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• Background and Aims Understanding adaptive genetic variation and whether it can keep pace with predicted 
future climate change is critical in assessing the genetic vulnerability of species and developing conservation 
management strategies. The lack of information on adaptive genetic variation in relict species carrying abundant 
genetic resources hinders the assessment of genetic vulnerability. Using a landscape genomics approach, this 
study aimed to determine how adaptive genetic variation shapes population divergence and to predict the adaptive 
potential of Pterocarya macroptera (a vulnerable relict species in China) under future climate scenarios.
• Methods We applied restriction site-associated DNA sequencing (RAD-seq) to obtain 8244 single-
nucleotide polymorphisms (SNPs) from 160 individuals across 28 populations. We examined the pattern of 
genetic diversity and divergence, and then identified outliers by genetic differentiation (FST) and genotype–en-
vironment association (GEA) methods. We further dissected the effect of geographical/environmental gradi-
ents on genetic variation. Finally, we predicted genetic vulnerability and adaptive risk under future climate 
scenarios.
• Key Results We identified three genetic lineages within P. macroptera: the Qinling-Daba-Tianmu Mountains 
(QDT), Western Sichuan (WS) and Northwest Yunnan (NWY) lineages, which showed significant signals of iso-
lation by distance (IBD) and isolation by environment (IBE). IBD and IBE explained 3.7–5.7 and 8.6–12.8 % of 
the genetic structure, respectively. The identified GEA SNP-related genes were involved in chemical defence and 
gene regulation and may exhibit higher genetic variation to adapt to the environment. Gradient forest analysis re-
vealed that the genetic variation was mainly shaped by temperature-related variables, indicating its adaptation to 
local thermal environments. A limited adaptive potential was suggested by the high levels of genetic vulnerability 
in marginal populations.
• Conclusions Environmental gradient mainly shaped the population differentiation of P. macroptera. Marginal 
populations may be at high risk of extinction, and thus proactive management measures, such as assisted gene 
flow, are required to ensure the survival of these populations.
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INTRODUCTION

Climate change potentially alters habitat suitability at the re-
gional scale and results in local extinctions (Parmesan, 2006; 
Wiens, 2016), and has been considered to be a major driver of 
species range shifts and biodiversity loss (Scheffers et al., 2016; 
Waldvogel et al., 2020; Meng et al., 2021). Species may sur-
vive during climate change by tracking conditions to which they 
are currently adapted, exhibiting considerable phenotypic plas-
ticity, and evolving adaptation strategies to new environments 
(Davis and Shaw, 2001; Parmesan, 2006; Capblancq et al., 2020; 
Waldvogel et al., 2020). For tree species with a long generation 
time, local adaptation is the most significant strategy to cope with 
climate change (Dauphin et al., 2020; Gougherty et al., 2021; 

Meng et al., 2022). Thus, understanding and quantifying the 
adaptive potential of tree species could not only reveal how they 
would survive in the context of climate change, but also benefit 
conservation and management strategies to cope with global bio-
diversity loss (Razgour et al., 2019; Waldvogel et al., 2020).

Advances in landscape genomics have enabled the elucida-
tion of the molecular genetic basis of the local adaptation of tree 
species (Li et al., 2017; Sork, 2018). Genotype–environment as-
sociation (GEA) approaches can identify loci involved in local 
adaptation. The Mantel test and redundancy analysis (RDA) can 
detect the role of geographical or environmental variables in 
shaping genetic structure (Rellstab et al., 2015). Genetic offset, 
which is measured by the locally adaptive allelic variation, can 
assess the amount of change in genomic composition required 
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for a population to track future environmental conditions (Ellis 
et al., 2012; Capblancq et al., 2020). Therefore, landscape gen-
omics offers powerful tools to detect adaptive genetic variation 
and predict the genetic vulnerability of species to climate change 
(Wang et al., 2021; Feng and Du, 2022).

Trees are the main components of forest ecosystems 
(Brodribb et al., 2020; Fazan et al., 2020). Tree species usu-
ally occupy heterogeneous environments, resulting in local 
adaptation (Savolainen, 2011; Sork et al., 2013; Capblancq et 
al., 2020). Assessing the impacts of environmental factors on 
local adaptation for tree species could help forecast the health 
of forest ecosystems (Sork et al., 2013; Sork, 2018). Relict 
species carry abundant genetic information related to envir-
onmental changes and function as storehouses of biodiversity 
(Woolbright et al., 2014). For instance, relict species distributed 
in the Sino-Japanese and Sino-Himalayan Floristic Regions of 
East Asia exhibit high genetic diversity and contain valuable 
genetic resources (Qiu et al., 2011, 2017; Tang et al., 2018). 
However, these species are vulnerable to future climate changes 
due to genetic drift and limited gene exchange (Yannic et al., 
2014; Bay et al., 2018; Cao et al., 2020). At present, conser-
vation management of relict species is mainly conducted from 
the perspective of genetic diversity (Chen et al., 2015; Wei et 
al., 2016; Wu et al., 2020; Xu et al., 2021). However, assess-
ment of the genetic vulnerability and adaptation of relict spe-
cies to future climate changes is more efficient and critical for 
the conservation and reforestation of these valuable resources 
(Capblancq et al., 2020; Gougherty et al., 2021). The rapid de-
velopment of landscape genomics during the last decade has 
provided unprecedented opportunity to explore the genetic vul-
nerability of relict species.

Pterocarya macroptera is a vulnerable Cenozoic relict tree 
species in China that grows at an altitude of between 1100 and 
3500 m (Lu et al., 1999; Song et al., 2019, 2020). It is a member 
of the family Juglandaceae and includes three varieties: var. 
macroptera, var. insignis, and var. delavayi (Lu et al., 1999). 
This species spans from 98°E to 120°E and exhibits considerable 
morphological variations (Song et al., 2020). With such a wide 
geographical range, whether environmental or geographical gra-
dients shape the population differentiation of P. macroptera, to 
what extent population differentiation is influenced by environ-
ment or geography, and how populations would respond to fu-
ture climate conditions remain poorly understood.

In this study, we sequenced 160 individuals of P. macroptera 
from 28 populations covering its entire distribution. Based on 
single-nucleotide polymorphisms (SNPs) obtained from re-
striction site-associated DNA sequencing (RAD-seq) data, we 
formulated the following objectives: (1) to infer population 
genetic differentiation and genetic diversity; (2) to quantify the 
contributions of environmental and geographical variables in 
shaping the spatial distributions of genetic variation; and (3) 
to assess the vulnerable populations with a mismatch between 
genotype and environment.

MATERIALS AND METHODS

Field sampling, RAD-seq library preparation and sequencing

Samples of healthy and mature leaves were collected from 
28 P. macroptera populations representing its entire geograph-
ical range. Samples were dried and kept in silica gel. Genomic 

DNA was extracted from tissue using a Plant Genomic DNA 
Kit (Tiangen, Beijing, China). A total of 160 individuals were 
selected for sequencing, with four to eight individuals per popu-
lation (Supplementary Data Table S1). Samples were individu-
ally barcoded, and RAD libraries were prepared according to 
Baird et al. (2008). Genomic DNA was digested with the restric-
tion enzyme TaqαI in a 30-μL reaction. Then adapter (containing 
individual unique 4- to 10-bp barcodes) ligation was performed 
on 200 ng DNA. Ligated DNA was pooled, purified, and PCR-
amplified by an ABI GeneAmp 9700. DNA fragments with sizes 
between 300 and 500 bp were selected based on AMPure XP 
bead-based size selection steps. RAD libraries were sequenced 
on an Illumina HiSeq™ platform using 150-bp paired-end reads 
at Major Bio Pharm Technology, Shanghai, China.

Data processing

The quality of the RAD data was assessed using FastQC 
(Andrews, 2010). Adapter sequences and low-quality bases (QC 
< 20) from the tail of each read were removed using Trimmomatic 
v0.36 (Bolger et al., 2014). Then, reads with length ~30 bp 
were discarded. The data quality was evaluated by calculating 
the GC content and the Q30 values. The cleaned paired reads 
were demultiplexed and trimmed to 120 bp in length using a 
next-generation sequencing-uniform script provided by Major 
Bio Pharm Technology. Variants were reference-aligned from 
the short reads using the STACKS v2.6.1 pipeline (Catchen 
et al., 2013; Davey et al., 2013). Firstly, the reference genome 
(Pterocarya stenoptera; Zhang et al., 2022) was indexed using 
BWA v0.7.17, and the paired-end reads of each sample were 
mapped to the reference genome based on the BWA-MEM al-
gorithm (Li and Durbin, 2009). Next, the aligned reads were 
sorted by SAMTOOLS v1.15.1 (Li et al., 2009), and the gstacks 
module in STACKS was used to create loci using a sliding 
window algorithm with default parameters. Finally, using the 
populations module in STACKS, the SNPs were obtained and 
filtered according to the following criteria: (1) markers with 
an observed heterozygosity > 0.70 among individuals were 
removed to reduce the potential occurrence of paralogues; (2) 
minor allele frequency (MAF) < 0.05; (3) only the first SNP 
locus of each read was retained by parameter write_single_snp 
to reduce physical linkage; and (4) a minimum of 70 % of in-
dividuals within a population were required to process a locus.

VCFtools v0.1.13 was used to discard loci with missing data 
present in at least 20 % of individuals and to keep only biallelic 
SNPs (Danecek et al., 2011). Variant sites described in the VCF 
format were functionally annotated based on the P. stenoptera 
gene models using SnpEff v4.3t (Cingolani et al., 2012). For 
SNPs, we performed an online BLAST search via the National 
Center for Biotechnology Information (NCBI) website based on 
the protein sequences of genes annotated by SnpEff. Based on 
the highest percentage identity of BLAST alignment, combined 
with the results of each gene identified by the UniProt database 
(https://www.uniprot.org/), we determined the possible mo-
lecular function of each gene and the biological process involved.

