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1  |  INTRODUC TION

Plant diversity is decreasing due to global climate change and 
human activity (Cao et al., 2022; Ohashi et al., 2019), with envi-
ronmental pressures on plants expected to increase in future, bio-
diversity loss worsens (Lehnert et al., 2019; Yang et al., 2019). Due 
to their large carbon (C) pools, tropical forests are particularly im-
portant to the global C budget (Barbier et al., 2020). Despite their 

high biodiversity and large C storage capacity (Gibbs et al., 2010; 
Pan et al., 2011), tropical forests are one of the most threatened 
ecosystems in the world (Schulz et al., 2019). Litter decomposition 
in forests plays a critical role in the global C cycle, which transfers 
nutrients to the soil and represents an important source of CO2 
entering the atmosphere (Gessner et al., 2010). Root-derived C is 
sequestered in the soil more efficiently than leaf-derived C and is 
thus more consequential for the global C cycle (Craig et al., 2022). 
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Abstract
1. Most studies focused on the above-ground diversity on leaf litter decomposition 

and soil respiration in tropical ecosystems, however, the mechanism understand-
ing of root diversity on decomposition is still unclear.

2. We selected the fine-roots of 21 dominant tree species from a tropical rainfor-
est in Xishuangbannan, China, then conducted a 360-day and well-replicated (21 
replications) incubation decomposition experiment with a 0, 1, 3, 6, 9, 12, 15, 18 
and 21 species gradient of root diversity. The fine-root mass loss, CO2 release, 
and their potential drivers were analysed.

3. The results showed that as fine-root diversity increased, soil properties, microbial 
diversity and fungal biomass changed nonlinearly, leading to higher litter mass 
loss and soil CO2 release in the moderate diversity with 9, 12 and 15 species 
mixtures. Non-additive effect analysis also indicated that synergistic effects were 
greater in these three mixtures than others on soil CO2 release and litter mass 
loss. The indirect effects of soil properties and microbial communities were larger 
than the direct effect of fine-root diversity.

4. Our findings suggest that fine-root diversity has nonlinear relationships with lit-
ter decomposition and soil CO2 release in tropical forests, thus highlighting the 
importance of plant diversity due to its role in the carbon cycle under global 
change scenario.
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Although many studies focused on the decomposition of above-
ground litter, the effects of root diversity and root litter decompo-
sition on soil C cycling have been frequently overlooked in forest 
ecosystems (Canessa et al., 2022). Therefore, a better understand-
ing of root diversity and its effect on soil C cycling is imperative in 
tropical rainforests.

Because root-derived C forms a larger portion of the relatively 
stable soil C pool than C originating in above-ground litter, root 
decomposition is an important driver of terrestrial C flux (Kätterer 
et al., 2011). Root diameter influences the chemical and physical 
properties of root litter and, subsequently, litter quality (Silver & 
Miya, 2001). Root decomposition appears to be particularly sensi-
tive to soil conditions such as moisture, oxygen concentration, pH 
and inorganic nutrient limitation (Garcia-Palacios et al., 2013; See 
et al., 2019). Mixed litter can alter decomposition by its effects on 
litter quality (i.e. mass ratio hypothesis) and litter trait dissimilarity 
(i.e. complementary use) (Canessa et al., 2022; Zhang et al., 2023), 
the fine-roots contain different elements and substances, and 
their chemical properties vary significantly (Gessner et al., 2010; 
Prieto et al., 2016). The effects of mixed root litter on decompo-
sition rate and nutrient release have not been well-studied (Man 
et al., 2020; Yang et al., 2022). Fine-roots (diameter < 2 mm) have 
higher nutrient contents and are regarded as high turnover rate 
in terrestrial ecosystems (McCormack et al., 2015), in which the 
fine-roots of many plant species die within a year of their forma-
tion (Fogel, 1985). The turnover of fine-root biomass accounts 
for c. 14%–27% of net primary production globally (McCormack 
et al., 2015) and is estimated to contribute 33% of annual litter 
inputs in forests around the world (Freschet et al., 2010). Fine-
root litter input can result in faster rates of decomposition, which 
in turn appear to activate microorganisms to stabilise soil organic 
matter (Cotrufo et al., 2013). Compared with fine-root growth and 
production, the fine-root decomposition processes and mecha-
nisms need to be better understood due to their important role in 
C dynamics of the forest below-ground.

