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A B S T R A C T   

The invasion of species in new regions depends on multiple factors, especially, the prevailing 
environmental factors. The environmental conditions are essential to understand for planning 
effective management strategies related to invasive species. Little is known about Cannabis as an 
established invasive weed. We hypothesized that the successful establishment of this invading 
species is influenced by the environmental variables; however, some of them have a much 
stronger influence than the others. Quantitative ecological methods were adopted for sampling 
the habitats invaded by Cannabis sativa, in a total of 165 quadrats. Soil samples were collected for 
soil analyses from each of those quadrat. Ecological and statistical approaches including Structure 
Equation Modeling (SEM) procedures were applied to evaluate the impact of environmental 
factors, ecological interrelationships, and the resultant invasiveness of the C. sativa. Our findings 
indicate that elevation, temperature, humidity, anthropogenic pressure, physio-chemical prper-
ties of soil and habitat degradation play significant roles in determining the distribution and 
abundance of C. sativa. Principal Component Analysis (PCA) of the parameters further clarifies 
that elevation is the most important driver in explaining the successful establishment of the 
invader species with a 30.1% variance. Structural equation modeling further confirms the sig-
nificant role played by elevation, which not only directly affects the abundance of Cannabis but 
also indirectly influences other variables such as anthropogenic pressure, temperature, and hu-
midity etc. However, the invasion of C. sativa is less affected by soil saturation pH, electrical 
conductivity, phosphorous, potassium, and CaCO3. Our study provides valuable scientific infor-
mation that could be used for the early detection of invasive species at the early stage of invasion 
and in devising policies for their management and control.  

* Corresponding author at: Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan. 
** Corresponding authors. 

E-mail addresses: smkhan@qau.edu.pk (S.M. Khan), heeelho@gmail.com (L.H. Lho), heesup.han@gmail.com (H. Han).  

Contents lists available at ScienceDirect 

Global Ecology and Conservation 

journal homepage: www.elsevier.com/locate/gecco 

https://doi.org/10.1016/j.gecco.2023.e02779 
Received 14 June 2023; Received in revised form 14 December 2023; Accepted 18 December 2023   

mailto:smkhan@qau.edu.pk
mailto:heeelho@gmail.com
mailto:heesup.han@gmail.com
www.sciencedirect.com/science/journal/23519894
https://www.elsevier.com/locate/gecco
https://doi.org/10.1016/j.gecco.2023.e02779
https://doi.org/10.1016/j.gecco.2023.e02779
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gecco.2023.e02779&domain=pdf
https://doi.org/10.1016/j.gecco.2023.e02779
http://creativecommons.org/licenses/by/4.0/


Global Ecology and Conservation 49 (2024) e02779

2

1. Introduction 

Cannabis sativa L., is one of the earliest domesticated plant species over 10,000 years (Hussain et al., 2021). The cultivation history 
of Cannabis plant is long (Russo, 2007), which started when nearby naturally occurring stands were depleted due to early human 
settlements and expansion. The earliest farmers began to grow cannabis plants close to their settlements (Clarke and Merlin, 2016). 
The selection of plants with better desired products started as a part of their ancient agricultural practice during this domestication 
period. Economic traits like edible seeds, strong fiber, and psychoactive resin were readily noticed and encouraged. Humans became 
more and more selective as their familiarity with cannabis and its products increased. The selection of cannabis for different economic 
traits continued along with its spread beyond its native range (Clarke and Merlin, 2016). However, cannabis origins have been 
attributed to a broader region that is referred to as central Asia, which is presently China (Schultes, 1969; Merlin, 1972). Cannabis 
expanded its range beyond the center of its origin eastward toward Northeastern China and the west, headed to Eastern Europe 
(McPartland, 2018; McPartland et al., 2019), and it continues to disperse to other regions of the world. 