Population structure and genetic diversity

We investigated the maximum likelihood ancestor of each 
individual for all SNPs (obtained above) using ADMIXTURE 
v1.30 (Alexander et al., 2009; Alexander and Lange, 2011). 
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For ADMIXTURE, the range of the co-ancestry clusters (K) 
was set to vary between 1 and 10. The optimal number of clus-
ters was determined based on the lowest cross-validation error 
rate. For each K value, we performed a 10-fold cross-validation. 
The genetic differentiation among populations was calculated 
based on all SNPs using principal component analysis (PCA) 
in the R package adegenet 2.1-5 (Jombart et al., 2010; R Core 
Team, 2019). Population differentiation (FST) among lineages 
was calculated based on different SNP datasets using VCFtools 
v0.1.13 (Danecek et al., 2011). We calculated the number of 
private alleles (NP), percentage of polymorphic loci (PL), mean 
observed heterozygosity (HO) and mean expected heterozy-
gosity (HE) using PLINK v1.9 with default settings based on 
all SNPs and all outlier SNPs (Purcell et al., 2007). To min-
imize differences resulting from sample size variations, we also 
calculated unbiased allele richness for all SNPs and all out-
lier SNPs using the R package hierfstat 0.5-11 (Goudet, 2005; 
Halbert and Derr, 2008). The unbiased estimation of nucleo-
tide diversity (π) was conducted using pixy v1.2.7 for all loci 
(including non-polymorphic loci) and all outlier loci following 
a window length of 10 kb (Korunes and Samuk, 2021). For each 
summary statistic, Tukey HSD tests were used to evaluate sig-
nificant differences.

Environmental variables and their responses to genetic variation

Nineteen bioclimatic variables for the current period (1970–
2000) at 30 arcsec resolution were downloaded from the 
WorldClim v.2.1 database based on the geographical coord-
inates of the sampled populations (Fick and Hijmans, 2017). 
Elevation was also included as it may be important to alpine 
species. We further downloaded predicted environmental vari-
ables in the defined period (2081–2100) using low- and high-
emission scenarios of the shared socioeconomic pathway 
(SSP126 and SSP585; Meinshausen et al., 2020). Gradient 
forest (GF) analysis was performed to identify 20 environ-
mental variables that best explained the distribution of genetic 
variation using the R package gradientForest 0.1-17 based on 
all SNPs (Ellis et al., 2012). Gradient forest models apply a 
non-parametric machine-learning regression algorithm tree to 
explore non-linear associations of spatial, environmental and 
allelic variables (Fitzpatrick and Keller, 2015). Two thousand 
regression trees were used for each SNP to fit the GF model, 
while keeping all parameters as default values. After evaluating 
the ranked accuracy importance among 20 environmental vari-
ables, the absolute value of Pearson correlation coefficients 
among these environmental variables was evaluated using the 
R package usdm 1.1-18 (Naimi et al., 2014). Environmental 
variables across the range of P. macroptera with correlation 
coefficients |r| < 0.7 and the top three variables identified by 
the GF analysis were retained. Finally, eight variables (BIO02, 
mean diurnal range; BIO03, isothermality; BIO04, temperature 
seasonality; BIO07, temperature annual range; BIO08, mean 
temperature of wettest quarter; BIO13, precipitation of wettest 
month; BIO15, precipitation seasonality; and elevation) were 
used for subsequent analysis (Supplementary Data Tables S2 
and S3). The eight environmental variables were used to build 
the final GF model, which was used to predict the genetic vul-
nerability of each population across the range of P. macroptera 

(see section Prediction of genetic vulnerability). Given that the 
correlation between the top three variables identified by GF and 
the other variables may affect the final prediction of GF, we also 
used bioclimatic variables with correlation coefficients |r| < 0.7 
(i.e. BIO02, BIO07, BIO08, BIO13 and BIO15) to build the 
final GF model.

Identification of selection signatures

The FST-based methods identified outlier SNPs as those with 
levels of differentiation above those of neutral SNPs among 
populations (Beaumont and Nichols, 1996). The GEA-based 
methods identified outlier SNPs as those exhibiting allele fre-
quency changes that were strongly related to environmental 
variables (De Mita et al., 2013). We focused on the FST-based 
(Whitlock and Lotterhos, 2015; Luu et al., 2017) and GEA-
based approaches (Günther and Coop, 2013; Caye et al., 2019) 
to detect outlier SNPs that were subjected to selection.

The R packages PCADAPT 4.3.3 and OutFLANK 0.2 were 
employed as FST-based methods to identify FST outlier SNPs. 
These two methods were shown to have the lowest false dis-
covery rate (FDR) (Luu et al., 2017). PCADAPT identifies 
outlier SNPs with respect to population structure through PCA 
(Privé et al., 2020). Three principal components (K = 3) cap-
tured most background genetic variation based on the results 
of ADMIXTURE and PCA (see section Genomic divergence 
and genetic diversity). The SNPs that deviated significantly 
from the neutral background structure along the principal 
components (Bonferroni correction with adjusted P-values < 
0.05) were identified as putatively genetic differentiation loci. 
OutFLANK employs an improved likelihood approach to esti-
mate the null distribution of population differentiation for neu-
tral loci (Whitlock and Lotterhos, 2015). This program does 
not take demographic history into account and is less prone to 
false positives (Whitlock and Lotterhos, 2015). We used a left 
and right trim value of 0.05 for the null distribution of FST with 
default settings. SNPs with a minimum heterozygosity for loci 
> 0.1 and the desired FDR threshold < 0.05 were identified as 
putatively genetic differentiation loci.

Bayesian mixed modelling and mixed linear modelling 
were implemented in BAYENV (Coop et al., 2010; Günther 
and Coop, 2013) combined with latent factor mixed modelling 
(LFMM; Caye et al., 2019) to investigate the genomic basis 
of adaptation across contemporary climate gradients. A null 
hypothesis empirical model was established using putatively 
non-FST genetic loci (removed loci identified by PCADAPT 
and OutFLANK) in BAYENV. An allele frequency versus en-
vironment variable covariance matrix among populations was 
calculated with 106 iterations in five independent runs. Based 
on the prior null hypothesis distribution model, we calculated 
the posterior distribution P-values of the correlation between 
allele frequency and environmental variables. The Bayes factor 
(BF) was generated by calculating the correlation between 
the allele frequency and environmental variable covariance 
matrices after 105 runs. The BF was calculated five times, and 
the average BF was treated as the final matrix of the BF. SNPs 
with BF values > 10 and among the top 5 % with absolute value 
of Spearman rank correlation coefficients (ρ) were considered 
as significantly environment-associated loci. To reduce the 
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FDR, the associations between genotypes and environmental 
variables were determined using the LFMM method, which 
considers the population structure. Genetic data were converted 
into LFMM format using the R package LEA 2.0.0 (Frichot and 
François, 2015). Based on the clustering analysis results, K = 3 
was selected as the optimal number of latent factors for sparse 
non-negative matrix factorization (SNMF). Missing SNP data 
were imputed based on the inferred genetic structure using the 
built-in SNMF function in the LEA package. Then, we ran ten 
independent operations to simulate the correlation between al-
lele frequency and environmental variables for a burn-in period 
of 5,000 steps followed by 10,000 iterations. We used the lfmm.
pvalues function in the LEA package to adjust the P-values. 
SNPs with adjusted P-values < 0.001 strongly support asso-
ciations between allele frequencies and environmental vari-
ables. To verify the robust detection of outlier loci, we further 
corrected the P-values at an FDR of 0.05 using the R package 
fdrtool 1.2.17 (Strimmer, 2008).

Using the results of these four approaches, we divided our 
dataset into four categories for the subsequent analyses: (1) all 
SNPs; (2) putative FST SNPs detected jointly by PCADAPT 
and OutFLANK; (3) putative GEA SNPs detected jointly by 
BAYENV and LFMM; and (4) putative outlier SNPs identified 
by the FST and GEA methods. Finally, we used a Venn diagram 
to evaluate the consistency of outlier SNPs identified across the 
FST and GEA methods, respectively.

Inferring isolation by distance and isolation by environment

Isolation by distance (IBD) and isolation by environment 
(IBE) were inferred using the R package vegan 2.5.6 to inves-
tigate the role of geographical and environmental variables in 
shaping spatial genetic differentiation (Forester et al., 2018; 
Oksanen et al., 2019). The geographical distance (pairwise 
Euclidean difference, representing IBD) between sites was cal-
culated using the R package geosphere 1.5.14 (Hijmans et al., 
2021). The eight environmental variables were first scaled and 
centralized to account for differences in magnitude, and then 
were used to calculate the environmental distance (Bray–Curtis 
distance, representing IBE) using the R package ecodist 2.0.9 
(Goslee and Urban, 2007). The genetic distance (pairwise FST/
(1 − FST)) was calculated based on all SNPs using the R package 
hierfstat 0.5.11 (Goudet, 2005). Simple Mantel tests (Mantel, 
1967; Diniz-Filho et al., 2013) were used to test whether gen-
etic distance was significantly correlated with geographical or 
environmental distance. Partial Mantel tests were used to inves-
tigate the independent effects of geographical/environmental 
distance on genetic distance. We further investigated the cor-
relation between environmental and geographical distance. The 
level of significance of the Mantel tests was assessed with 999 
permutations.