Microorganisms transfer nutrients between different litter 
types within mixtures, which can help optimise resource avail-
ability for decomposers, and these effects may be stronger for 
slowly decomposing litter types within a mixture (Liu et al., 2020; 
Man et al., 2020). For example, mixed litter has positive effects 
on decomposition, largely driven by increased microbial diver-
sity (Liu et al., 2020). Microbial decomposition converts the C 
contained within the detritus into CO2 and releases nutrients for 
plant growth (Heijboer et al., 2018). The mechanisms underlying 
the non-additive effects of diverse mixtures of leaf and root lit-
ter on decomposition are still disputed, because different diver-
sity and experimental durations yielded inconsistent results, such 
as antagonism and synergism effects in forest ecosystems (Gripp 
et al., 2018; Lecerf et al., 2011; Leppert et al., 2017). For example, a 
previous study suggested that litter species composition drives this 
effect and that the chemistry of composite litter may be the pre-
dominant factor under specific environmental conditions (Handa 
et al., 2014). In addition, soil fungi play critical and unique roles 

in terrestrial ecosystem processes, and fungi are better equipped 
to decompose complex litter (Tedersoo et al., 2014). Therefore, 
fungal communities were considered as the primary agents of de-
composition (Glassman et al., 2018). However, there are knowl-
edge gaps on how the relationship between fungi and fine-root 
diversity influences decomposition in tropical rainforests.

To understand how fine-root diversity affects litter decompo-
sition in tropical rainforests, we presented a year-long laboratory 
experiment to elucidate the effects of fine-root diversity on litter 
decomposition. Since litter decomposition has an important effect 
on soil C cycling (McGuire & Treseder, 2010), soil CO2 release was 
measured to analyse how the soil C cycle responded to fine-root 
diversity. We hypothesised that: (1) The decomposition of mixed 
root litter has a non-additive effect such that moderate but not high-
est diversity has the strongest effect on fine-root litter mass loss 
during decomposition. Since the mixed litters with different phys-
ical and chemical properties lead to various nutrient inputs, which 
can affect soil microbial community structure and its function (Chen 
et al., 2017; Gessner et al., 2010); (2) The pattern of soil CO2 re-
lease would be similar to the decomposition of fine-root litter, while 
soil microbial community regulates the processes. Because the sub-
stances that are difficult to decompose within mixed litters would 
inhibit microbial activities (Gessner et al., 2010; Prieto et al., 2016; 
Sun et al., 2018).

2  |  MATERIAL S AND METHODS

2.1  |  Materials

Fine-root litters (FRL) were collected in October 2018 and sur-
face soil (0–20 cm) was collected in October 2020 in a tropical 
rainforest in Xishuangbanna (101°34′26″–47″ E, 21°36′42″–58″ N), 
Yunnan Province, China. This study did not need permission for 
fieldwork. For fine-root collection, 21 dominant tree species be-
long to 12 families and 17 genera were selected (Table 1). Each 
species of fine-roots was obtained from 4 randomly selected 
trees to make them enough for experiment. FRL was air-dried and 
sterilised with humid heat (121°C, 30 min, two successive steriliza-
tion treatments). For soil collection, five sampling locations were 
randomly chosen. The humus was removed from the soil surface, 
sampled soil was mixed into a single composite sample, the re-
sidual roots and stones were manually removed, and the soil was 
passed through a 2 mm sieve.

