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A B S T R A C T   

Study region: China and the different climatic zones. 
Study focus: Vapor pressure deficit (VPD) and soil moisture (SM) are vital for the land-atmosphere 
hydrological cycle and vegetation growth. Understanding the spatiotemporal variations of VPD 
and SM is essential for exploring vegetation dynamics and ecosystem changes. However, our 
current understanding of the simultaneous variations of VPD and SM within specific regions re-
mains limited. This study utilized Empirical Orthogonal Function (EOF) methods to analyze the 
spatiotemporal variability of VPD, surface SM (SMsurf), and root-zone SM (SMroot), respectively. 
We then investigated the synchronous and asynchronous variations of VPD and SM and examined 
their relationships with climatic factors. 
New hydrologic insights for the region: From 1980–2020, VPD exhibited a significant upward trend 
across China and in various climate zones, indicating an increase in atmospheric dryness. How-
ever, the trends of SMsurf and SMroot showed a slight upward trend across China but divergent 
patterns in different climate zones. In summary, approximately 43% of China experiences a 
significant simultaneous increase in both VPD and SM, mainly in semi-arid and arid regions. 
Conversely, about 4% of China shows contrasting changes in VPD and SM, primarily in humid 
tropical and subtropical regions. These findings enhance our understanding of VPD and SM 
patterns in various climates, emphasizing the significance of soil drought in humid and semi- 
humid regions.   

1. Introduction 

Water deficit can be categorized as atmosphere water deficit or soil water deficit. Vapor pressure deficit (VPD) and soil moisture 
(SM) are key indicators used to evaluate the status of atmosphere and soil water, respectively. VPD is a critical determinant of the 
atmospheric demand for water vapor and exerts a pivotal influence on the water balance dynamics within the atmosphere. It represents 
the difference between saturated vapor pressure (SVP) and actual vapor pressure (AVP) (Fang et al., 2022). While SVP is determined 
solely by air temperature (De Boeck et al., 2010), AVP is influenced by multiple factors, including air temperature, air humidity, 
evaporation, and SM, among others (Fang et al., 2022; Ficklin and Novick, 2017). As a result, SVP and AVP exhibit different rates of 
change with increasing air temperature. Typically, the growth rates of AVP tend to lag behind those of SVP, resulting in an elevation of 
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VPD. This variability in VPD exerts diverse impacts on vegetation productivity (Yuan et al., 2019). For example, high VPD causes 
vegetation to close stomata, affecting photosynthesis and potentially leading to water scarcity in plants (Sangines de Carcer et al., 
2018). Furthermore, SM is a reliable indicator of soil water availability, playing an essential role in plant growth (Gatti et al., 2014; Yu 
et al., 2022). Variability in SM directly influences plant water availability, thereby holding substantial implications for plant growth 
(Stocker et al., 2018; Zhang et al., 2022b), diversity (Deng et al., 2016; Winkler et al., 2016), and productivity (Wei et al., 2018). In 
sub-humid, semi-arid, or arid regions, the considerable effects of SM alone can lead to a reduction in gross primary productivity by up 
to 40% (Stocker et al., 2018). Moreover, surface soil moisture (SMsurf) has a greater influence on productivity. For instance, a sig-
nificant and positive correlation was observed between the below-ground biomass of native grasslands and moisture content in the top 
10 cm layer of soil across the Loess Plateau (Deng et al., 2016). SM can reduce gross primary production through ecosystem water stress 
and contribute to vegetation mortality, thereby reducing the present land carbon sink (Green et al., 2019). As previously stated, both 
VPD and SM play crucial roles in driving vegetation dynamics. Therefore, understanding the spatiotemporal variability of VPD and SM 
is imperative for a comprehensively grasping changes in vegetation ecosystems. 

Numerous studies focus on the temporal-spatial dynamics of VPD or SM and their impact. Some examined changes in VPD or SM in 
specific regions (Berg et al., 2017; Fang et al., 2022; Ficklin and Novick, 2017; Liu and Yang, 2023) and disentangled their respective 
effects on vegetation, such as phenology (Chen et al., 2021) and productivity (Ameztegui et al., 2021; Lu et al., 2022; Sangines de 
Carcer et al., 2018; Yuan, 2019). Moreover, Other researchers analyzed the future trends of VPD or SM through the CMIP6 (Berg et al., 
2017; Ficklin and Novick, 2017). Studying either VPD or SM alone leads to an incomplete understanding of drought stress in a region. 
Insufficient SM supply and elevated VPD are recognized as primary drivers of vegetation dryness stress. However, in the context of 
climate warming, it is observed that VPD is exhibiting an upward trend in a region, while the corresponding alterations in SM are 
undisclosed, and vice versa. This hinders our ability to gain a comprehensive understanding of regional (global) atmospheric and soil 
moisture conditions. Besides, capturing simultaneous changes in VPD and SM is crucial for an accurate comprehension of ecosystem 
drying stress and essential for effective drought risk management. Therefore, the notable knowledge gap arises due to the lack of 
research exploring concurrent changes in both VPD and SM within the same geographic area. 