Redundancy analysis

We used RDA to assess the relative contribution of envir-
onmental and geographical distances to population genetic 
differentiation using the R package vegan 2.5-6 (Forester et 
al., 2018; Oksanen et al., 2019). Allele frequency matrices 
for each population, as well as two independent matrices of 

environmental and geographical variables, were used for RDA 
tests. Considering that the RDA test does not allow for the pres-
ence of missing allele frequency data, we used the R package 
LEA 2.0.0 (Frichot and François, 2015) to impute missing allele 
frequencies for each population. Geographical variables were 
defined by geographical distances using principal coordinates 
of neighbourhood matrices (PCNMs) in the R package vegan 
(Oksanen et al., 2019). The first half of the PCNM variables 
(PCNM1, PCNM2, PCNM3 and PCNM4) with significant 
positive eigenvalues were retained, as has been suggested by 
Fitzpatrick and Keller (2015). Following the recommendation 
of Borcard et al. (2011), we used all SNPs to perform forward 
selection for both geographical and environmental variables 
with an α value of 0.05 to avoid overfitting. This resulted in 
the retention of three PCNMs (PCNM1, PCNM2 and PCNM3) 
and seven environmental variables (BIO02, BIO03, BIO04, 
BIO07, BIO13, BIO15 and elevation) for the subsequent ana-
lyses. Full and partial RDA model tests for different SNP sets 
(all and FST, GEA and all outlier SNPs) were performed to dis-
tinguish the independent effects of environment and geography 
by reciprocally constraining geographical and environmental 
variables. Significance was assessed using the randomization 
procedure implemented in the function ANOVA.cca with 999 
randomizations.

Prediction of genetic vulnerability

To predict genetic vulnerability under future climate con-
ditions, we performed GF (Ellis et al., 2012; Fitzpatrick and 
Keller, 2015) and risk of non-adaptedness analysis (RONA; 
Rellstab et al., 2016; Pina-Martins et al., 2018) using all SNPs 
and GEA SNPs. Gradient forest analysis was used to identify 
the spatial regions in which genotype–environment relation-
ships are most likely to be disrupted by climate change. We 
evaluated the mismatch between current and predicted genomic 
compositions under future environmental projections during 
2081–2100 under low- and high-emission scenarios (SSP126 
and SSP585). Eight environmental variables were included 
in the GF model to predict the genomic composition of each 
grid point across the range of P. macroptera. The GF model 
was tested using 2000 regression trees per SNP. The Euclidian 
distance between current and future genetic compositions was 
calculated; this represents the scale of genetic change needed 
to match environmental change (i.e. genetic offset), with 
higher values indicating greater vulnerability of the population 
(Fitzpatrick and Keller, 2015). To illustrate the regions pre-
dicted to experience greater impacts under future environments 
with a lack of adaptive evolution or migration (Fitzpatrick and 
Keller, 2015), the genetic offset was visualized as landscape 
maps for all SNPs and GEA SNPs.

We used RONA to quantify the theoretical average change 
in allele frequency under predicted future climate scenarios 
and then predicted the adaptive potential of species under 
these scenarios. First, the allele frequency of each individual 
was obtained using the R package LEA 2.0.0 (Frichot and 
François, 2015). A regression model was constructed based on 
the allele frequencies and eight environmental variables. The 
theoretically expected allele frequencies during 2081–2100 
under the SSP126 and SSP585 emission scenarios were then 
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predicted based on the regression model. The average differ-
ence between the current and predicted allele frequencies was 
the RONA value, which represented the adaptive potential 
of the population under future climate conditions. A higher 
RONA value indicates a lower potential (high genetic vulner-
ability) of the population to adapt to future climate conditions. 
We calculated the weighted mean R2 of the regression model 
for each population, as recommended by Pina-Martins et al. 
(2018). Finally, we identified the top three environmental vari-
ables that were most tightly associated with all SNP and GEA 
SNP sets.

RESULTS

Genomic data

A total of 1 125 776 716 clean paired-end reads were obtained 
from 160 individuals of P. macroptera. An average of 7 036 104 
reads was retained per individual. The average mapping rate 
was ~77 % (range 60–94 %; Supplementary Data Tables S1 and 
S4). We retained 8244 high-quality SNPs after stringent quality 
control (Supplementary Data Table S5). The annotation of the 
8244 SNPs is provided in Supplementary Data Table S6. Of the 

8244 SNPs, 1779 (21.6 %) resided in coding regions. The re-
maining SNPs (6465 SNPs, 78.4 %) resided in upstream gene 
variants (1812 SNPs), downstream gene variants (1257 SNPs), 
intron variants (859 SNPs) and intergenic regions (2537 SNPs; 
Supplementary Data Table S6).

Genomic divergence and genetic diversity

Based on the 8244 SNPs, ADMIXTURE identified K = 3 
as the most likely number of evolutionary clusters among the 
28 populations (Fig. 1A, B; Supplementary Data Fig. S1). 
We detected three distinct clusters: the Qinling-Daba-Tianmu 
Mountain (QDT), Western Sichuan (WS) and Northwest 
Yunnan (NWY) lineages. PCA yielded a similar grouping, with 
the first two PCs accounting for 20.8 % of the total genetic vari-
ation using 8244 SNPs (16.2 and 4.6 % for PC1 and PC2 re-
spectively; Fig. 1C). The genetic differentiation based on the 
different SNP datasets consistently supported the highest gen-
etic differentiation between the QDT and NWY lineages, fol-
lowed by the NWY and WS lineages, while the QDT and WS 
lineages had the lowest genetic differentiation (Table 1). In add-
ition, four SNP datasets revealed different levels of genetic dif-
ferentiation. Among them, the differentiation level based on FST 
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Colours represent different ancestry groups. (B) Ancestry assignment for 160 individuals in 28 populations of P. macroptera at K = 3. Each bar represents an indi-

vidual, with different colours reflecting varying ancestry. (C) PCA with different colours reflecting different groups.
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SNPs was 0.32–0.66, which was higher than that based on GEA 
SNPs (0.29–0.61) and all outlier SNPs (0.25–0.58). Based on 
all SNPs, the genetic differentiation among different lineages 
was the lowest (0.09–0.28). For all SNPs, the genetic diver-
sity indicated no significant difference among the three lineages 
(P < 0.05; Table 2; Supplementary Data Tables S7 and S8). For 
all outlier SNPs, the WS lineage showed more polymorphic loci 
and higher allelic richness (AR) than the NWY and QDT lin-
eages. Specifically, the HLG population in the WS lineage had 
the greatest proportion of polymorphic loci (53.49 %) and the 
DFX population had the highest allelic richness (1.39) among 
the 28 populations (Supplementary Data Table S7).

Putative outlier SNP detection

A total of 932 outlier SNPs were detected using the FST-
based methods, while 537 and 697 outlier SNPs were iden-
tified by PCADAPT and OutFLANK, respectively (Table 3; 
Supplementary Data Table S9; Supplementary Data Fig. S2). 
The number of top 20 % outlier SNPs identified by PCADAPT 
was 117, and that by OutFLANK was 139, with 17 outlier 
SNPs overlapping between the two methods (Supplementary 
Data Fig. S3; Supplementary Data Table S10). Among these 
17 overlapping outlier SNPs, ten were located in ten genes and 
the remaining seven SNPs were located in intergenic regions. 
Of the ten genes, the PST000227 gene was not identified by 
the NCBI BLAST analysis and the PST000586 gene had no 
known function. Three genes (PST026568, PST019941 and 
PST000475) were involved in embryo development ending 
in seed dormancy, the triterpenoid biosynthetic process and 
the reproductive development process (Supplementary Data 
Table S10).

Based on the GEA approach, a total of 957 outlier SNPs 
putatively associated with environmental variables were de-
tected. Among them, 431 and 796 SNPs were detected by 
BAYENV and LFMM (FDR < 0.05), respectively (Table 3; 
Supplementary Data Table S11; Supplementary Data Figs S4 
and S5). We found 356, 306, 290, 288 and 283 SNPs associ-
ated with the environmental variables BIO13, BIO07, BIO04, 
BIO03 and BIO15, respectively. BAYENV and LFMM detected 
49 and 47 SNPs simultaneously associated with the top four en-
vironmental variables (BIO04, BIO03, BIO07, and BIO15; see 
next section) (Supplementary Data Fig. S6A, B). Eight SNPs 
were detected by both BAYENV and LFMM (Supplementary 
Data Fig. S6C). Among these eight SNPs, one was located 
in an intergenic region, and the remaining seven SNPs were 

located in seven genes, respectively. Of the seven genes, the 
PST000586 and PST036282 genes had no known function. The 
PST020689 and PST029083 genes were involved in the regu-
lation of gene expression by stress factors and photosynthesis, 
respectively. In addition, the PST029941 gene was involved 
in the glycolipid and sulfolipid biosynthetic process, and the 
PST018122 gene was responsible for the diterpenoid, sesqui-
terpene and terpenoid biosynthetic process (Supplementary 
Data Table S10). A total of 16 genes were detected by the FST 
and GEA approaches, among which the PST035198 gene, in-
volved in the regulation of gene expression, was detected by 
both methods.

Environmental and spatial associations with genetic variation

The GF analysis revealed significant differences in genetic 
composition along the geographical range of P. macroptera 
(Fig. 2A; Supplementary Data Table S12). Temperature sea-
sonality (BIO04) was identified as the most important pre-
dictor among the environmental variables considered, followed 
by BIO03, BIO07, BIO15 and elevation. In addition, allelic 
composition changed sharply along the temperature-related 
top three environmental variables, BIO04, BIO03, and BIO07 
(Supplementary Data Fig. S7).

Using all SNPs, the pairwise genetic distance between loca-
tions [FST/(1 − FST)] was highly correlated with geographical 
distance, suggesting a strong signal of IBD (Fig. 2B). Genetic 
distance was also significantly associated with environmental 
distance based on eight environmental variables (Fig. 2C). In a 
partial Mantel test, only geographical distance was significant 
(Supplementary Data Table S13), suggesting that this is the 
strongest force structuring genome-wide variation. In addition, 
the autocorrelation between environmental and geographical 
distances was also strong (Fig. 2D).

Isolation by distance explained 3.7–5.7 % of the variation 
after controlling for environment, while IBE explained 8.6–
12.8 % of the variation after controlling for geography (Table 
4; Supplementary Data Table S14). Based on the four SNP 

Table 1. Genetic differentiation (FST) on all 8244 SNPs and 
all outlier SNPs (in parentheses, below the diagonal) and on FST 
SNPs (PCADAPT and OutFLANK, 932 SNPs) and GEA SNPs 
(BAYENV and LFMM, 957 SNPs, in parentheses, above the diag-

onal) between groups of P. macroptera.