The dispersal of cannabis beyond Eurasia occurred in relatively recent history which was subdivided into six phases (Clarke and 
Merlin, 2013). Phase I is the primary dispersal phase across Eurasia, was about 10,000–2000 years BP (before present), phase II evident 
spread into Africa and Southeast Asia about 2000–500 years BP, and phase III witnessed expansion from Europe into the Americas in 
1545–1800 CE (common era), phase IV received diffusion from Asia and Europe into the Americas in 1800–1945, phase V is the further 
expansion after World War II in 1945–1990, and phase VI is the proliferation of cannabis mainly industrial hemp from 1990 CE to 
present. More than 135 countries and territories document the most recent record of the occurrence of the cannabis plant, and it was 
declared invasive in 50 of these countries (Canavan et al., 2022). Further, its distribution is likely underreported because it is estimated 
that cultivation, which occurs at different levels, is happening in 172 countries as an illegal drug. 

The invasion potential of different plant species is greatly influenced by their domestication (Molina-Montenegro et al., 2014; Iram 
et al., 2020). Species under high intensity management, such as food crops have lower invasion risk while the species under low 
intensity management have high invasion risk e.g., biomass producing crops (O’Neill et al., 2021; Zhao et al., 2023). Both scenarios are 
true for cannabis based on its intended wide array of usage. Studies on the invasiveness of invasive species reveal there are certain 
species with specific characteristics that contribute to their invasion ability (Van Kleunen et al., 2010; Davidson et al., 2011). Species 
specific characteristics that are believed to contribute to invasiveness include life history, competitive ability, genetic variation, hy-
bridization, phenotypic plasticity, dispersal capability, tolerance to a wide range of environmental conditions, resistance and allelo-
pathic effect (Davidson et al., 2011; Tabassum and Leishman, 2018; Ullah et al., 2022; Cranberg and Keller, 2023). Cannabis possesses 
various aforementioned species specific traits that contribute to its invasive capability such as high competitive ability, rapid growth, 
annual life form and photosynthetic efficiency (Guo et al., 2018). In wild habitats, cannabis develops a dense thicket population 
reducing the availability of light that may have a detrimental impact on the emerging seedling of native plants (McPartland, 1997; 
Small et al., 2003; Noreen et al., 2019; Haq et al., 2020). 

It shows a high tendency to hybridize due to historical movements (intentional or unintentional) and cross-fertilization through 
wind-born pollens. The cannabis plant reproductive system is characterized by anemophily and allogamy. Hence, open pollination is 
necessarily responsible for a certain degree of hybridization between wild and improved populations (Barcaccia et al., 2020; Canavan 
et al., 2022). However, the viability of pollen declines linearly with increasing distance but in the case of cannabis, hybridization has 
been observed over a substantial distance of 100 km. This hybridization tendency greatly assisted isolated populations in overcoming 
and crossing biogeographic barriers (Rahn et al., 2016; Campbell et al., 2019). Further, seeds of cannabis have the capability to escape 
and spread to a considerable distance from their cultivation point. There are two main dispersal pathways for Cannabis seeds one is 
water and the other is endozoochory. Cannabis seeds were discovered to be more buoyant when compared to (93 species) other 
invasive species (Moravcova et al., 2010), which allowed them to float and be carried by rivers. The seeds can also be spread over great 
distances since they are edible to animals and can survive in their excreta (Campbell et al., 2019). These dispersal mechanisms and 
viability of seeds (McPartland and Naraine, 2019) significantly contribute to their widespread distribution and capability to establish 
in a variety of habitats. At the same time, worldwide occurrence records of cannabis (feral/wild) from every habitable continent 
evident for its ability to tolerate a broad environmental gradient. This broad tolerance breadth may be shaped by several contributing 
factors such as early dispersal by humans, clandestine breeding and tendency of cultivated plants to escape and hybridize across larger 
geographic range (Canavan et al., 2022). 

Species specific characteristics are essential for its invasiveness. The success of any species in a new range to become invasive is 
primarily influenced by the environmental characteristics broadly categorized into biotic and abiotic factors. Any successful invader 
must generally get through the abiotic filter, representing chemical and physical characteristics in the receiving environment. The 
concept of abiotic filtering emphasizes the interplay among living organisms and their surrounding environment, recognizing that 
every organism could not possibly thrive and establish in the prevailing abiotic conditions (Kraft et al., 2015). Understanding the 
abiotic filter provides information related to invasion success and establishment. 