Spatial variation patterns of VPD or SM are commonly examined using linear regression analysis (Fang et al., 2022) and the 
Mann-Kendall (MK) test (Cheng et al., 2015; Kong et al., 2019). However, due to the non-linear nature of VPD and SM variations, the 
aforementioned linear methods may not fully capture the true dynamics of VPD and SM changes. To address this issue, the application 
of ensemble empirical mode decomposition (EEMD) can help detect non-linear trends (Cheng and Huang, 2016). Nevertheless, it may 

Fig. 1. Climate zones and distribution of meteorological stations. Arid regions in the middle-temperature zone: ARMTZ; Semi-arid regions in the 
middle-temperature zone: SARMTZ; Semi-humid regions in the middle-temperature zone: SHRMTZ; Semi-arid regions in the Plateau temperature 
zone: SARPTZ; Semi-humid regions in the warm temperature zone: SHRWTZ; Humid subtropical regions: HSTR; Humid tropical regions: HTR. 
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not capture subtle interannual variability. Therefore, the need for new and more effective research methods arises to address these 
limitations and better capture the complexities of VPD and SM variation. Empirical orthogonal function (EOF) analysis, also referred to 
as eigenvector analysis, is an effective method for analyzing condensed anomalous information and revealing the spatial and temporal 
structure of anomalies. EOF, widely applied in meteorology (Levitus et al., 2005; Mao et al., 2021; Wang et al., 2017), employs a 
feature technique that separates the temporal and spatial variations of the variable field, representing them with as few modes as 
possible. One notable advantage of EOF is its capability to effectively compress and consolidate extensive data information. Addi-
tionally, it can decompose irregularly distributed sites within a limited area, decomposing spatial structures that possess clear physical 
interpretation (Wang et al., 2017). In this context, we will use the EOF method to explore the spatial and temporal variations, as well as 
spatial anomalies, in both VPD and SM. 

In this study, we evaluated the temporal variations of VPD and SM across China and within various climatic zones using the EEMD 
method from 1980 to 2020. Following that, we applied the EOF method to investigate the spatial variations and anomalies of VPD and 
SM. Lastly, we concurrently examined the patterns of VPD and SM. 

2. Materials and methods 

2.1. Datasets 

2.1.1. In situ data 
To calculate the VPD for the period spanning from 1980 to 2020, monthly climate data comprising air temperature, pressure, and 

specific humidity were acquired from the China Meteorological Forcing Dataset (CMFD) (https://data.cma.cn/, Fig. 1). The meteo-
rological station data only retained points that were consistently available from 1980 to 2020, totaling 578 points. Regarding missing 
data, if a station had more than 10% of data missing in a given year, the station was excluded. The final number of meteorological 
station data points was 498. Missing data was imputed using the average of the data from the preceding and subsequent five years. 

2.1.2. ERA5-land 
The reanalysis data utilized in this study was obtained from the Copernicus Climate Change Service at the European Centre for 

Medium-Range Weather Forecasts (https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset) (Muñoz Sabater, 2019). Spe-
cifically, we extracted land air temperature (T) and dew point temperature (Td) from the ERA5-land dataset to calculate the VPD. 
Various meteorological variables were collected to investigate the relationship between VPD and SM, including precipitation (P), 
downing incoming shortwave radiation (SR), total evaporation (E), evaporation from vegetation transpiration (EV), evaporation from 
bare soil (ES), soil temperature of 0–7 cm (STM), and surface pressure (SP). 

2.1.3. Soil moisture (SM) 
SM data were obtained from the Global Land Evaporation Amsterdam Model (GLEAM) V3.6a (https://www.gleam.eu/), including 

surface soil moisture (SMsurf) and root-zone soil moisture (SMroot). The GLEAM SM was generated by assimilating the data using the 
surface model GLEAM (Martens et al., 2017; Miralles et al., 2011), employing an optimized Newtonian light extrapolation method. The 
GLEAM SM products have demonstrated a high level of accuracy, with a median R value of 0.71 (Beck et al., 2021). The data cover the 
period from 1980 to 2020, with a spatial resolution of 0.25◦ × 0.25◦ and monthly temporal resolution. 

