Following this analysis, the records were reduced 
to 9 for Meehania faberi, (with small geographic distribu-
tions), 93 for M. fargesii, 27 for M. henryi, 26 for M. mon-
tis-koyae, and 905 for M. urticifolia and a total of 1,060 
occurrence points were used to develop ENMs in the subse-
quent analyses (Fig. 2).

Environmental variables

As for the initial set of predictor variables, we employed 
the 19 bioclimatic variables from the WorldClim2.1 data-
base (https://www.worldclim.org/data/worldclim21.html, 
Table S1; Fick and Hijmans 2017) with a 2.5 arc-min 
spatial resolution of (≈ 5 km the equator). This dataset is 
based on monthly consensus climatologies spanning 1970 
to 2000. We removed four data layers (bio 8–9 and bio18-
19) because they have been reported to contain artefacts that 
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have previously been used to give realistic ENMs for East 
Asia (Hijmans et al. 2005).

Ecological niche modelling

ENMs were constructed to assess the distribution of five 
Meehania taxa using the maximum entropy modelling 
approach (MaxEnt v.3.4.4; Phillips et al. 2006). MaxEnt 
predicts the likelihood distribution for a given species by 
determining the maximum entropy probability distribu-
tion given a set of constraints representing the input known 
occurrence data (Phillips et al. 2006). The models were run 
on default parameters with a max of 5000 iterations. 25% of 
the occurrence data was utilized to evaluate model accuracy, 
while 75% was used for training. In each training partition, 
ten duplicates were generated, and the results were aver-
aged. We evaluated several regularisation multiplier values 
(RM) and observed that the default value performed excep-
tionally without overfitting the model (RM = 1, Merow et al. 
2013). The clamping function was activated to fade out the 
predicted areas needing clamping. A rigorous statistical test 
to determine if models can forecast independent subsets of 
occurrence data better than random expectations is a critical 

cause variances between neighbouring pixels (Bede-Faze-
kas and Somodi 2020). In addition, we checked for variable 
autocorrelation of the remaining variables using the VIF 
procedure. This analysis was carried out using the usdm 
package in R v.3.6.2. For future scenarios, we obtained cli-
matic layers from WorldClim future climate data (http://
www.worldclim.org/CMIP5v1) with a spatial resolution of 
2.5arc-min (Hijmans et al. 2005). Two representative path-
way scenarios (RCPs) representing the moderate and high 
greenhouse gas emission scenarios RCP4.5 and RCP8.5, 
respectively, for the year 2050 (average for 2041–2060) 
were considered (Van Vuuren et al. 2011). One global circu-
lation model (GCM) from the Intergovernmental Panel on 
Climate Change’s Fifth Assessment Report (IPCC; https://
www.ipcc.ch/report/ar5/wg2/): The National (Beijing) Cli-
mate Center Climate System Model (BCC-CSM2-MR) was 
selected due to improved simulation performance in terms 
of the annual mean climate distribution of precipitation in 
China (Xin et al. 2019; Wang et al. 2023). This GCM was 
chosen because it is among the most accurate and relevant 
models currently used to estimate the influence of increas-
ing greenhouse gas concentrations on biodiversity. They 

Fig. 2 Study area and distribution of Meehania species in East Asia
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2016). These binary maps were utilized to analyze the dis-
tributional changes of Meehania under two RCP scenarios- 
RCP4.5 and RCP8.5 for the 2050s (Brown et al. 2017).

Results

Model evaluation

The validation value of the data obtained on the AUC and 
TSS acquired after modelling the distribution of Meehania 
species in east Asia was > 0.811, suggesting that the models 
had a high level of predictive potential (Table 1).

Contribution of variables

According to the percentage contribution of variables in 
the final models generated for the Meehania species, two 
variables were observed to have the highest levels of contri-
bution; the mean diurnal range (Bio2), which strongly influ-
enced the distribution of M. faberi (78.7%) and M. fargesii 
(34.9%), and precipitation of driest month (Bio14) strongly 
affecting the distribution of M. henryi (63.2%), M. montis-
koyae (84.7%), and M. urticifolia (63.2%). The contribu-
tion of the elevation variable varied from 0.1% for the M. 
faberi model to 17.2% for the M. henryi model. Isothermal-
ity (Bio3), on the other hand, contributed the most to the M. 
fargesii, M. henryi and M. urticifolia models, accounting for 
18.2, 9.9, and 16.7% of the total contribution, respectively 
(Table 2).