Evaluation of abiotic environmental conditions that significantly influence its success becomes a task of interest for invasion bi-
ologists and environmental managers by considering the economic, ecological, and social importance of widely distributed cannabis. 
Therefore, we have hypothesized that the successful establishment of invading species is influenced by the environmental variables, 
whereas some of the variables have much stronger influence than others. In the case of Cannabis sativa species, the anthropogenic 
activities and habitat alteration interfere with the prevailing conditions and likely lead to enhanced invasion. This research article aims 
to 1) assess the abundance of Cannabis sativa along the elevation gradient of varying ecological habitats, 2) assess the environmental 
variables and their relationship 3) modelling the habitat degradation, anthropogenic pressure and natural drivers in relation to 
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cannabis invasion. 

2. Materials and methods 

2.1. Description of study site 

The state of Azad Jammu and Kashmir (AJK) geographically lies between 33◦− 36◦latitude north and 73◦− 75◦east longitude (Iqbal 
and Khan, 2014; Shaheen et al., 2015). It falls in the Western Himalayan orogen belt (Shaheen et al., 2015), and it comprises ten 
districts that are broadly divided into the southern districts and the northern districts (Fig. 1). The southern districts (Bhimber, Mirpur, 
and Kotli) are relatively plain in contrast to the northern districts (Poonch, Bagh, Muzaffarabad, Haveli, Hattian, Sudhnoti, and 
Neelum) that have remarkable mountainous peaks (DD, 2017). The elevation greatly varies across the study area, which ranges from 
360 m in the south to the peaks of 6325 m in the northern parts. The climatic conditions of the area vary accordingly with the south 
having dry sub-tropical to moist temperate climatic conditions in the north (Abdullah et al., 2021; Iqbal et al., 2021). The minimum 
average temperature in the winter ranges from 4 ̊C to 7̊C, whereas the maximum average temperature in the summer ranges from 20̊C 
to 36̊C. The maximum temperature reaches 45̊C in the months from May to September in the southern parts. The average annual 
rainfall ranges between 1000 mm and 2000 mm. The study area presents different climatic conditions, habitats, and soil types (Khan 
et al., 2012; Amjad and Arshad, 2014). The diverse climatic conditions and topography of the study area make it suitable to support 
and harbor diverse flora performing a range of ecosystem services. However, this rich diversity is at a greater risk imposed by invasive 
species which can replace the native flora once they successfully establish their communities. 

2.2. Vegetation sampling 

The current distribution of cannabis in the study area was recorded during the field trips conducted from April to August during 

Fig. 1. Map of the study area (Kashmir, Pakistan) with green colored dots representing the sampling sites for Cannabis sativa established and 
associated communities. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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years 2021–2022. A total of six stations were established using a partially randomized approach for the vegetation sampling of the 
invaded communities dominated by cannabis. In these communities, cannabis was already established where its occurrence dates back 
to 1832 (Fig. 2) (https://www.tropicos.org/Project/Pakistan, Joseph et al., 2011, Kisielowska et al., 2012). It was used as a stable drug 
in study area in the 1950–1970s (Hussain et al., 2022). A varied number of quadrats depending on the geography, elevation, 
microclimatic conditions, and vegetation structure were placed at each station. The altitudinal range of the study area varies from 239 
to 2226 m. In total 165 rectangular quadrats of 1 m × 1 m size were established. The primary phytosociological attributes, such as 
density, cover, and frequency were recorded at each quadrat by following the standard method (Cox, 1972; Mueller-Dombois and 
Ellenberg, 1974; Khan et al., 2013b; Bano et al., 2018; Anwar et al., 2019, 2023). The geographic attributes, such as elevation, latitude, 
and longitude were recorded as well at each quadrat by using a Global Positioning System (GPS) (Khan et al., 2014; Ahmad et al., 2016; 
Iqbal et al., 2017). Furthermore, the cover of bare land in the total cover was also noted in order to assess its relationship with the 
invasion. 