2.1.4. MERRA2 
Solar radiation was the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA2) reanalysis data 

(Table 1). It was generated by NASA’s Global Modeling and Assimilation Office (GMAO) using the Goddard Earth Observing System 
Model. We extracted monthly surface incoming shortwave flux (solar radiation) from the dataset to analyze its relationship with VPD 
and SM. 

2.1.5. Ancillary data (DEM, climate zones) 
The Digital elevation model (DEM) data were derived from the NASA Shuttle Radar Topographic Mission (SRTM), available at 

Table 1 
Datasets used in this study.  

Datasets Property Temporal 
coverage 

Temporal 
resolution 

Spatial 
resolution 

Variables (units) 

- In situ 1951–2022 Daily - T (◦C), RH (%), SP (hPa) 
ERA5-land Reanalysis 1981–2020 Monthly 0.1◦ × 0.1◦ T (K), Td (K), P (m), SP (Pa), E (m of water equivalent), ES (m of 

water equivalent), EV (m of water equivalent) 
GLEAMV3.6a Satellite and 

reanalysis data 
1980–2020 Monthly 0.25◦ × 0.25◦ SMsurf (m3/m− 3), SMroot (m3/m− 3) 

MERRA2 Reanalysis 1980–2020 Monthly 0.5◦ × 0.625◦ SR (W m− 2) 

Note. T = air temperature; Td = dew point temperature; AVP = actual vapor pressure; RH = relative humidity; SR = downwelling shortwave ra-
diation; E: total evaporation; ES: evaporation from bare soil; EV: evaporation from vegetation transpiration; P = precipitation; SP = surface pressure; 
SMsurf = surface soil moisture; SMroot = root-zone soil moisture. 
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http://srtm.csi.cgiar.org. The DEM, produced in 2000, provides a spatial resolution of 90 m. 
The climate zone is classified by the long-term average of accumulated temperature during periods with a daily mean temperature 

not falling below 10 ◦C. The long-term average of the coldest month’s temperature or extreme minimum temperature serves as an 
indicator for heat assessment. Dryness is used as the moisture indicator and determined by climate indices. For the detailed criteria 
used in the division of climate zones, please refer to Table S1. Fig. 1 presents the spatial distribution of these climate zones. 

2.2. Calculation of VPD 

VPD was calculated using the following equations (Fang et al., 2022; Yuan, 2019). 
In situ: 

VPD = 0.61078 × e17.27×T
T×237.3 ×

(
1 − RH

)
(1) 

ERA5-Land: 

VPD = SVP − AVP (2) 

The units of SVP, AVP, and RH are hPa, hPa, and %, respectively. SVP and AVP can be derived from the following equations: 

SVP = 6.112 × fw × exp
(

17.67T
T + 243.5

)

(3)  

AVP = 6.112 × fw × exp
(

17.67Td

Td + 243.5

)

(4)  

fw = 1+ 7 × 10− 4 + 3.46 × 10− 6Pmst (5)  

Pmst = Pmsl ×

(
T + 273.16

T + 273.16 + 0.0065 × Z

)5.625

(6)  

Where T, Td, Z, Pmst, and Pmsl are the air temperature (◦C), dew point temperature (◦C), altitude (m), air pressure (hPa), and the air 
pressure at the mean sea level (1013.25 hPa), respectively. 

2.3. Spatiotemporal analyses 

2.3.1. Time series trend analysis 
(1) Sen-MK  
To examine linear trends in VPD, SMsurf, and SMroot at the annual and pixel scale, we first computed the annual average of monthly 

VPD, SMsurf, and SMroot. The Theil-Sen median slope method was then employed to detect inter-annual variation trends in VPD, SMsurf, 
and SMroot. This method is robust to data distribution and insensitive to outliers, making it suitable for objectively describing the 
overall trend characteristics of long-term data. This method was applied to analyze the temporal variation of annual VPD, SMsurf, and 
SMroot using the following formula: 

β = mean
(

xj − xi

j − i

)

, j > i (7)  

Where xj and xi are time series data. β > 0 shows an upward trend and β < 0 indicates a downward trend. To identify significant trends, 
a nonparametric statistical test (Mann-Kendall, M-K) was conducted. Furthermore, we also analyzed the changes in VPD, SMsurf, and 
SMroot at the biome level. 