2.2  |  Experimental design

A well-replicate incubation experiment was established with 9 
treatments with 21 replicates in each treatment. They were coded 
with root species 0 (CK), 1 (M1), 3 (M3), 6 (M6), 9 (M9), 12 (M12), 
15 (M15), 18 (M18) and 21(M21), respectively. Before we set the 
experiment, 21 kinds of fine-roots were labelled from No. 1 to 
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No. 21. To exclude the effects caused by the identity of species 
rather than diversity, we set 21 replicates and ensured that each 
species can be included in the incubation experiment in our study. 
With the treatment of 1 species fine-root (i.e. M1), we chose each 
species of fine-root for one repeat. With the treatments of 3, 6, 
9, 12, 15 and 18 species fine-roots, we started with No. 1 to No. 
3, No. 6, No. 9, No. 12, No. 15 and No. 18, respectively, then rota-
tions started from No. 2. For example, the treatment of 3 species 
fine-roots (M3), for the first repeat we chose roots No. 1, No. 2 
and No. 3; for the second repeat we use roots No. 2, No. 3 and No. 
4; for the third repeat we use roots No. 3, No. 4 and No. 5, and so 
on. For each treatment with one or different species, the average 
weight of fine-roots was weighted for each repeat; that is, with the 
treatment 21 of species fine-roots, 0.1429 g for each species of 
fine-root was weighted and added 3 g to the bottle. Then, these 3 g 
of FRL were added to each 500 mL culture bottle with added 100 g 
of dry soil for each. The fine-roots were mixed with the soil. In 
total, there were 189 bottles in our study. Soil moisture in the bot-
tle was held at 60% and sustained during experiment. In line with 
the dynamics of seasonal temperature in tropical Xishuangbanna, 
the bottles were incubated in the dark at 25°C, 21.5°C and 18°C 
for 120 days for each temperature. Soil CO2 release was measured 
every month and residual FRL was recovered at the end of the 
experiment.

2.3  |  Sample measurements

Nutrient elements were measured in FRL and soil of 21 plants 
prior to the beginning of the experiment. After 360 days of incu-
bation, a total of 189 soil samples were measured. A portion of the 
soil was used for the nutrient analysis, and the remainder was fro-
zen at −80°C for fungal community and soil microbial phospholipid 
fatty acid (PLFA) analysis. All soil samples of ammonia nitrogen 
(NH4

+-N), nitrate nitrogen (NO3
−-N) and dissolved organic car-

bon (DOC) were extracted with 0.5 mol L−1 K2SO4. Soil available 
phosphorus (AP) was extracted with 0.5 mol L−1 NaHCO3 solution 
(pH = 8.5), total nitrogen (TN) and total phosphorus (TP) were de-
termined with sodium salicylate and molybdenum antimony meth-
ods, respectively. SOC and DOC were determined using a merged 
Vario TOC analyser (Vario TOC, Langenselbold, Germany); SOC 
was determined by dry combustion at 980°C in solid mode, and 
DOC was determined in liquid mode. The concentrations of TN, 
NH4

+-N, NO3
−-N, TP and AP were determined through auto dis-

crete analyser (De Chem-Tech. GmbH, CleverChem380, Hamburg 
Germany). Soil C to N ratio (C:N) was calculated as the ratio of SOC 
to TN. Soil pH in water was measured using pH meter, and the soil-
to-solution ratio (v/v) was 1:2.5.

Fresh soil was used to determine soil microbial PLFA and fun-
gal community composition. Soil bacterial and fungal biomass was 

TA B L E  1  Classification of 21 tropical tree species and their fine-root nutrient contents.

No. Order Family Genus Species
TC 
(g kg−1)

TN 
(g kg−1)

TP 
(g kg−1)