2.3. Environmental variables 

Environmental variables, such as humidity and temperature were recorded at each quadrat by using a hygrometer during fieldwork 
(ThermoProTP50). The soil samples were also collected from each quadrat up to a depth of 15 cm, and they were placed in polythene 
zipper bags (Iqbal et al., 2021; Zeb et al., 2021). The soil samples were dried at 105 ̊C for the chemical assay. The dried soil was sieved 
and ground in order to form a homogenous mixture. Distilled water (50 ml) was added to the soil sample, and it was then placed on a 
magnetic stirrer in order to ensure a homogenous solution. The electrodes of the electrical conductivity (EC) and pH meter were 
immersed in soil suspension, and their respective values were recorded (Koehler et al., 1984; Ahmad et al., 2016; Khan et al., 2022; 
Rasheed et al., 2022). The available phosphorus (P) content was determined by following the method by (Kitayama and Aiba, 2002), 
while available potassium (K) and calcium carbonate (CaCO3) were measured using standard protocols by (Loeppert and Suarez, 1996; 
Shafiur Rahman et al., 2016). The content of organic matter was determined according to (Jackson, 1962; Hussain et al., 1999). 

2.4. Anthropogenic pressure 

The influence of anthropogenic activities and habitat degradation were estimated visually in each quadrat. The different classes for 
anthropogenic pressure were structured based on the level of intensities, which were measured using a 4-point scale, where 3 was used 
for a higher level of anthropogenic pressure, 2 for a moderate level, 1 for a low level, and 0 for the absence of anthropogenic pressure 
(Manan et al., 2020). The quality of the habitat was observed and structured into four classes by using the same 4-point scale, which 
included 3 for high, 2 for moderate, 1 for low, and 0 for the absence of habitat degradation. 

Fig. 2. Cannabis sativa invasion in different habitats. A)along water body, B) degraded habitat, C) abandoned land, and D) the edge of a crop field:- 
in association with other invasive species. 
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2.5. Statistical data analyses 

The data was analyzed, using a multivariate statistical analyses in order to assess the factors behind the successful establishment 
and invasiveness of cannabis in different habitats. 

2.5.1. Linear regression analyses 
A linear regression analysis is a statistical approach that is used in order to assess the relationship between the explanatory and 

response variables (Ali et al., 2022, 2023b). We used linear regression analysis to assess the impact of different explanatory variables 
(environmental factors) in determining the distribution and abundance of cannabis in invaded communities. The equation for linear 
regression is provided below.  

Y = a +bX                                                                                                                                                                                    

Where Y represents the response variable, X represents the explanatory variable, a denotes the intercept, and b is the slope of the 
line. Linear regression calculates the explanatory variable value from the response variable. 

2.5.2. Pearson’s correlation 
Pearson’s correlation matrix was used to investigate how multiple variables are associated with each other (Ali et al., 2023a). We 

used Pearson correlation to assess the relationship of environmental variables with plant abundance of cannabis and all the variables 
with each other. Pearson’s correlation coefficient was estimated by using the formula that is provided below. 

r =

∑

i
(xi − x− )((yi − y− )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(xi − x−

√
)2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(yi − y− )

√
2  

Where r corresponds to the Pearson’s correlation coefficient, xi represents the total observation, x‾ shows the mean of a specific 
variable, yi represents the total observation, and y‾ is the mean of a specific variable (Ahmad et al., 2021). It tells the strength of the 
correlation among the different variables, which occur between − 1 and + 1. The positive and negative integers denote the direct and 
inverse relation between the variables. The closer the integer’s number is to either − 1 or + 1, the stronger the relation, whereas there 
is the absence of any relation if the coefficient value is 0. 

2.5.3. Principal component analysis (PCA) of the parameters 
A principal component analysis (PCA) applied on a large data set reduces dimensionality and increases interpretability as well as 

maintains its original structure to a maximum extent (Chu et al., 2018). The PCA of the parameters was applied in order to assess the 
variance posed by different explanatory variables. The arrows correspond to the explanatory variable, and their lengths symbolize the 
magnitude of the strength. If any of the two arrows have a 90º degree angle, it indicates the absence of any relation among variables. 
Negative relation if it makes a 180º angle, while positive relation if parallel to each other. 