(2) Ensemble empirical mode decomposition (EEMD)  
Ensemble empirical mode decomposition (EEMD) is an efficient and adaptive time-frequency analysis method for processing 

nonlinear and nonstationary time series. The EEMD method decomposes nonlinear and nonstationary time series data into n intrinsic 
mode functions (IMF: imfi, i= 1, 2, …, n) and a residue trend (Huang et al., 1998). The detailed process of the EEMD method was 
described by Liu et al. (2018). 

2.3.2. Spatial analysis 
Empirical orthogonal function (EOF) is a widely used and effective method in atmospheric science research for analyzing the spatial 

and temporal variability characteristics of variables (Levitus et al., 2005). In this method, the observational data within a study area, 
comprising m observation points, each with n observations, can be presented in matrix form as follows: 

X =
(
xij
)
=

⎛

⎝x1, x2, x3, · · ·, xj

⎞

⎠ =

⎛

⎝
x11 ⋯ x1n
⋮ ⋱ ⋮

xm1 ⋯ xm1

⎞

⎠ (8) 
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Wherexijdenotes the jth observation on the ith grid. m indicates the number of observation locations, while n refers to the number of 
observations at each location. By EOF expansion, Eq. (8) can be decomposed into the sum of the products of the orthogonal spatial 
matrix (V) and the orthogonal temporal matrix (T). 

xij =
∑m

k=1
viktkj = vi1t1j + vi2t2j +⋯+ vimtmj (9) 

Its matrix form is: 

X = VT (10) 

The space matrix can be derived from the eigenvectors of XXT. 

C = XXT = VTTT VT (11) 

Since the matrix C is a symmetric matrix, there must be:  

C = VΛVT                                                                                                                                                                             (12) 

The columns of matrix V are the eigenvectors of matrix C, and Λ is the diagonal matrix composed of the eigenvalues of C. The 
temporal matrix can be obtained once V is determined. 

T = VT X (13) 

The EOF decomposition results for VPD, SMroot, and SMsurf were obtained by utilizing the EOF package in Python 3.8. 

Fig. 2. Evaluation of VPD from the ERA5-land dataset, comparing it to in situ observations at a monthly scale. (a) indicates the correlation between 
VPD derived from the ERA5-land and in situ VPD from all stations (n = 498). (b) displays the mean VPD value from in situ data and the corre-
sponding pixel values from ERA5-land. The green solid lines in the boxes represent the mean values. (c) indicates the variation in correlation 
coefficients. 
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3. Results 

3.1. Evaluation of VPD 

The ERA5-land derived VPD was assessed against in situ observations and found to perform well, with an R2 of 0.81 (Fig. 2a). 
Furthermore, at the monthly scale, the correlation coefficients between ERA5-land calculated VPD and in-situ derived VPD were 

Fig. 3. Temporal change in mean VPD from 1980 to 2020. (a) Temporal change in VPD for China as well as individual climatic zones. (b) Average 
trends in VPD for China and different climatic zones. The blue solid lines in the boxes indicate the mean values. (c) Spatial distribution of VPD 
trends, with inserted pie charts indicating Ps (positive significant), Pn (positive non-significant), Ns (negative significant), and Nn (negative non- 
significant). (d) Spatial distribution of annual mean VPD. Slash indicates a positive trend for those passing the test, while a cross indicates a 
negative trend for those passing the test. 

Table 2 
Average trend values for different climate zones.  

Climate zones VPD SMsurf SMroot 

Trend P value Trend P value Trend P value 

SHRWTZ 0.033 ** 0.00045 ** 0.00036 - 
ARMTZ 0.034 ** 0.00058 ** 0.00047 ** 
HSTR 0.026 ** -0.00037 ** -0.00037 ** 
SHRMTZ 0.021 ** -0.00032 - -0.00040 - 
SARMTZ 0.034 ** 0.00023 - 0.00023 - 
SARPTZ 0.004 * 0.00026 ** 0.00037 ** 
HTR 0.019 ** -0.00026 - -0.00025 - 
China 0.022 ** 0.00012 - 0.00008 -  
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Fig. 4. Non-linear variation in interannual trends of VPD (a), SMsurf (b), SMroot (c) during 1980–2020.  
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consistently above 0.7 (Fig. 2c). Although there was a slight underestimation VPD (slope < 1.0 and 5.03 vs. 4.55) compared to the in- 
situ measurements (Fig. 2a and b), the spatial assessment of VPD derived from ERA5-land exhibited a high level of consistency 
(Fig. 2d). 