1 Ranales Annonaceae Pseuduvaria Pseuduvaria indochinensis 335.12 14.10 0.25

2 Alphonsea Alphonsea monogyna 434.71 7.55 0.14

3 Myristicaceae Knema Knema furfuracea 406.43 11.69 0.14

4 Myristica Myristica yunnanensis 401.03 9.95 0.14

5 Lauraceae Litsea Litsea dilleniifolia 400.78 16.18 0.15

6 Litsea verticillata 358.83 5.76 0.05

7 Euphorbiales Euphorbiaceae Cleidion Cleidion brevipetiolatum 353.44 14.68 0.19

8 Trigonostemon Trigonostemon thyrsoideus 344.08 13.01 0.11

9 Baccaurea Baccaurea ramiflora 373.64 7.19 0.14

10 Urticales Moraceae Ficus Ficus auriculata 402.50 5.56 0.12

11 Ficus langkokensis 390.93 5.20 0.09

12 Ficus oligodon 352.11 5.95 0.13

13 Parietales Guttiferae Garcinia Garcinia cowa 423.26 7.13 0.11

14 Garcinia lancilimba 440.04 5.54 0.08

15 Dipterocarpaceae Parashorea Parashorea chinensis 426.46 8.21 0.14

16 Rutales Meliaceae Chisocheton Chisocheton paniculatus 417.91 8.99 0.04

17 Dysoxylum Dysoxylum binectariferum 383.03 12.58 0.02

18 Ebenales Ebenaceae Diospyros Diospyros nigrocortex 404.95 10.74 0.11

19 Fagales Fagaceae Castanopsis Castanopsis hystrix 398.05 13.62 0.19

20 Sapindales Icacinaceae Pittosporopsis Pittosporopsis kerrii 411.90 4.85 0.06

21 Malvales Elaeocarpaceae Elaeocarpus Elaeocarpus varunua 368.62 7.25 0.18

Abbreviations: AM, arbuscular mycorrhiza; EM, ectotrophic mycorrhiza; TC, total carbon; TN, total nitrogen; TP, total phosphorus.
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characterised by PLFA analysis (Chen et al., 2022). The PLFAs were 
considered as bacterial indicators (i14:0, a15:0, i15:0, i16:0, a17:0, 
i17:0, 16:1ω7c, 16:1ω9c, cy17:0, 17:1ω8c, 18:1ω7c, 18:1ω9c and cy19:0) 
and fungal indicator (18:2ω6c). Fungal communities were profiled by 
sequencing amplicons targeting the fungal ITS sequence of the 18S 
rRNA gene using an Illumina MiSeq platform (San Diego, CA, USA). 
Fungal diversity was assessed using the Shannon, Simpson, Chao1 and 
Pielou-e indices. Pairwise mean Bray-Curtis dissimilarities were cal-
culated using the ‘vegan’ package in R statistical software. We also 
defined and compared fungal functional guilds using the FUNGuild da-
tabase. To collect gas samples, culture bottles were sealed and placed 
back in the incubator for 2 h. A syringe was used to collect and transfer 
gas to 12 mL exetainers and CO2 concentration was measured using a 
gas chromatograph (GC-2014, Shimadzu, Japan).

2.4  |  Calculations and statistical analysis

We used linear regression to examine generalised patterns of micro-
bial variables (microbial biomass and fungal diversity) and soil prop-
erties along the root diversity for different FRL diversity and litter 
mass loss values. Based on the values obtained from single species 
litter, we calculated the expected values (E) of each soil CO2 release 
rate and litter mass loss (Wardle et al., 1997):

where Ri is the soil response variable when only species i is included 
and S denotes the number of species in each litter mixture. For each 
FRL mixture, we determined the difference between observed values 
(O) and E via paired t-tests for non-additive effects in each response 
variable. For each response variable, a significant difference between 
O and E (p < 0.05) indicated a non-additive effect; otherwise, an addi-
tive effect was inferred. The direction and magnitude of non-additive 
effects (or litter mixture effects, LME) were calculated as the following 
equation:

wherein, positive values (O − E) indicate synergistic effects, and nega-
tive values (O − E) indicate antagonistic effects.

Soil CO2 release rate was calculated as the following equation:

where RR is CO2 emission (mg (CO2) g−1 soil h−1), M is the molar mass 
of CO2 (44 g mol−1), Vm is the molar volume of 22.4 (L mol−1), 460 is the 
gas volume to be measured in the culture bottle (mL), C1 is the con-
centration of the gas to be measured (ppm) in the container, C2 is the 
concentration of the gas to be measured (ppm) in the container for 
every hour; m is the mass of dry soil used in the experiment (g), P is 
atmospheric pressure in Kunming, China, 80.735 kpa, P0 is standard at-
mospheric pressure of 101.325 kpa, T0 is absolute temperature under 
standard conditions of 273.15K and T is the absolute experimental 

temperature (273.15 + T (°C)) K. Litter mass loss was calculated as the 
following equation:

where m0 is the initial FRL dry weight and m1 is the dry weight of FRL 
at the end of the experimental period. Since addition of different litter 
species would change soil physico-chemical properties and microbial 
community structure, which would affect the rate of microbial respi-
ration and litter decomposition (Hu et al., 2016). We used a piecewise 
structural equation model (SEM) to assess the effects of FRL diver-
sity on the biomass, diversity, and composition of fungal communities 
via changes in soil abiotic variables (Lefcheck, 2016). The priori SEM 
was designed based on the fact that different litter addition to the soil 
would change the physical and chemical properties and microbial com-
munity structure of soil, which would change soil CO2 release and litter 
decomposition (Hu et al., 2016; Man et al., 2020). Differences in soil 
properties, CO2 release, microbial PLFAs, fungal alpha diversity and 
fungal trophic mode relative abundance were compared using ANOVA 
and least significant difference methods. All statistical analyses were 
performed with R version 3.6.3 (R Core Team, 2017).