2.5.4. Structure equation modeling 
The Structural Equation Model (SEM) was designed to test our hypothesis by using R software Version 4.2.2 (Team, 2013). It is a 

combination of multiple regression and factor analysis. Maximum likelihood was used for coefficient estimation along with scaled 
statistics and standard error. The residuals and modification indices were used for the inclusion and exclusion of the measured var-
iables. The goodness of the model fit was assessed through Chi-square, Adjusted Goodness of Model Fit Index (AGFI), Goodness of 
Model Fit Index (GFI), Comparative Fit Index (CFI), Root Mean Square Residual (RMR), Normed Fit Index (NFI), Akaike Information 
Criterion (AIC) and Standard Root Mean Square Residual (SRMR) (Ahmad et al., 2022, 2023). 

3. Results 

The abundance of Cannabis sativa varies greatly in the Western Himalayas, reaching a maximum abundance (Importance value 
index (IVI) = 151.0) in the southern parts, in contrast to the northern parts with a minimum abundance (IVI = 01). The elevation, 
temperature, humidity, and saturation attain a great variation and it builds up a wide environmental gradient, which is shown in 
descriptive statistics Supplementary Table 1. The soil of the Western Himalayas is acidic through natural to alkaline with a pH range of 
6.2–8.2. The soil characteristics, such as E.C, P, K, and CaCO3 attain more variations compared to the OM. Moreover, anthropogenic 
pressure and habitat degradation variation are interlinked, which establish the same range. The bare land differs greatly across 
different habitats (Supplementary Table 1). 

We also recorded a total of 77 associated plant species belong to 27 different families during our study. Poaceae family was 
identified as the dominant family (23%), which surpassed Asteraceae (20%), followed by Lamiaceae and Fabaceae (5.9%). The rest of 
the families contained only a few species (Supplementary Table 1). Cannabis sativa was the most dominant invasive plant species 
followed by Parthenium hysterophorus, Cynodon dactylon, Silybum marianum and Centaurea iberica based on the importance value index 
(Supplementary Table 2). 
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3.1. Influence of environmental variables 

The linear regression was used in order to assess the impact of the environmental variables on the abundance of cannabis that drives 
its successful establishment. Cannabis declines linearly with increasing elevation, which poses a highly significant impact on its 

Fig. 3. The relationship between Cannabis sativa abundance and several environmental factors using linear regression analysis; Elevation, Humidity, 
Electrical conductivity (EC), pH, Temperature, Organic matter (OM), Phosphorus (P), Saturation, Potassium (K), CaCO3, Bareland, Habitat 
degradation, Anthropogenic pressure. 
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abundance (R= − 0.71 and p = 0.00022). The plant abundance attains its maximum value in an altitudinal range of 239–750 m, which 
swiftly declines after 1500 m due to its strongly negative impact. Cannabis abundance tends to increase significantly with the tem-
perature (R= 0.56 and p = 0.0007), as shown in Fig. 3. Temperature positively influences the plant abundance, which becomes 
maximum in a range of 32–43 ◦C. The minimum abundance was observed below 20 ◦C in the northern parts of the Western Himalayas. 
Humidity has a statistically significant and weak negative impact on cannabis abundance (R= − 0.46 and p = 0.00065). The maximum 
abundance is observed between 20% and 30% humidity levels. Soil saturation, organic matter, P, K, and CaCO3 have a very weak and 
positive impact, while pHhas a weak negative effect. Anthropogenic pressure (R=0.74 and p = 0.00022) and habitat degradations 
(R=0.74 and p = 0.00022) have a strongly positive and significant impact on cannabis abundance. Cannabis abundance reached its 
maximum at a high level of both anthropogenic pressure and habitat degradation. The proportion of bare land in each quadrat has a 
positively weak influence on the cannabis abundance (R= 0.31 and p = 0.0006), which clearly states that the bare land condition aids 
in regards to establishing the cannabis abundance, which is shown in Fig. 3. 