Fig. 5. Temporal changes in mean SMroot and SMsurf from 1980 to 2020. (a) and (b) temporal change in SMroot and SMsurf for China and individual 
climatic zones. (c) and (d) average trends in SMroot and SMsurf for China and different climatic zones. The blue solid lines in the boxes indicate the 
mean values. (e) and (f) spatial distribution of trends in SMroot and SMsurf, with inserted pie charts indicating Ps (positive significant), Pn (positive 
non-significant), Ns (negative significant), Nn (negative non-significant). A slash indicates a positive trend for those passing the test, while a cross 
indicates a negative trend for those passing the test in the grid map. 
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3.2. VPD and SM of temporal variation 

3.2.1. VPD of temporal variation 
VPD showed a rising trend in China, with varying rates of increase observed across different climatic zones (Fig. 3c). Specifically, 

the arid zone (ARMTZ) experienced the highest rate of increase (0.034), while the semi-arid zone (SARPTZ) exhibited a comparatively 
slower rising trend (0.004) (Table 2). The mean VPD value in China was 5.363 hPa, with the highest values observed in ARMTZ 
(10.380 hPa) and the lowest in SARPTZ (2.438 hPa) (Fig. 3b). To investigate the non-linear variation of VPD, this study employed 
EEMD to decompose the VPD time series into four eigenmode components (IMF) and a trend term (RES), effectively filtering out noise 
and short-term seasonal trends (Fig. 4). The IMF1-IMF4 components represent distinct quasi-periods ranging from high-frequency to 
low-frequency in the original time series, capturing the corresponding nonuniform oscillations. The RES indicates the overall trend of 
the VPD time series during the study period. Our findings revealed a non-linear increasing trend in VPD over the past 41 years (Fig. 4a). 
Furthermore, the EEMD analysis revealed that VPD exhibited average periods of 2.6a (IMF1), 6.8a (IMF2), and 13.7a (IMF3) on the 
interannual scale. 

3.2.2. SM of temporal variation 
Both SMroot and SMsurf showed an increasing trend across China, although the trends varied across different climatic zones (Fig. 5e 

and f, Table 2). Notably, SMsurf exhibited declining trends in SHRWTZ, HSTR, and HTR, while demonstrating increasing trends in the 
other climate zones. ARMTZ had the lowest values for both SMroot and SMsurf, while HTR had the highest (Fig. 5c and d). The EEMD 
analysis revealed a non-linear increasing trend in both SMsurf and SMroot over the past 41 years (Fig. 4b and c). Furthermore, the results 

Fig. 6. VPD and SM trends combined. (a) VPD and SMsurf trends; (b) VPD and SMroot trends. A slash in red (/) indicates that VPD and SMsurf/ SMroot 
have passed the test. PPs, positive-positive significant; PPn, positive-positive non-significant; PNs, positive-negative significant; PNs, positive- 
negative non-significant; NPs, negative-positive significant; NPn, negative-positive non-significant; NNs, negative-negative significant; NNn, 
negative-negative non-significant. The percentages inside the parentheses represent the proportion of each type relative to the total. 
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indicated periodic variations in both SMsurf and SMroot on an interannual scale. SMsurf showed average periods of 2.7a (IMF1), 5.8a 
(IMF2), and 13.7a (IMF3), while SMroot exhibited similar periodic variations, except for IMF2, which had an average period of 5.1a. 

The areas showing increasing trends in VPD and SMroot, as well as VPD and SMsurf, were predominantly distributed in ARMTZ, 
SARMTZ, and SHRWTZ, constituting 51.08% and 51.12% of the total area, respectively. Of these, 45.14% exhibit significant changes 
in either VPD or SMsurf, and 43.24% in either VPD or SMroot (Fig. 6). Furthermore, 23.08% had significance in both VPD and SMsurf, and 
21.72% had significance in both VPD and SMroot. In contrast, we identified areas in HTR, HSTR, and SHRMTZ where VPD increased 
while SMroot (or SMsurf) decreased, constituting 41.39% and 41.34% of the total area, respectively (Fig. 6). However, only 5.33% and 
4.41% of these areas exhibited significant changes. Additionally, the trend of VPD was negative, while the trend of SMroot or SMsurf was 

Table 3 
The variance contribution rate, cumulative variance contribution rate, eigenvalue, and errors for the first three modes of VPD, SMsurf, and SMroot.  