3  |  RESULTS

3.1  |  Effects of FRL diversity on the decomposition 
and soil CO2 release

The mass loss of FRL was nonlinearly correlated with FRL diversity 
(Figure 1a). Treatment M9 had the maximum and treatment M3 had 
the minimum of FRL mass losses (Table S1). There was a nonlinear 
correlation between soil CO2 release and FRL diversity (Figure 1; 
Figure S1). With increasing FRL diversity, CO2 release first increased 
and then decreased, and M9, M12 and M15 had the highest rates of 
CO2 release (Figure 1b). There was a positive relationship between 
soil CO2 release rate and FRL mass loss (p = 0.012) (Figure 1c). In ad-
dition, soil CO2 release rate was positively correlated with soil C:N 
ratio (p = 0.035, Figure 1d), negatively correlated with soil N:P ratio 
(p = 0.016, Figure 1e), but uncorrelated with soil C:P ratio (Figure 1f). 
Three-way ANOVAs showed that FRL diversity, incubation time, in-
cubation temperature and their interactions had significant effects 
on soil CO2 release rate (Table S2).

3.2  |  Effects of FRL diversity on soil properties

The FRL diversity had different effects on soil properties (Figure 2; 
Figure S2; Table S3). With increasing FRL diversity, SOC and NH4

+-N 
concentrations increased (Figure 2a,d), DOC and NO3

−-N concentra-
tions and soil C:N ratio first decreased and then increased (Figure 2b,e,i), 
but TN, AP and pH responded oppositely (Figure 2c,g,h). The mass loss 
of FRL was positively correlated with SOC, TN, DOC, NH4

+-N and 
NO3

−-N and negatively correlated with AP, pH and C:N, but not sig-
nificantly correlated with TP (Figure S3). Three-way ANOVAs showed 

(1)E =
∑S

i=1
Ri ∕S,

(2)LME =
[

(O − E)∕E
]

× 100% ,

(3)RR = M∕Vm × 460
(

C2 − C1

)

× 1∕1000m × P∕P0 × T0 ∕T ,

(4)ML =
(

m0 − m1

)

∕m0 × 100% ,
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that the added C, N and P content of FRL affected soil properties and 
microorganisms, and soil CO2 release and FRL mass loss are mainly af-
fected by the added C content of FRL (Table S3).

With increasing FRL diversity, soil total PLFAs first decreased 
and then increased, while fungal PLFAs and beta diversity exhibited 
the opposite trend (Figure 3a,b,f). FRL diversity had no significant ef-
fect on bacterial PLFAs or on the ratio of F:B (Figure 3c,d), but it was 
negatively correlated with fungal alpha diversity (Figure 3e). In M21, 
bacterial and fungal PLFAS increased significantly, as did PLFAs for 
Gram (−) and Gram (+) bacteria (Figure S4B–E). FRL mass loss was 
not correlated with fungal or bacterial PLFAs, the ratio of F:B, or 
fungal alpha diversity, but it was negatively correlated with fungal 
beta diversity (Figures S5 and S6). Soil fungal community composi-
tion was mainly affected by TN and pH, followed by AP, SOC, DOC, 
NO3

−-N and NH4
+-N. TP was the only variable that did not have a 

significant effect on fungal community composition (Figure S3A). 
Moderate size diversity resulted in higher Chao1, Simpson, Shannon 
and Pielou-e indices of soil fungi (Figure S7). Bray-Curtis dissimi-
larities of soil fungi were significantly correlated with TN and pH 
(Figure S3B). The increased FRL diversity enhanced the relative 
abundance of Acomycota and decreased the relative abundance of 

Basidiomycota at the phylum level (Figures S8 and S9). Increased 
FRL diversity had no significant effect on saprotrophic fungi, but 
reduced Pathotroph-Saprotrph-Symbiotroph and Pathotroph-
Symbiotroph fungi (Table S4; Figures S8–S10).