NWY lineage WS lineage QDT lineage

NWY lineage – 0.478 (0.382) 0.656 (0.609)

WS lineage 0.155 (0.383) – 0.323 (0.288)

QDT lineage 0.281 (0.575) 0.084 (0.249) –

Table 2. Genetic diversity for P. macroptera under all SNPs and 
all outlier SNPs.

Lineage N NP PL HO HE π Allelic richness

All SNPs

  NWY 5.25a 0.00a 33.54a 0.11a 0.10a 0.12a 1.27a

  WS 6.22a 0.33a 45.16a 0.12a 0.11a 0.13a 1.31a

  QDT 5.63a 0.27a 37.08a 0.11a 0.10a 0.11a 1.27a

All outlier SNPs

  NWY 5.25a 0.00a 30.98b 0.09a 0.10ab 0.12ab 1.26b

  WS 6.22a 0.11a 43.64a 0.12a 0.13a 0.15a 1.33a

  QDT 5.63a 0.09a 30.00b 0.09a 0.09b 0.10b 1.24b

N, number of individuals; NP, number of private alleles; PL, percentage of 
polymorphic loci; HO, mean observed heterozygosity; HE, mean expected het-
erozygosity; π, mean nucleotide diversity.

Indices with different superscript letters represent significant differences 
(P < 0.05, Tukey–HSD).
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datasets, the contribution of environment to genetic variation 
was higher than that of geography. Thus, we further identified 
the explanatory environmental variables for the genetic variation 

in different lineages of P. macroptera using different SNP sets. 
Considering the similar results of RDA and partial RDA, we 
reported RDA results with a higher proportion of explained 

Table 3. Number of candidate SNP loci under putative selection identified by PCADAPT, OutFLANK, BAYENV and LFMM.

Method SNPs BIO02 BIO03 BIO04 BIO07 BIO08 BIO13 BIO15 Elevation

FST-based PCADAPT 537

OutFLANK 697

FST total 932

GEA-based BAYENV 431 80 207 166 183 8 28 124 20

LFMM 796 102 167 186 201 132 353 222 149

GEA Total 957 162 288 290 306 133 356 283 157

All outlier SNPsa 1380

aSNPs identified by FST- and GEA-based methods.
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genetic variation. Based on the four SNP datasets, the contri-
bution of environmental variables to genetic variation in the 
three lineages was generally consistent (Fig. 3; Supplementary 
Data Fig. S8). Precipitation-related variables (BIO15, BIO13) 
and elevation contributed most to the genetic variation in the 
WS lineage. Temperature-related variables (BIO04, BIO07) ex-
plained most of the genetic variation in the QDT lineage. Mean 
diurnal range (BIO02) and isothermality (BIO03) contributed 
most to the genetic variation in the NWY lineage. A total of 

28.6–60.1 % of the variation was explained by two components 
(environment and geography) of the different SNP sets (‘Total 
explained’ in Table 4), and a large proportion of total gen-
etic variation was explained by their combined effect (‘Total 
confounded’ in Table 4). This combined effect was most pro-
nounced in the FST SNPs.

Landscape of future predictions

Gradient forest prediction based on five environmental vari-
ables was similar to those based on the eight environment vari-
ables (Supplementary Data Fig. S9). Given the similarity of the 
results, we reported predictions based on the eight environment 
variables. The ranges and degree of genetic mismatch increased 
under SSP585 compared with those under SSP126 based on all 
SNPs and GEA SNPs. Comparing the two scenarios, we cal-
culated the proportion of the distribution range having a gen-
etic mismatch > 50 % of the maximum detected value (0.22 in 
this study; Fig. 4). There was no distribution space exceeding 
the threshold of vulnerability based on all SNPs. Based on 
GEA SNPs, 3.4 and 6.9 % of the distribution space was rec-
ognized as above the threshold of vulnerability under SSP126 
and SSP585, respectively. The eastern and western peripheral 
populations of P. macroptera were most vulnerable under both 
climate scenarios. This indicates that these populations may 
be confronted with climate-induced selective pressure in the 
future. The northern populations of the QDT lineage and the 
eastern populations of the NWY lineage had low genetic vul-
nerability (Fig. 4).

The RONA suggested that GEA SNPs had a higher genetic 
vulnerability than all SNPs (Fig. 5; Supplementary Data Table 
S15). Most populations under the high-emission scenario had a 
higher genetic vulnerability than those under the low-emission 
scenario. Precipitation of wettest month (BIO13), temperature 
seasonality (BIO04) and precipitation seasonality (BIO15) 
played a primary role in vulnerability. The southernmost and 

Table 4. Summary of genetic differentiation associated with environmental, geographical and their combined effects based on redun-
dancy analysis in P. macroptera.

All SNPs
8244

FST SNPs
932

GEA SNPs
957

All outlier SNPs
1380

Combined fractions

  F~geog. 0.200*** 0.481*** 0.448*** 0.415***

  F~env. 0.249*** 0.545*** 0.533*** 0.484***

Individual fractions

  F~geog. | env. 0.037*** 0.057*** 0.042*** 0.050***

  F~env. | geog. 0.086*** 0.121*** 0.128*** 0.119***

  Total explained 0.286*** 0.601*** 0.576*** 0.534***

  Total confounded 0.163 0.423 0.406 0.365

  Total unexplained 0.714 0.399 0.424 0.466

  Total 1.000 1.000 1.000 1.000

F, dependent matrix of minor allele frequencies; RDA tests are of the form: F ~ independent matrices | covariate matrices. env., seven retained environmental 
variables; geog., three retained principal coordinates of neighbourhood matrices variables. Total explained, total adjusted R2 of individual fractions; Total con-
founded, total of individual fractions confounded between various combinations of environment and geography.

***P ≤ 0.001.
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Fig. 3. Partial RDA partitioning sources of genetic differentiation among 
populations in P. macroptera into environment by condition geography using 
all outlier SNPs. The plot shows the first and second RDA axes with individuals 

as coloured circles and environmental variables as black vectors.
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easternmost marginal populations of P. macroptera, such as the 
populations JGS, DFX, NYX, TMS and JLS, had a lower adap-
tion potential for BIO13. Populations isolated at the southern 
and eastern edge of their natural distribution area may face 
higher vulnerability under predicted future climate scenarios.

DISCUSSION

Genomic divergence and diversity

We found three genetic clusters within P. macroptera with 
some admixed individuals between them. Two genetic clusters 
(NWY and WS) were located in the Sino-Himalayan Forest 
subkingdom and one (QDT) in the Sino-Japanese Forest sub-
kingdom. This pattern of population structure is consistent 
with previous studies in East Asia (Wu and Wu, 1996; Qiu et 
al., 2011, 2017; Chen et al., 2015; Ma et al., 2015; Cao et al., 
2016, 2020; Wei et al., 2016). The two genetic clusters within 
the Sino-Himalayan Forest subkingdom seem to mirror the 

similar phylogeographic break in many other species (Meng et 
al., 2015; Yang et al., 2017; Luo et al., 2018; Wang et al., 2019; 
Nocchi et al., 2023). The level of genetic differentiation among 
P. macroptera populations is higher than that in other closely 
related wingnut taxa (P. stenoptera: 0.067) (Li et al., 2018). The 
high genetic differentiation between the three lineages within P. 
macroptera may be related to the geographical isolation and di-
vergent selection. Some SNPs located in different lineages may 
be subject to divergent selection in the homogenous gene pool. 
The WS lineage, mainly located in the west of the Sichuan 
Basin, has a higher level of genetic diversity, possibly due to 
the presence of an ancient refugium, which provided stable 
and suitable conditions for maintenance of genetic diversity 
(López-Pujol et al., 2011; Tang et al., 2018). Previous reports 
on plants (Li et al., 2023), birds (Wu et al., 2017), amphibians 
(Qiao et al., 2018) and insects (Tang et al., 2022) have shown 
that mountains around the Sichuan Basin harboured suitable 
microenvironments for species, especially for relict species. 
Another possible explanation for the high genetic diversity of 
the WS lineage could be the mixed populations in this lineage 
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Fig. 4. Prediction of genetic offset to future climate change based on eight environment variables for (A, B) all SNPs and (C, D) GEA SNPs. (A) and (C) reflect 
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(i.e. SRX, BBD, BYX, DFX) receiving genetic introgression 
from the NWY and QDT lineages and thus providing higher 
genetic diversity for the WS lineage. The low genetic diversity 
in the QDT and NWY lineages requires further work to investi-
gate the evolutionary dynamics of extinction, colonization and 
effective population size in these two lineages.

Landscape of current adaptive genetic variation

Trees often occupy highly heterogeneous environments 
and ecologically adapt to the local environment (Capblancq et 
al., 2020). Hence, the signature of environmental isolation of 
P. macroptera likely reflects local environmental adaptation 
(Nachman and Payseur, 2012; Wang and Bradburd, 2014). 
Temperature regimes and precipitation patterns are critical 
factors that define species distribution and plant growth (Root 
et al., 2003; Wahid et al., 2007). Redundancy analysis showed 
that temperature-related factors were important in accounting 
for the adaptive variation of P. macroptera. This is similar 
to other findings that temperature also impacts the adaptive 
genetic variation of P. stenoptera (Li et al., 2018, 2022), a 
species closely related to P. macroptera. We are not sure if 

the same subsets of loci are involved in the local adaptation 
of both P. macroptera and P. stenoptera. Further research is 
needed to determine this. The top three environmental vari-
ables explaining genetic variation were temperature-related, 
especially for the NWY and QDT lineages. Pterocarya is a 
typical riparian relict tree genus (Song et al., 2020, 2021). 
Compared with other Pterocarya species, P. macroptera oc-
cupies the highest elevations, with the largest change in ele-
vational range, along mountain streams and water-rich slopes 
(Kozlowski et al., 2018; Song et al., 2019). This is likely why 
the other two important factors that drove genetic variation in 
P. macroptera were precipitation seasonality and elevation, 
which were also the top two factors for the WS lineage. The 
uplift of the Qinghai–Tibet Plateau created elevation gradi-
ents in East Asia, and intensification of the East Asian mon-
soon system shaped temperature regimes and precipitation 
patterns (Qiu et al., 2011, 2017), which are the most sug-
gestive factors responsible for genetic variation and the major 
phylogeographic breaks among the three lineages.