Variables Modes Variance contribution rate (%) Cumulative variance contribution rate (%) Eigenvalue Typical errors 

VPD 1 48.52 48.52 12,943.32 2858.70 
2 8.69 57.21 2318.76 512.13 
3 7.47 64.67 1992.42 440.05 

SMsurf 1 23.00 23.00 1.08 0.24 
2 17.61 40.61 0.83 0.18 
3 8.76 49.37 0.41 0.09 

SMroot 1 25.92 25.92 1.24 0.27 
2 17.62 43.53 0.84 0.19 
3 8.71 52.25 0.42 0.09  

Fig. 7. Eigenvectors and their corresponding time coefficients of VPD by EOF. (a) first eigenvector; (b) time coefficients corresponding to the first 
eigenvector; (c) second eigenvector; (d) time coefficients corresponding to the second eigenvector. 
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positive, accounting for 5.86% and 6.46%, respectively. Of these, 0.01% exhibit significant changes in either VPD or SMsurf and 0.04% 
in either VPD or SMroot. The proportions of negative trends in VPD and SMroot, as well as VPD and SMsurf, are 1.68% and 1.08%, 
respectively. Of these, 1.62% exhibit significant changes in either VPD or SMsurf and 1.06% in either VPD or SMroot. However, in these 
significant regions, only 0.013% exhibit significant trends in both VPD and SMsurf, with 0.006% showing significant changes in both 
VPD and SMroot. 

3.3. VPD and SM of spatial variation 

EOF analysis was performed on the annual mean VPD, SMsurf, and SMroot in China over 41 years (1980–2020). Table 3 shows the 
top three eigenvalues for VPD, SMsurf, and SMroot. Among these values, only the first two eigenvalues passed the North significance test. 
The cumulative variance contribution rate of the first two modes for VPD was 57.21%, with variance contribution rates of 48.52% and 
8.69% for the first two modes, respectively. Regarding SMsurf and SMroot, only EOF1 showed statistical significance in Chia, and 
therefore only the EOF1 was presented here. 

3.3.1. VPD of spatial variation 
Fig. 7 exhibited the spatial distribution (EOF) and the time coefficients (PC) of the first two modes. In EOF 1 (Fig. 7a), significantly 

large negative values appeared in the Qinghai-Tibet Plateau (SARPTZ). On the other hand, significantly large positive values appeared 
in the ARMTZ, which served as the center of positive values, implying the most sensitive areas to VPD variations. Fig. 7b illustrates the 
steady rise of time coefficients (from negative to positive) from 1980 to 2020. This trend indicated a decline in VPD in areas with 
significantly large negative values (e.g., SARPTZ) and an increase in VPD in areas with significantly large positive values (e.g., ARMTZ) 
over the past 41 years. The results were consistent with the annual trend of VPD variations (Fig. 3c). 

Fig. 8. Eigenvectors and their time coefficients of the SMsurf and SMroot by EOF during 1980–2020. (a) and (c) first eigenvector of SMsurf and SMroot, 
respectively; (b) and (d) time coefficients of SMsurf and SMroot. 
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EOF2 reflected the local characteristics of VPD (Fig. 7c), displaying two distinct spatial patterns: positive and negative variations. 
The positive high-value zones were found in the SARPTZ, HSTR, and HTR, while the negative high-value regions appeared in the 
SHRWTZ. This inverse variation characteristic accounted for 8.69% of the overall variance. The temporal changes of the EOF2 time 
coefficients were depicted in Fig. 7d. In the years with positive time coefficients, the atmosphere in the SHRWTZ was increasingly 
humid, and the atmosphere in the SARPTZ, HSTR, and HTR was drier. 

3.3.2. SM of spatial variation 
The EOF decomposition results for SMroot and SMsurf in the study area were similar, indicating consistent spatial variation char-

acteristics of SMroot and SMsurf over the past 41 years. Fig. 8a (Fig. 8c) illustrates the spatial distribution of EOF1 for SMsurf（SMroot）in 
China. The positive values of EOF1 were observed in all regions except SARPTZ, indicating a consistent annual variation pattern of 
SMsurf (SMroot). This characteristic accounted for 23% (25.92%) of the overall variance. Notably, the high values of SMsurf variation 
were in the SHRMTZ, indicating that the area was the most sensitive to soil moisture variation. 

In Fig. 8b and d, the time coefficients associated with EOF1 depict the interannual trend variation of SMsurf and SMroot, respectively. 
While the time coefficients showed an overall increasing trend, the interannual fluctuations were obvious. Before 1995, the time 
coefficients alternated between positive and negative values, followed by a negative trend from 1995 to 2010. However, the co-
efficients turned positive again after 2010. These patterns suggest that the overall soil moisture in the study area has been progressing 
toward increased humidity over the past 40 years. 