Current and future potential distribution of 
Meehania

Meehania faberi

China, South Korea, and Japan are projected to be suitable 
areas for the distribution of Meehania faberi. The northern-
most provinces of China and North Korea were projected to 
have a low occurrence. M. faberi can be found in locations 
ranging from 18°N in China to about 35°N in Japan (Fig. 3).

first step in evaluating the study results. For our case, we 
utilized the area under the receiver operating curve (AUC) 
and the true skill statistics (TSS) to evaluate the model’s 
predictive capacity. The true skill statistic (TSS) comprises 
omission and commission errors. It varies from − 1 to + 1, 
with + 1 indicating perfect classification and numbers less 
than zero indicating performance no better than random 
(Allouche et al. 2006). The AUC values, on the other hand, 
range between 0 and 1, with an AUC score of approximately 
0.5 indicating that the distribution model is not superior to 
a random model in terms of prediction effects, whereas a 
value of 1 indicates that the information regarding species 
distribution is in excellent agreement with appropriate pre-
dictions (Phillips et al. 2006). After calibrating models for 
current conditions, predictions of future potential distribu-
tions for the 2050s were generated using the two climate 
change scenarios, RCP 4.5, and RCP 8.5. With a refer-
ence to the classification proposed by Yang et al. (2013), 
five classes of potential habitats were regrouped: unsuit-
able (below 0.2), lowly-suitable (between 0.2 and 0.4), 
moderately-suitable (between 0.4 and 0.6), highly-suitable 
(between 0.6 and 0.8), and very highly-suitable (> 0.8).

Distributional changes for Meehania range

All the averaged logistic output ASCII files (current and 
future) were converted into a binary presence-absence for-
mat using the SDMtoolbox 2.5 in ArcMap 10.5. For this 
selection, we used the threshold that maximised sensi-
tivity and specificity (MTSS; Liu et al. 2016), as it is the 
most extensively used (e.g., Ngarega et al. 2021; Tiamiyu 
et al. 2021) and among the most accurate ones (Liu et al. 

Table 1 Evaluation values for model performance for the selected 
Meehania
Species AUC (SD) TSS
Meehania faberi 0.896 (0.049) 0.811
Meehania fargesii 0.913 (0.010) 0.857
Meehania henryi 0.965 (0.007) 0.884
Meehania montis koyae 0.973 (0.005) 0.891
Meehania urticifolia 0.932 (0.002) 0.862
AUC- Area under the curve; SD- Standard deviation; TSS- True Skill 
Statistics

Table 2 Mean relative variable contribution to the final model fitting of the studied species
Species Bio2 Bio3 Bio8 Bio13 Bio14 Elev
Meehania faberi 78.7 3.4 17.5 0.3 0.1 0.1
Meehania fargesii 34.9 18.2 5.5 4.1 22.2 15.2
Meehania henryi 0.4 9.9 7.1 2.3 63.2 17.2
Meehania montis koyae 1.9 5.1 1.8 1.4 84.7 5.0
Meehania urticifolia 4.6 16.7 10.2 0.4 63.2 5.0
Note The variables in bold are the top three most important variables for each species. Bio2 = mean diurnal range (°C), Bio3 = isothermality (%), 
Bio8 = mean temperature of the wettest quarter (°C), Bio13 = precipitation of the wettest month (mm), Bio14 = driest month precipitation (mm), 
Bio18 = precipitation of warmest quarter (mm), Elev = Altitude above sea level
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the two climate change scenarios (RCP 4.5 and RCP 8.5). 
On the other hand, the potential region for species’ existence 
in China increased northwards (Fig. 6). Nevertheless, the 
overall lost habitat range for both scenarios exceeded the 
total gained habitat range (Table 3).

Under the moderate emissions scenario (RCP 4.5), cli-
mate change projections for M. faberi suggest that the spe-
cies will shift northward in China (Figs. 4 and 6), with a 
total range gain of about 317,769 km2 (Table 3). For the 
RCP 8.5 scenario, similar results were noted; the gain of the 
suitable habitat range for M. faberi was slightly higher, with 
an approximate range gain of 329,437 km2 (Fig. 5; Table 3).

The suitability for M. faberi occurrence was predicted to 
decrease gradually in China, Japan, and South Korea under 

Fig. 3 Potential climatically suitable habitats for Meehania species in 
East Asia under current climate conditions. Threshold of classification 
was as follows, ‘not potential’ (< 0.2), ‘low potential’ (0.2–0.4), ‘mod-

erate potential’ (0.4–0.6), ‘high potential’ (0.6–0.8), and ‘very high 
potential’ (> 0.8) habitat
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found in China, South Korea, and southern parts of Japan 
(Figs. 4 and 6), with an approximately gained suitable range 
of 302,517.3 km2 (Table 3). Furthermore, projected reduc-
tions in the suitable habitat of about 458,186.4 km2 were 
predicted in China, Japan, and Korea. Under the RCP 8.5 
climate scenario (Fig. 5), the total gained distribution areas 
would reach 274,472 km2, while the suitable range may 
decrease by approximately 430,528 km2.