The GEA-based methods identified seven SNPs located in 
seven genes that were associated with environmental vari-
ables (BIO04, BIO03, BIO07, and BIO15). The identified 
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GEA genes involved in chemical defence and gene regula-
tion may exhibit high genetic variation to adapt to the envir-
onment (temperature and precipitation). The PST018122 and 
PST019941 genes (detected by the FST method) were both in-
volved in the triterpenoid biosynthetic process. As significant 
chemical defence compounds for the growth and development 
of plants and for coping with a stressed environment, ter-
penoids directly act as antimicrobials or signals for resisting 
herbivores and other natural enemies (Dudareva et al., 2004; 
Paschold et al., 2006). Terpenoids dominate in the leaves of 
Pterocarya species (Xiao et al., 2002; Liu et al., 2004; Zhang 
et al., 2006; Ebrahimzadeh et al., 2009; Yin et al., 2019), sug-
gesting that terpene biosynthesis-related genes may play an 
important role in protecting the leaves of P. macroptera. The 
PST020689 gene was involved in the regulation of gene ex-
pression by stress factors. Regulation of biological processes 
is responsible for stress resistance under biotic and abiotic 
stresses (Licausi et al., 2013). Genes related to stress resist-
ance may be of significance to P. macroptera under stressed 
conditions. The regulatory expression of these identified 
genes may be the genomic imprint for the local adaptation of 
P. macroptera to its habitats.

Genetic vulnerability under future climate conditions

Understanding the genetic basis of adaptation and 
determining the adaptive ability of species to future cli-
mate conditions are crucial in the context of climate change 
(Fitzpatrick and Keller, 2015; Dauphin et al., 2020). Previous 
studies reported relevant strategies to gain insight into the po-
tential risk of species persistence under climate change (Bay 
et al., 2018; Du et al., 2020; Zhao et al., 2020; Vranken et 
al., 2021; Sang et al., 2022). We found that marginal popu-
lations of P. macroptera had a high level of genetic vulner-
ability, suggesting that these populations are potentially at 
higher risk of in situ extinction under future climate changes. 
These marginal populations may be less resilient to future 
climates because genotypes were not sufficiently correlated 
with predicted climate variables. This result reinforces our 
understanding that ecologically marginal populations may be 
separated not only by distance from the core of the species’ 
distribution but also experience different biotic and abiotic 
environments (Munwes et al., 2010; Santini et al., 2019). 
Although the static elevation variable used for the prediction 
could have led to an underestimation of genetic vulnerability, 
riparian forest niches limited the movement of populations to 
higher elevations. In addition, the strong geographical isola-
tion limited the ability of populations to track spatial changes 
through migration.

The genetic vulnerability of P. macroptera predicted in this 
study may be related to the species-specific tolerance to en-
vironmental variables and the complex topography of moun-
tains. Overall, we expect that long-term sustained climate 
change will result in marginal populations with high genetic 
vulnerability (Dauphin et al., 2020). These highly vulner-
able populations need to adapt quickly to climate change. 
Otherwise they may be at risk of extinction (Franks and 
Hoffmann, 2012; Capblancq et al., 2020). Future work needs 
to integrate adaptive genetic variation with biogeographic 

models to accurately identify species vulnerability under fu-
ture climate conditions.

Implications for conservation management

There is a growing interest in evolutionarily informed man-
agement strategies that rely on the spatial distribution of gen-
etic diversity and genetic vulnerability (Aitken and Whitlock, 
2013; Lefèvre et al., 2014; Gougherty et al., 2021). Hence, a 
comprehensive understanding of the spatial genetic diversity 
helps to develop conservation strategies (Petit et al., 1998). 
Populations with high genetic diversity may have a greater po-
tential in adaption to climate change and may harbour valuable 
breeding materials (Frankel et al., 1995). Therefore, priority 
should be given to conservation of such populations, such as 
populations of the WS lineage of P. macroptera.

Gradient forest analysis and RONA have been widely used 
in assessing genetic vulnerability. Our results suggested that 
marginal populations of P. macroptera have higher genetic vul-
nerability. Assisted gene flow from populations with genotypes 
preadapted to future climate may help those marginal popu-
lations mitigate future climate change (Kremer et al., 2012; 
Aitken and Bemmels, 2016). Thus, mixing seeds from multiple 
sources may be an appropriate strategy for increasing diversity 
and buffering climate change for marginal populations of P. 
macroptera (Aitken and Bemmels, 2016; Martins et al., 2018). 
Meanwhile, donor populations should be carefully selected, so 
that transplanted individuals are genetically compatible with 
the new environment predicted in future reconstructive man-
agement (Fredriksen et al., 2020).

SUPPLEMENTARY DATA
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Figure S1: ADMIXTURE bar plots of the proportion of gen-
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cumulative importance of genetic variation along environmental 
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in BAYENV and LFMM. Figure S9: prediction of genetic offset 
to future climate change based on five environment variables 
for all SNPs and GEA SNPs. Table S1: summary of statistical 
information on sequencing quality for 28 populations of P. 
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P. macroptera. Table S3: predicted environmental variables for 
the years 2081–2100 under two shared socio-economic path-
ways for P. macroptera. Table S4: genetic information statis-
tics on mapping rate and missing rate of 160 individuals in 28 
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populations. Table S5: statistical information for 8244 SNPs. 
Table S6: functional annotation of 8244 SNPs based SnpEff 
software. Table S7: genetic diversity for 28 populations of P. 
macroptera. Table S8: unbiased estimation of nucleotide diver-
sity for NWY, WS and QDT lineages of P. macroptera. Table 
S9: outlier SNPs detected by FST-based methods. Table S10: 
functional descriptions of genes associated with SNPs identified 
by FST- and GEA-based methods. Table S11: outlier SNPs de-
tected by GEA-based methods. Table S12: accuracy importance 
of each environmental variable identified by GF modelling for P. 
macroptera. Table S13: partial Mantel test in P. macroptera con-
ditioned with environmental and geographical distance. Table 
S14: partitioning of the variance and accumulated constrained 
eigenvalues associated with environment based on partial re-
dundancy analysis for all SNPs, FST SNPs, GEA SNPs, and all 
outlier SNPs. Table S15: summary of risk of non-adaptedness 
calculated for SSP126 and SSP585 in P. macroptera populations 
based on future climate predictions for 2081–2100.

FUNDING

This work was supported by the Special Fund for Scientific 
Research of Shanghai Landscaping & City Appearance 
Administrative Bureau (G212406, G202401), Foundation 
Franklinia, the Yunnan Revitalization Talent Support Program 
in Yunnan Province (H.H.M.) and the CAS Light of West China 
Program (H.H.M.).

ACKNOWLEDGEMENTS

We want to thank Mr Rui-Bin Liu for helping with material col-
lection. We would like to thank Editage (www.editage.cn) for 
English language editing. Y.G.S. and G.K. designed the study; 
S.S.Z., Y.G.S., Y.J. and D.Q.L. performed the material collec-
tions and experiments; T.R.W. performed the simulations and 
the genomic analysis; T.R.W., H.H.M., N.W., Y.G.S., and G.K. 
wrote the manuscript; all authors read and approved the manu-
script. The data underlying this article are available at Figshare: 
https://doi.org/10.6084/m9.figshare.23742066.

LITERATURE CITED

Aitken SN, Bemmels JB. 2016. Time to get moving: assisted gene flow of forest 
trees. Evolutionary Applications 9: 271–290. doi:10.1111/eva.12293.

Aitken SN, Whitlock MC. 2013. Assisted gene flow to facilitate local adap-
tation to climate change. Annual Review of Ecology, Evolution, and 
Systematics 44: 367–388. doi:10.1146/annurev-ecolsys-110512-135747.

Alexander DH, Lange K. 2011. Enhancements to the ADMIXTURE algo-
rithm for individual ancestry estimation. BMC Bioinformatics 12: 246.

Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation 
of ancestry in unrelated individuals. Genome Research 19: 1655–1664. 
doi:10.1101/gr.094052.109.

Andrews S. 2010. Fast QC: A quality control tool for high throughput se-
quence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 
(3 January 2023, date last accessed).

Baird NA, Etter PD, Atwood TS, et al. 2008. Rapid SNP discovery and 
genetic mapping using sequenced RAD markers. PLoS One 3: e3376. 
doi:10.1371/journal.pone.0003376.

Bay RA, Harrigan RJ, Underwood VL, Gibbs HL, Smith TB, Ruegg K. 
2018. Genomic signals of selection predict climate-driven population 
declines in a migratory bird. Science 359: 83–86. doi:10.1126/science.
aan4380.

Beaumont MA, Nichols RA. 1996. Evaluating loci for use in the genetic ana-
lysis of population structure. Proceedings of the Royal Society of London. 
Series B: Biological Sciences 263: 1619–1626.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for 
Illumina sequence data. Bioinformatics 30: 2114–2120. doi:10.1093/
bioinformatics/btu170.

Borcard D, Gillet F, Legendre P. 2011. Numerical ecology with R. New York: 
Springer.

Brodribb TJ, Powers J, Cochard H, Choat B. 2020. Hanging by a thread? 
Forests and drought. Science 368: 261–266. doi:10.1126/science.
aat7631.

Cao YN, Comes HP, Sakaguchi S, Chen LY, Qiu YX. 2016. Evolution of 
East Asia’s Arcto-Tertiary relict Euptelea (Eupteleaceae) shaped by late 
Neogene vicariance and Quaternary climate change. BMC Evolutionary 
Biology 16: 1–17.