3.3  |  Linking FRL mixed decomposition with 
soil properties

The FRL diversity had a synergistic effect on soil CO2 release and 
FRL mass loss. M12 had the largest mixture effect on CO2 release, 
while M21 had the smallest effect. The mixture effect values of M12 
and M15 were significantly higher than M3 (Figure 4a). The mixture 
effect value of M9 was the largest, while M3 and M18 had the small-
est FRL mass loss. The mixture effect values of M21 and M12 were 
significantly different from other treatments (Figure 4b).

Piecewise SEM shows that the change in soil properties signifi-
cantly affected soil CO2 release and soil microorganisms, and soil mi-
croorganism PLFAs significantly affected soil CO2 release (Figure 5a). 
The direct effect of FRL diversity on soil CO2 release was lower than 
the indirect effects of soil properties, soil microbial PLFAs and soil 

F I G U R E  1  The relationships between fine-root litter diversity, mass loss and soil CO2 release (a–c) and the effect of soil stoichiometry on 
soil CO2 release rate (d–f).
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fungi (Figure 5b). Both soil properties and soil microbial PLFAs signifi-
cantly affected FRL mass loss (Figure 5c). The relationship between 
FRL mass loss and FRL diversity was determined by the indirect effects 
of soil properties, soil microbial PLFAs and soil fungi (Figure 5d).

4  |  DISCUSSION

4.1  |  Effects of fine-root diversity on litter mass 
loss

We investigated decomposition along a fine-root diversity gradient 
and found that litter mass loss showed a non-additive effect and 
moderate fine-root diversity had a greater positive effect on litter 

mass loss (Figures 1 and 5). The mixture effects of decomposition 
with M9 and M12 were larger than other treatments, which was con-
sistent with our first hypothesis. The first explanation would be that 
the different litter inputs changed soil nutrients (Chen et al., 2017; 
Gessner et al., 2010), the trade-off effect on soil nutrients would 
regulate decomposition. Since soil nutrients can strongly affect lit-
ter decomposition through various pathways (Wan et al., 2022; Wu 
et al., 2019). The evidence was that SOC, TN, NH4

+-N and NO3
−-N 

were positively correlated with litter mass loss, while soil TP, AP and 
pH negatively correlated with litter mass loss in our study. The great-
est loss of litter mass with moderate fine-root diversity implied the 
largest synergistic effect. The combination of different litter species 
can alter the process of decomposition via multiple non-exclusive 
mechanisms, leading to either an acceleration or deceleration in 

F I G U R E  2  Effects of fine root litter diversity on soil properties, i.e. soil organic carbon (a), dissolved orgnic carbon (b), total nrogen (c), 
ammonium nitrogen (d), nitrate nitrogen (e), soil total phosphorus (f), soil available phosphorus (g), soil pH (h) and carbon to nitrogen ratio (i).
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the mass loss of litter mixtures or individual components (Gessner 
et al., 2010).

Second, soil microbial community would be another import-
ant driver affecting decomposition (Gessner et al., 2010; Lecerf 
et al., 2011; Sheng et al., 2019). We found that fine-root diver-
sity was significantly correlated with both microbial biomass and 
fungal diversity and moderate fine-root litter diversity led to the 
maximum fungal diversity (Figure 3; Figure S4). Recent work found 
that the transition from mono- to mixed-species plant litter could 
increase decomposition by 34.7% in forest ecosystems (Mori 
et al., 2020), which supported our findings. Our study indicated 
that moderate fine-root diversity can create positive feedback 
between mass loss and fungal activity, and may explain why the 
highest diversity was not associated with the highest litter mass 
loss. Since high diversity with various identities can also increase 
substances that are difficult to decompose and inhibit microbial 

activities (Man et al., 2020; Prieto et al., 2016, 2017). Previous 
work has shown that higher diversity in forested systems will lead 
to antagonistic effects and decrease litter decomposition (Silver & 
Miya, 2001), supporting our findings. Furthermore, we found that 
fine-root diversity had no significant effect on the trophic mode of 
saprotrophic fungi, but increased their relative abundance. For ex-
ample, M9 treatment increased the abundance of fungi belonging 
to the Sordariales order, which can stimulate the decomposition of 
organic matter (Zhou et al., 2021).