Meehania fargesii

Most of China’s climatic conditions, including central, 
southeast, and southwest China, were favourable for the 
distribution of Meehania fargesii (Fig. 3). However, high 
suitability areas were only predicted in large portions of 
central and southwest China with a high fragmentation pat-
tern. The regions projected to gain suitable habitats for Mee-
hania fargesii under the RCP 4.5 climatic scenario would be 

Fig. 4 Potential climatically suitable habitats for Meehania in East 
Asia under the RCP4.5—moderate climate warming (4.5 W/m2) in 
the 2050s. Threshold of classification was as follows, ‘not potential’ 

(< 0.2), ‘low potential’ (0.2–0.4), ‘moderate potential’ (0.4–0.6), ‘high 
potential’ (0.6–0.8), and ‘very high potential’ (> 0.8) habitat
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Meehania montis-koyae

Stable, suitable conditions for Meehania montis-koyae were 
the dominant pattern in comparisons of current and future 
potential distributions. Projections of future habitat suit-
ability for Meehania montis-koyae varied depending on the 
climate change scenario (Figs. 6 and 7). According to the 
MaxEnt models, approximately 190,400 km2 and 319,000 

Meehania henryi

The current potential distribution of Meehania henryi was 
projected in central China, Japan, and South Korea occu-
pying approximately 688,500 km2 (Table 3). For the future 
scenarios, our results indicated an overall increase in suit-
able areas for M. henryi, with an eastward shift of the poten-
tial distribution regions (Figs. 6 and 7). The largest range 
expansions for the species were recorded in mainland China.

Fig. 6 Geographical distribution of Meehania species under the mod-
erate climate change scenario — RCP 4.5 for the 2050s. Green color 
indicates areas to be gained by the species, gray color indicates areas 

predicted to be stable for the species absence, blue color indicates 
areas to be stable for the species presence, and red color indicates areas 
to be lost by the species
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Rana et al. (2021) suggested that AUC alone does not 
reflect the absolute model performance. Therefore, model 
accuracy was assessed by combining two metrics, the AUC 
(threshold-independent) and TSS (threshold-dependent) 
values as model performance measures. For all the scenar-
ios, the average AUC values (0.896–0.973) while the TSS 
values (0.811–0.891) were greater, indicating high confi-
dence in the reliability of the models (Table 1) and were 
not significantly different from previous studies (Idohou et 
al. 2017; Nzei et al. 2021). So, the models were judged as 
descriptive and reliable for this study.

MaxEnt modelling approach was utilized in this study to 
estimate optimal regions for five Meehania species under 
current and future environmental conditions. The pattern of 
distribution range under different scenarios and major con-
tributory environmental factors was observed and depicted. 
Although the five Meehania species had similar ecologi-
cal preferences, these species showed varied responses to 
projected climate change using environmental variables. 
Overall, “temperature,” “precipitation,” and “elevation” 
variables were observed as important variables responsible 
for the distribution of species of the genus Meehania in 
Asia (Table 2). In particular, the mean diurnal range and 
precipitation of the driest month were the most important 
predictors of species distribution, indicating each species’ 
climatic preference. Environmental variables, including ele-
vation, precipitation, and temperature, have been reported 
in various studies to affect the distribution of species with 
known distribution in the East Asiatic region (e.g., Guo et 
al. 2021; Kanagaraj et al. 2019). For example, precipitation 
is the major climatic factor determining the distribution of 
Akebia quinata in East Asia (Zhang et al. 2022). In addi-
tion, temperature, precipitation, and elevation (> 2300 m 

km2 of the study area were considered suitable habitats for 
the species under RCP 4.5 and RCP 8.5, respectively.

Meehania urticifolia

Across our calibration region, under present-day conditions, 
models showed high suitability for Meehania urticifolia in 
Korean peninsula and Japan. Furthermore, small portions 
of suitable habitats were also recorded in south China. 
Future model projections showed that Meehania urticifo-
lia was highly vulnerable to climate change irrespective of 
the scenario (Table 3; Figs. 6 and 7). Under both scenarios, 
we observed a northward latitudinal shift for the species in 
South Korea and an eastward longitudinal shift for the range 
in China (Figs. 6 and 7). According to the future projections, 
the species’ suitable habitats were primarily located in Japan 
and South Korea (Fig. 6).