Cao YN, Zhu SS, Chen J, et al. 2020. Genomic insights into historical popu-
lation dynamics, local adaptation, and climate change vulnerability of 
the East Asian Tertiary relict Euptelea (Eupteleaceae). Evolutionary 
Applications 13: 2038–2055. doi:10.1111/eva.12960.

Capblancq T, Fitzpatrick MC, Bay RA, Exposito-Alonso M, Keller SR. 
2020. Genomic prediction of (mal)adaptation across current and future cli-
matic landscapes. Annual Review of Ecology, Evolution, and Systematics 
51: 245–269. doi:10.1146/annurev-ecolsys-020720-042553.

Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. 2013. 
Stacks: an analysis tool set for population genomics. Molecular Ecology 
22: 3124–3140. doi:10.1111/mec.12354.

Caye K, Jumentier B, Lepeule J, François O. 2019. LFMM 2: fast and 
accurate inference of gene-environment associations in genome-wide 
studies. Molecular Biology and Evolution 36: 852–860.

Cingolani P, Platts A, Wang LL, et al. 2012. A program for annotating and 
predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6: 
80–92. doi:10.4161/fly.19695.

Chen JM, Zhao SY, Liao YY, Gichira AW, Gituru RW, Wang QF. 2015. 
Chloroplast DNA phylogeographic analysis reveals significant spatial 
genetic structure of the relictual tree Davidia involucrata (Davidiaceae). 
Conservation Genetics 16: 583–593.

Coop G, Witonsky DB, Rienzo AD, Pritchard JK. 2010. Using environ-
mental correlations to identify loci underlying local adaptation. Genetics 
185: 1411–1423.

Danecek P, Auton A, Abecasis G, et al.; 1000 Genomes Project Analysis 
Group. 2011. The variant call format and VCFtools. Bioinformatics 27: 
2156–2158. doi:10.1093/bioinformatics/btr330.

Dauphin B, Rellstab C, Schmid MZS, et al. 2020. Genomic vulnerability 
to rapid climate warming in a tree species with a long generation time. 
Global Change Biology 27: 1181–1195. doi:10.1111/gcb.15469.

Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter 
ML. 2013. Special features of RAD sequencing data: implications for 
genotyping. Molecular Ecology 22: 3151–3164. doi:10.1111/mec.12084.

Davis MB, Shaw RG. 2001. Range shifts and adaptive responses to Quaternary 
climate change. Science 292: 673–679. doi:10.1126/science.292.5517.673.

Diniz-Filho JAF, Soares TN, Lima JS, et al. 2013. Mantel test in popula-
tion genetics. Genetics and Molecular Biology 36: 475–485. doi:10.1590/
S1415-47572013000400002.

Dudareva N, Pichersky E, Gershenzon J. 2004. Biochemistry of plant volat-
iles. Plant Physiology 135: 1893–1902. doi:10.1104/pp.104.049981.

Du FK, Wang TR, Wang YY, Ueno S, de Lafontaine G. 2020. Contrasted 
patterns of local adaptation to climate change across the range of an ever-
green oak, Quercus aquifolioides. Evolutionary Applications 13: 2377–
2391. doi:10.1111/eva.13030.

Ebrahimzadeh MA, Nabavi SF, Nabavi SM. 2009. Essential oil compos-
ition and antioxidant activity of Pterocarya fraxinifolia. Pakistan Journal 
of Biological Sciences 12: 957–963.

Ellis N, Smith SJ, Pitcher, CR. 2012. Gradient forests: calculating importance 
gradients on physical predictors. Ecology 93: 156–168.

Fazan L, Song YG, Kozlowski G. 2020. The woody planet: from past triumph 
to manmade decline. Plants 9: 1593. doi:10.3390/plants9111593.

Feng L, Du FK. 2022. Landscape genomics in tree conservation under a chan-
ging environment. Frontiers in Plant Science 13: 822217.

Fick SE, Hijmans RJ. 2017. WorldClim 2: new 1-km spatial resolution cli-
mate surfaces for global land areas. International Journal of Climatology 
37: 4302–4315. doi:10.1002/joc.5086.

Fitzpatrick MC, Keller SR. 2015. Ecological genomics meets community-
level modelling of biodiversity: mapping the genomic landscape of 

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/132/2/241/7220463 by Xishuangbanna Tropical Botanical G

arden (XTBG
) user on 09 M

ay 2024

www.editage.cn
https://doi.org/10.6084/m9.figshare.23742066
https://doi.org/10.1111/eva.12293
https://doi.org/10.1146/annurev-ecolsys-110512-135747
https://doi.org/10.1101/gr.094052.109
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://doi.org/10.1371/journal.pone.0003376
https://doi.org/10.1126/science.aan4380
https://doi.org/10.1126/science.aan4380
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1126/science.aat7631
https://doi.org/10.1126/science.aat7631
https://doi.org/10.1111/eva.12960
https://doi.org/10.1146/annurev-ecolsys-020720-042553
https://doi.org/10.1111/mec.12354
https://doi.org/10.4161/fly.19695
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1111/gcb.15469
https://doi.org/10.1111/mec.12084
https://doi.org/10.1126/science.292.5517.673
https://doi.org/10.1590/S1415-47572013000400002
https://doi.org/10.1590/S1415-47572013000400002
https://doi.org/10.1104/pp.104.049981
https://doi.org/10.1111/eva.13030
https://doi.org/10.3390/plants9111593
https://doi.org/10.1002/joc.5086


Wang et al. — Adaptive evolution and population vulnerability of P. macroptera 253

current and future environmental adaptation. Ecology Letters 18: 1–16. 
doi:10.1111/ele.12376.

Forester BR, Lasky JR, Wagner HH, Urban DL. 2018. Comparing methods 
for detecting multilocus adaptation with multivariate genotype–envir-
onment associations. Molecular Ecology 27: 2215–2233. doi:10.1111/
mec.14584.

Frankel OH, Brown AHD, Burdon J. 1995. The genetic diversity of wild 
plants. In: The conservation of plant biodiversity. ?Impact-insert-
start?>Cambridge: Cambridge University Press, 10–38.

Franks SJ, Hoffmann AA. 2012. Genetics of climate change adap-
tation. Annual Review of Genetics 46: 185–208. doi:10.1146/
annurev-genet-110711-155511.

Fredriksen S, Filbee-Dexter K, Norderhaug KM, et al. 2020. Green gravel: a 
novel restoration tool to combat kelp forest decline. Scientific Reports 10: 
3983. doi:10.1038/s41598-020-60553-x.

Frichot E, François O. 2015. LEA: an R package for landscape and eco-
logical association studies. Methods in Ecology and Evolution 6: 925–929. 
doi:10.1111/2041-210x.12382.

Goslee SC, Urban DL. 2007. The ecodist package for dissimilarity-based ana-
lysis of ecological data. Journal of Statistical Software 22: 1–19.

Goudet J. 2005. HIERFSTAT, a package for R to compute and test 
hierarchical F‐statistics. Molecular Ecology Notes 5: 184–186. 
doi:10.1111/j.1471-8286.2004.00828.x.

Gougherty AV, Keller SR, Fitzpatrick MC. 2021. Maladaptation, migration 
and extirpation fuel climate change risk in a forest tree species. Nature 
Climate Change 11: 166–171. doi:10.1038/s41558-020-00968-6.

Günther T, Coop G. 2013. Robust identification of local adaptation from allele 
frequencies. Genetics 195: 205–220. doi:10.1534/genetics.113.152462.

Halbert ND, Derr JN. 2008. Patterns of genetic variation in US 
federal bison herds. Molecular Ecology 17: 4963–4977. 
doi:10.1111/j.1365-294X.2008.03973.x.

Hijmans RJ, Williams E, Vennes C, Hijmans MR. 2021. Package ‘geo-
sphere’. R package version 1.5-14. https://cran.r-project.org/web/pack-
ages/geosphere/index.html (1 April 2022, date last accessed).

Jombart T, Devillard S, Balloux F. 2010. Discriminant analysis of principal 
components: a new method for the analysis of genetically structured popu-
lations. BMC Genetics 11: 94. doi:10.1186/1471-2156-11-94.

Korunes KL, Samuk K. 2021. pixy: unbiased estimation of nucleotide diver-
sity and divergence in the presence of missing data. Molecular Ecology 
Resources 21: 1359–1368. doi:10.1111/1755-0998.13326.

Kozlowski G, Bétrisey S, Song YG. 2018. Wingnuts (Pterocarya) and walnut 
family. Relict trees: linking the past, present and future. Fribourg: Natural 
History Museum Fribourg.

Kremer A, Ronce O, Robledo-Arnuncio JJ, et al. 2012. Long‐distance gene 
flow and adaptation of forest trees to rapid climate change. Ecology Letters 
15: 378–392. doi:10.1111/j.1461-0248.2012.01746.x.

Lefèvre F, Boivin T, Bontemps A, et al. 2014. Considering evolutionary pro-
cesses in adaptive forestry. Annals of Forest Science 71: 723–739.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics 25: 1754–1760. doi:10.1093/
bioinformatics/btp324.

Li H, Handsaker B, Wysoker A, et al.; 1000 Genome Project Data 
Processing Subgroup. 2009. The sequence alignment/map format and 
SAMtools. Bioinformatics 25: 2078–2079. doi:10.1093/bioinformatics/
btp352.

Li Y, Zhang XX, Mao RL, et al. 2017. Ten years of landscape genomics: chal-
lenges and opportunities. Frontiers in Plant Science 8: 2136.

Li JX, Zhu XH, Li Y, et al. 2018. Adaptive genetic differentiation in Pterocarya 
stenoptera (Juglandaceae) driven by multiple environmental variables 
were revealed by landscape genomics. BMC Plant Biology 18: 306.

Li LF, Cushman SA, He YX, et al. 2022. Landscape genomics reveals gen-
etic evidence of local adaptation in a widespread tree, the Chinese wingnut 
(Pterocarya stenoptera). Journal of Systematics and Evolution 60: 386–397.