4. Discussion 

4.1. Increasing atmospheric moisture scarcity 

Significant increases in VPD were observed across various regions in China over the past 40 years (Figs. 3c and 7). These findings 
indicate a persistent and escalating trend of atmospheric drought. The rise in VPD can be primarily attributed to the increase in air 
temperature. Higher temperatures cause an elevation in saturated vapor pressure, as per the Clausius-Clapeyron relation (Chen et al., 
2011). In the context of rising temperatures, the increase in VPD can occur in two scenarios based on the VPD formula: 1) the rate of 
increase in SVP exceeds the rate of increase in AVP (Fig. 9a); 2) SVP is increasing while AVP is decreasing (Fig. 9b). The increase in SVP 
was mainly attributed to air temperature (De Boeck et al., 2010). On the other hand, the variation in AVP was influenced by multiple 
factors, including air temperature, evaporation, RH, and SM (Fang et al., 2022; Ficklin and Novick, 2017), as we found that VPD was 
correlated with multiple factors. Specifically, air temperature exhibited a strong positive correlation with VPD. Conversely, RH dis-
played a strong negative correlation with VPD. And SMsurf showed a slight negative correlation with VPD. The rise in temperature led 
to an increase in SVP. Across China, 99.94% of regions exhibited a rising temperature trend (Fig. 11a), and 99.91% of regions showed 
an increase in SVP. However, 79.56% of the regions experienced a decline in RH, and total evaporation showed a decreasing trend, 
implying a reduction in atmospheric moisture. The change in RH influences the rate of AVP shifts. AVP was increasing in 76.53% of 
China’s areas while decreasing in the remaining regions. This indicates that two scenarios are contributing to the increase in VPD in 
China, with the first scenario being more prevalent. In this study, we found that 76.53% of the regions experienced an increase in AVP, 
while 23.47% witnessed a decrease across China. For SVP, 99.91% of the regions showed an increase, with only 0.09% experiencing a 
decrease. Building upon this, we conducted a further analysis on the proportions of concurrent increases in SVP and AVP, as well as 
increases in SVP with decreases in AVP (76.45% and 23.46%, respectively, Fig. 11l). This suggests that the primary trend in the 
variation of the VPD in China aligns with the first scenario. Additionally, we observed that the average growth rate of SVP was nearly 
six times that of AVP. This phenomenon is also evident on a global scale, where the increase in VPD is largely attributed to the 

Fig. 9. The form of VPD change in case of temperature rise.  
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Fig. 10. Partial correlation analysis of environmental variables with (a) VPD, (b) SMsurf, and (c) SMroot. E, evaporation; P, precipitation; TM, temperature; SP, surface pressure; SR, downwelling 
shortwave radiation; EV, vegetation evaporation; ES, soil evaporation; STM, soil temperature 0–7 cm; RH, relative moisture. 
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Fig. 11. Trends in climate factors during 1980–2020.  
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Fig. 11. (continued). 
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deceleration in the growth rate of AVP (Xu et al., 2024). 

4.2. SM showed divergent trends 

Fig. 10 SM serves as a reliable indicator of soil drought conditions. Given the growing prominence of atmospheric drought, it 
becomes crucial to assess the soil drought condition. This is essential because SM plays a significant role in supporting vegetation 
growth, as highlighted in previous studies (Collins et al., 2018; Yu et al., 2022). We found a slight overall increase across China. 
Specifically, SM exhibited an increase in regions such as ARMTZ, SARMTZ, SHRWTZ, and SARPTZ. However, we observed a decrease 
in SM in the HSTR, HTR, and SHRMTZ regions. These divergent changes reflected a polarization phenomenon in soil moisture dy-
namics. The slight increase in SM in China, occurring alongside rising temperatures, can be attributed to various factors, including 
evaporation, precipitation, and solar radiation (Fig. 11). Previous studies have highlighted the significance of evaporation and pre-
cipitation in influencing SM dynamics (Cheng et al., 2015; Cheng and Huang, 2016; Liu and Yang, 2023). Based on the results of partial 
correlation analysis (Fig. 10), evaporation showed a negative correlation with soil moisture (SM), while precipitation exhibited a 
positive correlation. This implies that a decrease in evaporation and an increase in precipitation both contribute to the increase in SM. 
We found that the rise in soil moisture (SM) in SARPTZ can be attributed to increased precipitation and decreased evaporation, as 
shown in Table 4. Additionally, another factor could contribute to an increase in soil and air temperature. This leads to permafrost 
melting and increases soil water content, which raises SM levels (Chen et al., 2022; Li et al., 2020). The increase in SM in ARMTZ 
cannot be solely attributed to precipitation, as indicated by the decreasing trend in 62.46% of ARMTZ precipitation values (Table 4). 
Instead, it is likely due to a combination of factors. Firstly, the decrease in solar radiation leads to a reduction in evaporation, resulting 
in less soil moisture loss. Additionally, the recovery of vegetation in arid regions and the increase in water content may also contribute 
to the preservation of SM (Liu and Yang, 2023; Zhang et al., 2022a). In SHRMTZ, the decrease in SM can be attributed to the declining 
precipitation. Moreover, the HTR and HSTR regions experience a more pronounced decrease in precipitation. Despite the decrease in 
evaporation, which would lead to a decrease in SM, the significant role of precipitation as a driver of SM change is evident. Conversely, 
in SHRWTZ, the increase in SM is likely a result of reduced evaporation. The observed increase in soil moisture (SM) in SARMTZ is not 
adequately explained by the concurrent decrease in precipitation and increase in evaporation. The current changes in these climate 
factors do not provide a clear explanation for the observed phenomenon. Further investigation is needed to understand the underlying 
mechanisms driving the SM increase in SARMTZ. 