3.2. Correlation among the environmental variables 

Cannabis abundance has an indirect relation with elevation. The correlation value (− 0.71) divulges a strong association in response 
to which the abundance declines with an increasing elevation, which is shown in Fig. 4. Temperature (0.56) was found to be positively 
correlated with cannabis abundance. This is in contrast to humidity, which establishes a negative correlation. Moreover, anthropo-
genic pressure (0.74) and habitat degradation (0.71) were found important variables in regard to explaining the cannabis abundance. 
Both the variables have a strong positive correlation. The abundance is not only directly affected by environmental variables but also 
indirectly due to their existing affinity with each other. For instance, elevation negatively influences temperature and anthropogenic 
pressure which in turn affects abundance. Similarly, humidity increases with elevation, which is due to their positive correlation, but it 
decreases with temperature. The content of organic matter, soil saturation, P, K, CaCO3, pH E.C, and bare land were found to be less 
important in regards to explaining the cannabis abundance, which is shown in Fig. 4. 

3.3. Variance among the influence of environmental variables 

The Principal Component Analysis (PCA) of the parameters was used to assess the variance imposed by different variables on 
cannabis abundance. In general, 62% of the variance was explained by the first four principal components (PCs). Elevation contributed 
30.1% of the total variance, so it was declared as the most important environmental variable in determining the successful estab-
lishment of cannabis. Anthropogenic pressure contributed 13.6%, while habitat disturbance contributed 10.6% of the total variance as 
shown in Fig. 5. Temperature explains 9% of the variance, whereas humidity contributed 7.8% of the variance. The soil variables are 

Fig. 4. Pearson’s correlation matrix of Cannabis sativa, showing the strength of correlation among the environmental variables. E.C (electrical 
conductivity); K (potassium); OM (organic matter); P (phosphorus). 
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important in explaining the abundance, but they have comparatively low variance. Soil pH has 6.9% of the variance, which is followed 
by E.C with 5.5%, and organic matter with 4.8%. Phosphorus contributed 3.8% of the variance, and K contributed 3.9% which il-
lustrates their equal importance. Soil saturation, CaCO3, and bare land contributed the least to the total variance, which is shown in 
Fig. 5 and Supplementary Table 3. PCA of parameters results clearly illustrate that all the measured variables differ from each other in 
terms of the variance they imposed to affect the plant abundance of cannabis in the invaded communities. 

3.4. Impact assessment of the environmental variables through Structural Equation Model (SEM) 

The structural equation model was designed to further evaluate our hypothesis. Elevation has a direct, negative, and significant 
impact on the abundance of cannabis (β = − 0.33) that declines with increasing elevation (Table 1; Fig. 6). Anthropogenic pressure 
significantly increases cannabis abundance (β = 0.51) as both have a positive and direct relation with each other. Temperature and 
habitat degradation have a direct effect while humidity has an inverse effect on cannabis abundance and hence establishment (Table 1; 
Fig. 6). Model fit indices values such as Chi-square, p-value, AGFI, NFI, GFI, CFI, SRMR, RMR and AIC lie in the range of goodness of fit 
and comprehend the model fitness as shown in Table 2. 

We have also checked both the direct and indirect effects of all the measured variables on the cannabis abundance (Supplementary 
Table 4). Elevation influence on plant abundance is not only direct but also indirect where it negatively influences with high sig-
nificance (p < 0.0001) through mediators such as temperature (β = − 0.62) and anthropogenic pressure (β = − 0.65). Although 
elevation and humidity have a direct relation with each other, but humidity has a negative and insignificant effect on cannabis 
abundance. The total effect of all the measured variables of both direct and indirect paths is significant as shown in Supplementary 
Table 4. 

Fig. 5. Principal component analysis of parameter for ecological factors. PCA of parameter (right side) arrows length shows variance among PCs 
and scree plot (left side) gives variance in percentage among PCs. E.C (electrical conductivity); K (potassium); OM (organic matter); P (phosphorus). 

Table 1 
Detailed summary of SEM of cannabis abundance in relation to elevation, humidity, temperature, anthropogenic pressure and habitat degradation on 
plant abundance of cannabis.  