Li X, Ruhsam M, Wang Y, et al. 2023. Wind-dispersed seeds blur 
phylogeographic breaks: the complex evolutionary history of Populus 
lasiocarpa around the Sichuan Basin. Plant Diversity 45: 156–168. 
doi:10.1016/j.pld.2022.10.003.

Licausi F, Ohme‐Takagi M, Perata P. 2013. APETALA 2/ethylene respon-
sive factor (AP2/ERF) transcription factors: mediators of stress responses 
and developmental programs. New Phytologist 199: 639–649.

Liu HB, Cui CB, Cai B, et al. 2004. Isolation, identification and antitumor ac-
tivity of triterpenes from Pterocarya tonkinensis (Franch.) Dode. Chinese 
Journal of Medicinal Chemistry 14: 165–168.

López-Pujol J, Zhang FM, Sun HQ, Ying TS, Ge S. 2011. Centres of plant 
endemism in China: places for survival or for speciation? Journal of 
Biogeography 38: 1267–1280. doi:10.1111/j.1365-2699.2011.02504.x.

Lu AM, Stone D E, Grauke LJ. 1999. Juglandaceae. In: Hong DY, Pan KY, 
Turland NJ, eds. Flora of China, Vol. 4. Beijing and Saint Louis: Science 
Press and Missouri Botanical Garden Press, 277–285

Luo D, Xu B, Rana SK, Li ZM, Sun H. 2018. Phylogeography of rare 
fern Polystichum glaciale endemic to the subnival zone of the Sino-
Himalaya. Plant Systematics and Evolution 304: 485–499. doi:10.1007/
s00606-018-1495-2.

Luu K, Bazin E, Blum MGB. 2017. pcadapt: an R package to perform genome 
scans for selection based on principal component analysis. Molecular 
Ecology Resources 17: 67–77. doi:10.1111/1755-0998.12592.

Ma Q, Du YJ, Chen N, Zhang LY, Li JH, Fu CX. 2015. Phylogeography of 
Davidia involucrata (Davidiaceae) inferred from cpDNA haplotypes and 
nSSR data. Systematic Botany 40: 796–810.

Mantel N. 1967. The detection of disease clustering and a generalized regres-
sion approach. Cancer Research 27: 209–220.

Martins K, Gugger PF, Llanderal-Mendoza J, et al. 2018. Landscape 
genomics provides evidence of climate-associated genetic variation in 
Mexican populations of Quercus rugosa. Evolutionary Applications 11: 
1842–1858. doi:10.1111/eva.12684.

Meinshausen M, Nicholls ZR, Lewis J, et al. 2020. The shared socio-economic 
pathway (SSP) greenhouse gas concentrations and their extensions to 
2500. Geoscientific Model Development 13: 3571–3605.

Meng LH, Chen G, Li ZH, Yang YP, Wang ZK, Wang LY. 2015. Refugial 
isolation and range expansions drive the genetic structure of Oxyria 
sinensis (Polygonaceae) in the Himalaya-Hengduan Mountains. Scientific 
Reports 5 : 10396.

Meng HH, Gao XY, Song YG, Cao GL, Li J. 2021. Biodiversity arks in 
the Anthropocene. Regional Sustainability 2: 109–115. doi:10.1016/j.
regsus.2021.03.001.

Meng HH, Zhang CY, Song YG, et al. 2022. Opening a door to the 
spatiotemporal history of plants from the tropical Indochina Peninsula to 
subtropical China. Molecular Phylogenetics and Evolution 171: 107458. 
doi:10.1016/j.ympev.2022.107458.

De Mita S, Thuillet AC, Gay L, et al. 2013. Detecting selection along envir-
onmental gradients: analysis of eight methods and their effectiveness for 
outbreeding and selfing populations. Molecular Ecology 22: 1383–1399. 
doi:10.1111/mec.12182.

Munwes I, Geffen E, Roll U, et al. 2010. The change in genetic di-
versity down the core-edge gradient in the eastern spadefoot 
toad (Pelobates syriacus). Molecular Ecology 19: 2675–2689. 
doi:10.1111/j.1365-294X.2010.04712.x.

Nachman MW, Payseur BA. 2012. Recombination rate variation and speci-
ation: theoretical predictions and empirical results from rabbits and mice. 
Philosophical Transactions of the Royal Society B: Biological Sciences 
367: 409–421. doi:10.1098/rstb.2011.0249.

Naimi B, Hamm NAS, Groen TA, Skidmore AK, Toxopeus AG. 2014. 
Where is positional uncertainty a problem for species distribution model-
ling? Ecography 37: 191–203.

Nocchi G, Wang J, Yang L, et al. 2023. Genomic signals of local adaptation 
and hybridization in Asian white birch. Molecular Ecology 32: 595–612. 
doi:10.1111/mec.16788.

Oksanen J, Blanchet FG, Kindt R, et al. 2019. Vegan: Community Ecology 
Package.R package version 2.5-6. https://cran.r-project.org/web/pack-
ages/vegan/index.html (11 October 2022, date last accessed).

Parmesan C. 2006. Ecological and evolutionary responses to recent climate 
change. Annual Review of Ecology, Evolution, and Systematics 37: 637–
669. doi:10.1146/annurev.ecolsys.37.091305.110100.

Paschold A, Halitschke R, Baldwin IT. 2006. Using ‘mute’ 
plants to translate volatile signals. Plant Journal 45: 275–291. 
doi:10.1111/j.1365-313x.2005.02623.x.

Petit RJ, Mousadik A, Pons O. 1998. Identifying populations for conser-
vation on the basis of genetic markers. Biological Conservation 12: 
844–855.

Pina-Martins F, Baptista J, Pappas JG, Paulo OS. 2018. New insights into 
adaptation and population structure of cork oak using genotyping by 
sequencing. Global Change Biology 25: 337–350.

Privé F, Luu K, Vilhjálmsson BJ, Blum MGB. 2020. Performing highly ef-
ficient genome scans for local adaptation with R package pcadapt version 
4. Molecular Biology and Evolution 37: 2153–2154. doi:10.1093/molbev/
msaa053.

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/132/2/241/7220463 by Xishuangbanna Tropical Botanical G

arden (XTBG
) user on 09 M

ay 2024

https://doi.org/10.1111/ele.12376
https://doi.org/10.1111/mec.14584
https://doi.org/10.1111/mec.14584
https://doi.org/10.1146/annurev-genet-110711-155511
https://doi.org/10.1146/annurev-genet-110711-155511
https://doi.org/10.1038/s41598-020-60553-x
https://doi.org/10.1111/2041-210x.12382
https://doi.org/10.1111/j.1471-8286.2004.00828.x
https://doi.org/10.1038/s41558-020-00968-6
https://doi.org/10.1534/genetics.113.152462
https://doi.org/10.1111/j.1365-294X.2008.03973.x
https://cran.r-project.org/web/packages/geosphere/index.html
https://cran.r-project.org/web/packages/geosphere/index.html
https://doi.org/10.1186/1471-2156-11-94
https://doi.org/10.1111/1755-0998.13326
https://doi.org/10.1111/j.1461-0248.2012.01746.x
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1016/j.pld.2022.10.003
https://doi.org/10.1111/j.1365-2699.2011.02504.x
https://doi.org/10.1007/s00606-018-1495-2
https://doi.org/10.1007/s00606-018-1495-2
https://doi.org/10.1111/1755-0998.12592
https://doi.org/10.1111/eva.12684
https://doi.org/10.1016/j.regsus.2021.03.001
https://doi.org/10.1016/j.regsus.2021.03.001
https://doi.org/10.1016/j.ympev.2022.107458
https://doi.org/10.1111/mec.12182
https://doi.org/10.1111/j.1365-294X.2010.04712.x
https://doi.org/10.1098/rstb.2011.0249
https://doi.org/10.1111/mec.16788
https://cran.r-project.org/web/packages/vegan/index.html
https://cran.r-project.org/web/packages/vegan/index.html
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
https://doi.org/10.1111/j.1365-313x.2005.02623.x
https://doi.org/10.1093/molbev/msaa053
https://doi.org/10.1093/molbev/msaa053


Wang et al. — Adaptive evolution and population vulnerability of P. macroptera254

Purcell S, Neale B, Todd-Brown K, et al. 2007. PLINK: A tool set for whole-
genome association and population-based linkage analyses. American 
Journal of Human Genetics 81: 559–575. doi:10.1086/519795.

Qiao L, Wen GN, Qi Y, et al. 2018. Evolutionary melting pots and repro-
ductive isolation: a ring‐shaped diversification of an odorous frog 
(Odorrana margaratea) around the Sichuan Basin. Molecular Ecology 
27: 4888–4900.

Qiu YX, Fu CX, Comes HP. 2011. Plant molecular phylogeography in China 
and adjacent regions: tracing the genetic imprints of Quaternary climate 
and environmental change in the world’s most diverse temperate flora. 
Molecular Phylogenetics and Evolution 59: 225–244. doi:10.1016/j.
ympev.2011.01.012.

Qiu YX, Lu QX, Zhang YH, Cao YN. 2017. Phylogeography of East Asia’s 
Tertiary relict plants: current progress and future prospects. Biodiversity 
Science 25: 24–28. doi:10.17520/biods.2016292.

R Core Team 2019. R: a language and environment for statistical computing. 
Vienna: R Foundation for Statistical Computing. https://www.R-project.
org/.

Razgour O, Forester B, Taggart JB, et al. 2019. Considering adaptive genetic 
variation in climate change vulnerability assessment reduces species range 
loss projections. Proceedings of the National Academy of Sciences of the 
USA 116: 10418–10423. doi:10.1073/pnas.1820663116.

Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. 2015. A 
practical guide to environmental association analysis in landscape gen-
omics. Molecular Ecology 24: 4348–4370. doi: 10.1111/mec.13322.

Rellstab, C., Zoller, S., Walthert, L., et al. 2016. Signatures of local adap-
tation in candidate genes of oaks (Quercus spp.) with respect to present 
and future climatic conditions. Molecular Ecology 25: 5907–5924. doi: 
10.1111/mec.13889.

Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. 
2003. Fingerprints of global warming on wild animals and plants. Nature 
421: 57–60. doi:10.1038/nature01333.

Sang YP, Long ZQ, Dan XM, et al. 2022. Genomic insights into local adap-
tation and future climate-induced vulnerability of a keystone forest tree 
species in East Asia. Nature Communications 13: 6541.

Santini L, Pironon S, Maiorano L, Thuiller W. 2019. Addressing common 
pitfalls does not provide more support to geographical and ecological 
abundant-centre hypotheses. Ecography 42: 692–705.

Savolainen O. 2011. The genomic basis of local climatic adaptation. Science 
334: 49–50. doi:10.1126/science.1213788.

Scheffers BR, De Meester L, Bridge TCL, et al. 2016. The broad footprint 
of climate change from genes to biomes to people. Science 354: aaf7671. 
doi:10.1126/science.aaf7671.

Song YG, Bétrisey S, Kozlowski, G. 2019. Pterocarya macroptera. The IUCN 
Red List of Threatened Species: e.T66816136A66816223.

Song YG, Li Y, Meng HH, et al. 2020. Phylogeny, taxonomy, and bio-
geography of Pterocarya (Juglandaceae). Plants 9: 1524. doi:10.3390/
plants9111524.

Song YG, Walas L, Pietras M, et al. 2021. Past, present and future suitable 
areas for the relict tree Pterocarya fraxinifolia (Juglandaceae): integrating 
fossil records, niche modeling, and phylogeography for conservation. 
European Journal of Forest Research 140: 1323–1339. doi:10.1007/
s10342-021-01397-6.

Sork VL. 2018. Genomic studies of local adaptation in natural plant popula-
tions. Journal of Heredity 109: 3–15.

Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, Neale DB. 
2013. Putting the landscape into the genomics of trees: approaches 
for understanding local adaptation and population responses to chan-
ging climate. Tree Genetics and Genomes 9: 901–911. doi:10.1007/
s11295-013-0596-x.

Strimmer K. 2008. fdrtool: a versatile R package for estimating local and 
tail area-based false discovery rates. Bioinformatics 24: 1461–1462. 
doi:10.1093/bioinformatics/btn209.

Tang CQ, Matsui T, Ohashi H, et al. 2018. Identifying long-term stable re-
fugia for relict plant species in East Asia. Nature Communications 9: 4488.

Tang XT, Lu MX, Du YZ. 2022. Molecular phylogeography and evolutionary 
history of the pink rice borer (Lepidoptera: Noctuidae): implications for 
refugia identification and pest management. Systematic Entomology 47: 
371–383. doi:10.1111/syen.12535.

Vranken S, Wernberg T, Scheben A, et al. 2021. Genotype-environment 
mismatch of kelp forests under climate change. Molecular Ecology 30: 
3730–3746. doi:10.1111/mec.15993.

Wahid A, Gelani S, Ashraf M, Foolad MR. 2007. Heat tolerance in plants: 
an overview. Environmental and Experimental Botany 61: 199–223. 
doi:10.1016/j.envexpbot.2007.05.011.

Waldvogel AM, Feldmeyer B, Rolshausen G, et al. 2020. Evolutionary gen-
omics can improve prediction of species’ responses to climate change. 
Evolution Letters 4: 4–18. doi:10.1002/evl3.154.

Wang IJ, Bradburd GS. 2014. Isolation by environment. Molecular Ecology 
23: 5649–5662. doi:10.1111/mec.12938.

Wang TR, Feng L, Du FK. 2021. New approaches for ecological adaptation 
study: from population genetics to landscape genomics. Scientia Sinica 
Vitae 51: 167–178.

Wang ZW, Zhang TC, Luo D, Sun WG, Sun H. 2019. Phylogeography of 
Excoecaria acerifolia (Euphorbiaceae) suggests combined effects of his-
torical drainage reorganization events and climatic changes on riparian 
plants in the Sino-Himalayan region. Botanical Journal of the Linnean 
Society 192: 350–368.

Wei XZ, Sork VL, Meng HJ, Jiang MX. 2016. Genetic evidence for cen-
tral‐marginal hypothesis in a Cenozoic relict tree species across its distri-
bution in China. Journal of Biogeography 43: 2173–2185. doi:10.1111/
jbi.12788.

Whitlock MC, Lotterhos KE. 2015. Reliable detection of loci responsible for 
local adaptation: inference of a null model through trimming the distri-
bution of FST. American Naturalist 186: S24–S36. doi:10.1086/682949.

Wiens JJ. 2016. Climate-related local extinctions are already widespread 
among plant and animal species. PLoS Biology 14: e2001104. doi:10.1371/
journal.pbio.2001104.

Woolbright SA, Whitham TG, Gehring CA, Allan GJ, Bailey JK. 2014. 
Climate relicts and their associated communities as natural ecology and 
evolution laboratories. Trends in Ecology and Evolution 29: 406–416. 
doi:10.1016/j.tree.2014.05.003.

Wu ZY, Wu SG. 1996. A proposal for a new floristic kingdom (realm) – the 
E. Asiatic kingdom, its delimitation and characteristics. In: Zhang AL, 
Wu S, eds. Proceedings of the First International Symposium on Floristic 
Characteristics and Diversity of East Asian Plants. Beijing and Berlin: 
China Higher Education Press and Springer, 3–42.

Wu YJ, DuBay SG, Colwell RK, Ran JH, Lei FM. 2017. Mobile hotspots 
and refugia of avian diversity in the mountains of south‐west China under 
past and contemporary global climate change. Journal of Biogeography 
44: 615–626.

Wu XT, Ruhsam M, Wen YF, et al. 2020. The last primary forests of the 
Tertiary relict Glyptostrobus pensilis contain the highest genetic diversity. 
Forestry 93: 359–375.

Xiao C, Gregg PC, Hu WL, Yang ZH, Zhang ZN. 2002. Attraction of 
the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: 
Noctuidae), to volatiles from wilted leaves of a non-host plant, Pterocarya 
stenoptera. Applied Entomology and Zoology 37: 1–6. doi:10.1303/
aez.2002.1.

Xu WQ, Comes HP, Feng Y, Zhang YH, Qiu YX. 2021. A test of the 
centre–periphery hypothesis using population genetics in an East Asian 
Tertiary relict tree. Journal of Biogeography 48: 2853–2864. doi:10.1111/
jbi.14244.

Yang LQ, Hu HY, Xie C, et al. 2017. Molecular phylogeny, biogeography 
and ecological niche modelling of Cardiocrinum (Liliaceae): insights into 
the evolutionary history of endemic genera distributed across the Sino-
Japanese floristic region. Annals of Botany 119: 59–72. doi:10.1093/aob/
mcw210.

Yannic G, Pellissier L, Ortego J, et al. 2014. Genetic diversity in caribou 
linked to past and future climate change. Nature Climate Change 4: 
132–137.

Yin CP, Sun FF, Rao Q, Zhang YL. 2019. Chemical compositions and anti-
microbial activities of the essential oil from Pterocarya stenoptera C. DC. 
Natural Product Research 34: 2828–2831. doi:10.1080/14786419.2019.
1587426.

Zhang ZF, Wu WJ, Gao ZZ. 2006. Analysis of the volatile components of 
fresh, wilts, dry China wingnut (Pterocarya stenoptera C. DC.) by SPME 
with GC-MS. Natural Product Research 18: 778–783.

Zhang WP, Cao L, Lin XR, et al. 2022. Dead-end hybridization in walnut 
trees revealed by large-scale genomic sequence data. Molecular Biology 
and Evolution 39: msab308. doi:10.1093/molbev/msab308.

Zhao W, Sun YQ, Pan J, et al. 2020. Effects of landscapes and range expan-
sion on population structure and local adaptation. New Phytologist 228: 
330–343. doi:10.1111/nph.16619.

D
ow

nloaded from
 https://academ

ic.oup.com
/aob/article/132/2/241/7220463 by Xishuangbanna Tropical Botanical G

arden (XTBG
) user on 09 M

ay 2024

https://doi.org/10.1086/519795
https://doi.org/10.1016/j.ympev.2011.01.012
https://doi.org/10.1016/j.ympev.2011.01.012
https://doi.org/10.17520/biods.2016292
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1073/pnas.1820663116
https://doi.org/10.1111/mec.13322
https://doi.org/10.1111/mec.13889
https://doi.org/10.1038/nature01333
https://doi.org/10.1126/science.1213788
https://doi.org/10.1126/science.aaf7671
https://doi.org/10.3390/plants9111524
https://doi.org/10.3390/plants9111524
https://doi.org/10.1007/s10342-021-01397-6
https://doi.org/10.1007/s10342-021-01397-6
https://doi.org/10.1007/s11295-013-0596-x
https://doi.org/10.1007/s11295-013-0596-x
https://doi.org/10.1093/bioinformatics/btn209
https://doi.org/10.1111/syen.12535
https://doi.org/10.1111/mec.15993
https://doi.org/10.1016/j.envexpbot.2007.05.011
https://doi.org/10.1002/evl3.154
https://doi.org/10.1111/mec.12938
https://doi.org/10.1111/jbi.12788
https://doi.org/10.1111/jbi.12788
https://doi.org/10.1086/682949
https://doi.org/10.1371/journal.pbio.2001104
https://doi.org/10.1371/journal.pbio.2001104
https://doi.org/10.1016/j.tree.2014.05.003
https://doi.org/10.1303/aez.2002.1
https://doi.org/10.1303/aez.2002.1
https://doi.org/10.1111/jbi.14244
https://doi.org/10.1111/jbi.14244
https://doi.org/10.1093/aob/mcw210
https://doi.org/10.1093/aob/mcw210
https://doi.org/10.1080/14786419.2019.1587426
https://doi.org/10.1080/14786419.2019.1587426
https://doi.org/10.1093/molbev/msab308
https://doi.org/10.1111/nph.16619