4.2  |  Effects of fine-root litter diversity on soil 
CO2 release

Our finding indicated that fine-root addition promoted soil CO2 re-
lease, and moderate fine-root diversity was associated with higher 

F I G U R E  3  Effects of fine root litter 
diversity on soil microorganisms, i.e. 
total PLFAs (a), fungal PLFAs (b), bacterial 
PLFAs (c), fungi to bacteria ratio (d), 
fungal alpha diveristy (e) and fungal beta 
diversity (f).

F I G U R E  4  Mixture effects on the soil 
CO2 release (a) and decomposition of 
fine root litter (b). O: observed values, E: 
expected values. M3: 3 kinds of fine-
root litter, M6: 6 kinds of fine-root litter, 
M9: 9 kinds of fine-root litter, M12: 12 
kinds of fine-root litter, M15: 15 kinds of 
fine-root litter, M18: 18 kinds of fine-root 
litter, M21: 21 kinds of fine-root litter. 
Values are means ± SE. Asterisks indicate 
significant deviations from zero (Student's 
t tests; * <0.05, ** <0.01, *** <0.001).
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soil CO2 release (Figures 1 and 5). Consistent with the second hy-
pothesis, the release of soil CO2 mirrored the decomposition process, 
the highest decomposition at moderate diversity of can promote the 
release of soil CO2 in this study. Furthermore, the whole effect of 
mixed fine-root litter on CO2 release was a synergistic effect, prob-
ably because the leaching and transfer of nutrients and inhibitory 
compounds between litter species can result in synergistic effect 
with litter mixtures (Handa et al., 2014). A recent study suggested 
that high species diversity of root litter reduces the cumulative re-
lease of soil CO2 (Man et al., 2020), which partially supported our 
findings that highest diversity had not highest CO2 release. The mar-
ginal antagonistic effect on cumulative soil CO2 release in mixtures 
was likely the result of differences in the species composition of root 
litter. For example, litter with high C:N ratio or high lignin, tannin or 
polyphenol contents increased antagonism, influencing cumulative 
soil CO2 (Gessner et al., 2010).

Moderate fine-root diversity had the highest soil CO2 release, 
implying that litter decomposition and associated nutrient release 
can provide substrates for microbes (Liu et al., 2019; Tan et al., 2021). 
Because moderate fine-root diversity increased microbial activities 
and leads to accelerated organic C mineralization through the prim-
ing effect (Heijboer et al., 2018), thus enhanced soil CO2 release 
in the tropical rainforest. As mentioned above, M9 treatment was 

associated with a relatively high abundance of saprophytic fungi. 
Higher microbial biomass and activities have an obvious relationship 
with soil respiration (Wu et al., 2017). A previous experiment also 
found that litter removal reduced the diversity of fungi, especially 
saprotrophic fungi, thus reduced soil respiration (Zhou et al., 2021). 
Taking into account the nonlinear dynamics in our incubation exper-
iment, the effect of fine-root diversity on soil C cycling should be 
given adequate attention in those forests with high plant diversity 
in future.

5  |  CONCLUSIONS

Our one-year-long incubation experiment showed that there was a 
strong correlation between fine-root diversity and litter mass loss 
and soil CO2 release, with moderate diversity of fine-root (i.e. 9, 12 
and 15 species mixtures) having the greater effects. The potential 
mechanisms would be that different root diversity resulted in dif-
ferent releases of nutrients and changed soil microbial biomass and 
fungal community composition such as higher relative abundance 
of saprophytic fungi in moderate fine-root diversity. Changes in soil 
physico-chemical properties and microbial community composition 
directly and indirectly affected litter mass loss and soil CO2 release, 

F I G U R E  5  Structural equation model (SEM) of the effects of fine root litter diversity on soil CO2 release (a, b) and fine root litter mass 
loss (c, d). AP, available phosphorus; C:N, ratio of SOC to TN; C:N:P, ratio of SOC, TN and TP; C:P, ratio of SOC to TP; DOC, soil dissolved 
organic carbon; N:P, ratio of TN to TP; NH4

+-N, ammonia nitrogen; NO3
−-N, nitrate nitrogen; SOC, soil organic carbon; TN, soil total 

nitrogen; TP, total phosphorus.
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and the effects of soil properties on both litter mass loss and soil 
CO2 release were higher than those of microorganisms. In summary, 
our findings suggest that fine-root diversity has nonlinear relation-
ships with litter decomposition and soil CO2 release in tropical for-
ests, thus, the appropriate plant diversity must be sustained under 
global change scenario.
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