Discussion

It is widely established that global climate change will alter 
species’ geographic distributions globally (Salako et al. 
2021; Oyebanji et al. 2021; Ngarega et al. 2022). Knowl-
edge of these changes in the distribution of species is crucial 
for plant and animal for conservation purpose. Meehania 
species have a general worldwide distribution, although 
most occur in the Asian continent (Takano et al. 2020; Deng 
et al. 2015). Studies reporting the distribution of Meehania 
in the Sino-Asiatic region remain relatively scarce. This is 
the first attempt to predict the geographical distribution of 
this relatively known genus in relation to the environmental 
dataset.

Table 3 An estimated area for each Meehania species and habitat suitability category for the two future projections RCP4.5 and RCP8.5 for the 
climate 2070s (average for 2060–2080)
Species Current area(km2) Habitat Area (km2) Percentage Change (%) Habitat Area (km2) Percentage Change (%)

RCP4.5 RCP8.5
Meehania faberi 2,039,180.1 Loss 826,686.1 40.54 Loss 800,451.3 39.25

Gain 317,769.6 15.58 Gain 329,437.4 16.15
Stable 1,211,949.0 59.43 Stable 1,238,184.3 60.72

Meehania fargesii 1,761,878.0 Loss 458,186.4 26.01 Loss 430,528.3 24.43
Gain 302,517.3 17.17 Gain 274,472.6 15.58
Stable 1,303,692.6 73.99 Stable 1,331,350.2 75.56

Meehania henryi 688,536.2 Loss 240,892.7 34.99 Loss 144,686.8 21.01
Gain 213,779.3 31.05 Gain 326,731.3 47.45
Stable 447,643.3 65.01 Stable 543,849.3 78.99

Meehania montis-koyae 662,846.0 Loss 472,384.5 71.27 Loss 343,811.1 51.87
Gain 52,873.7 7.98 Gain 137,710.7 20.78
Stable 190,461.5 28.73 Stable 319,034.8 48.13

Meehania urticifolia 861,425.6 Loss 469,994.7 54.56 Loss 514,117.7 59.68
Gain 171,448.7 19.90 Gain 164,947.1 19.14
Stable 391,413.3 45.43 Stable 347,290.4 40.31
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though fast evolution in the face of climate change has been 
widely established in several plant species (Ngarega et al. 
2022; Nzei et al. 2021), it seems inadequate to counter-
act the high speed of present climate change (Franks et al. 
2018).

Species with poor dispersal and range-filling ability 
might well be particularly vulnerable to current climate 
change since they are unlikely to move fast enough to keep 
up with shifting weather patterns (Erlandson et al. 2022; 

asl) account for a sizeable contributory influence in the dis-
tribution of Garuga forrestii found in Sichuan, Yunnan, and 
Guangxi (Tiamiyu et al. 2021).

Ecological niche models assume that species’ present 
native ranges and essential climatic tolerances are almost 
identical (Williams et al. 2009; Zhao et al. 2022). However, 
rapid evolution may change species’ adaptations to new 
climatic conditions in the future, enabling populations to 
persist in various locations amid changing conditions. Even 

Fig. 5 Potential climatically suitable habitats for Meehania in East 
Asia under the RCP 8.5— extreme climate warming (8.5 W/m2) in 
the 2050s. Threshold of classification was as follows, ‘not potential’ 

(< 0.2), ‘low potential’ (0.2–0.4), ‘moderate potential’ (0.4–0.6), ‘high 
potential’ (0.6–0.8), and ‘very high potential’ (> 0.8) habitat
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migration (see McLachlan et al. 2007). Based on our pro-
jections under future climate scenarios, the potential dis-
tribution of the Meehania habitat range will generally shift 
northwards in China. Our findings are comparable to those 
of previous studies, supporting the assertion that climate 
warming will cause wide-ranging adjustments in biodiver-
sity (Bellard et al. 2012; Fadrique et al. 2018). Besides, the 
loss of habitat recorded for species across China, Japan, and 
South Korea (Chang et al. 2007) is a problem that could 

Ngarega et al. 2022). In other instances, their actual and 
projected ranges may diverge completely, subjecting these 
species to high extinction threats (Sax et al. 2013). As such, 
many endemics may be especially vulnerable, as their distri-
butions often reflect past marginalisation by climate change 
(e.g., Pleistocene range dynamics), and their present range 
distributions are often constrained to odd habitats e.g., polar 
regions and high elevations (Erlandson et al. 2022). There-
fore, the conservation of such species may necessitate aided 

Fig. 7 Geographical distribution of Meehania species under the 
extreme climate change scenario — RCP 8.5 for the 2050s. Green 
color indicates areas to be gained by the species, gray color indicates 

areas predicted to be stable for the species absence, blue color indi-
cates areas to be stable for the species presence, and red color indicates 
areas to be lost by the species
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