5. Conclusion 

Main findings of the paper: In this study, we conducted a comprehensive investigation into the spatial-temporal variations of VPD 
and SM in China. We found a significant increase in VPD across China, with particularly pronounced trends observed in the ARMTZ, 
SARMTZ, and SHRWTZ regions. As for SM, we found an overall increase in both SMsurf and SMroot in China. However, there was 
variability in different climate zones. Notably, the HTR, HSTR, and SHRMTZ regions exhibited a decreasing trend in SMsurf and SMroot, 
whereas the other climate zones exhibited an upward trend. In the ARMTZ and SRAMTZ, both VPD and SM showed an increasing 
trend. These results indicate a general trend of increasing aridity in the atmosphere and a gradual moistening of the soil in response to 
rising temperature. 

Limitations of this work: We employed the EEMD and EOF methods to analyze the spatiotemporal dynamics of VPD and SM and 
explored the underlying reasons. Our analysis mainly focused on climatic factors to understand the causes of VPD and SM changes, 
without considering atmospheric circulation factors and ocean temperatures. Nonetheless, some studies suggest that changes in ocean 
temperatures may also contribute to VPD variations (Yuan et al., 2019). 

Broader impacts: As the climate warms, droughts are becoming more frequent and severe, making the arid and semi-arid regions a 
research hotspot. Our study reveals decreasing soil moisture and increasing VPD in humid and semi-humid areas, indicating shifts in 
the atmospheric-soil moisture dynamics of these regions. This shift requires attention for its potential impacts on the ecosystems of 

Table 4 
Proportion of positive and negative trend values in different climatic zones.  

Climate zones Trend E ES EV P SP STM SR T AVP RH SVP 

HTR >0 5.01 3.15 6.64 10.35 64.43 100.00 14.75 100.00 93.91 3.96 99.96 
<0 94.99 96.85 93.36 89.65 35.57 0.00 85.25 0.00 6.09 96.04 0.04 

HSTR >0 5.06 3.21 0.00 1.59 60.26 100.00 11.66 99.99 90.61 0.41 99.99 
<0 94.94 96.79 100.00 98.41 39.74 0.00 88.34 0.01 9.39 99.59 0.01 

SHRMTZ >0 23.55 21.60 0.00 2.02 86.19 68.13 0.00 100.00 79.66 0.00 100.00 
<0 76.45 78.40 100.00 97.98 13.81 31.87 100.00 0.00 20.34 100.00 0.00 

SHRWTZ >0 82.00 79.83 0.04 7.42 69.74 100.00 2.08 100.00 58.45 0.00 100.00 
<0 18.00 20.17 99.96 92.58 30.26 0.00 97.92 0.00 41.55 100.00 0.00 

SARMTZ >0 86.16 84.98 0.00 13.08 90.36 96.41 0.00 100.00 21.81 0.03 100.00 
<0 13.84 15.02 100.00 86.92 9.64 3.59 100.00 0.00 78.19 99.97 0.00 

SARPTZ >0 3.60 9.01 3.25 83.13 85.39 98.37 0.00 99.77 99.05 75.39 99.68 
<0 96.40 90.99 96.75 16.87 14.61 1.63 100.00 0.23 0.95 24.61 0.32 

ARMTZ >0 52.70 29.71 0.17 37.54 80.88 100.00 0.00 100.00 62.46 2.32 100.00 
<0 47.30 70.29 99.83 62.46 19.12 0.00 100.00 0.00 37.54 97.68 0.00  
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these areas in the future. 
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