Response Predictor Estimate S.E Z- value p-value 

Plant abundance Elevation -0.329  0.074 -4.421  0.0001 
Plant abundance Temperature 0.033  0.07 -3.471  0.053 
Plant abundance Humidity -0.09  0.065 -1.385  0.166 
Plant abundance Anthropogenic pressure 0.505  0.196 2.582  0.010 
Plant abundance Habitat degradation 0.23  0.191 -2.255  0.057 
Temperature Elevation -0.62  0.061 -10.157  0.001 
Humidity Elevation 0.33  0.083 3.965  0.001 
Anthropogenic pressure Elevation -0.654  0.059 -11.095  0.0001 
Habitat degradation Elevation 0.011  0.025 0.43  0.667 
Humidity Temperature -0.57  0.07 -8.108  0.0001 
Humidity Habitat degradation 0.208  0.071 2.933  0.003 
Habitat degradation Anthropogenic pressure 0.977  0.025 39.033  0.0001  
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4. Discussion 

The potential of invasive species to colonize and establish in a new habitat generally depends on their ability to tolerate abiotic 
conditions (Alpert et al., 2000; Levine et al., 2004), biotic resistance (Bogdziewicz et al., 2019), and propagule pressure (Lockwood 
et al., 2005; Simberloff, 2009a), or a combination of all these factors. The present study aims to identify drivers for the successful 
invasion of cannabis in the wild habitat of the Western Himalayas. The present study recorded 78 plant species from invaded cannabis 
communities of 28 different families. The species composition is similar to those reported from the Himalayas (Khan et al., 2016; 
Rahman et al., 2020; ul Haq et al., 2020; Anjum et al., 2022; Jamil et al., 2022; Manan et al., 2022). Poaceae and Asteraceae were the 
leading families that comprised most of the reported species, and they are in agreement with (Shaheen et al., 2011; Ilyas et al., 2013; 
Abbas et al., 2016; Amjad et al., 2017; Jamil et al., 2022). 

Environmental variables are important in regards to explaining the abundance of cannabis as it significantly declines along the 
elevation. Our study is consistent with the other studies that suggested that invasive species richness and abundance decline along with 
elevation (Pauchard and Alaback, 2004; McDougall et al., 2005; Kalwij et al., 2008; ur Rahman et al., 2021). This significant decline in 
the abundance of cannabis along the elevation is in close approximation with the studies by (Alexander et al., 2011a) and (Seipel et al., 

Fig. 6. Structural equation modeldemonstrating direct and indirect structural relation of Cannabis sativa abundance in response to measured 
variables. Note: The blue solid lines symbolize significant and positive relationships while the red solid line symbolizes negative and significant 
relationships. Dotted blue and dotted red lines comprehend insignificant positive and negative relationships respectively. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Summary of model fitness showing different model fit indices.  

Chisq p-value NFI CFI GFI AGFI SRMR RMR AIC 

11.003 0.112 0.988 0.991 0.984 0.987 0.055 0.055 1446.181  
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2012), which advocate directional filtration (Alexander et al., 2011a; Averett et al., 2016). The distribution pattern of invasive species 
along the altitudinal gradient is driven by climatic constraints and human influences. Another possible reason might be that all the 
alien species are not pre-adapted to the survival conditions at higher elevations that aid to pass through environmental constrains and 
are unable to survive, so they fail to colonize. However, only broad ecological amplitude species pose climatic tolerance capability and 
grow in a wide range of climatic conditions and eventually reach higher elevations (Becker et al., 2005; Alexander et al., 2011b; Marini 
et al., 2013). 

Temperature is another influential factor that plays a highly significant role in the distribution and abundance of cannabis. Our 
findings are consistent with the study by (WERF et al., 1995), that the rate of leaf appearance and stem elongation linearly increases 
with temperature in a range of 10 ̊C to 28 ̊C. The optimum temperature for the photosynthesis of cannabis occurs in the range of 25 ̊C to 
30 ̊C, whereas the maximum transpiration is at 40 ̊C. The optimum temperature for the maximum seed germination ranges between 19 
C̊ to 30 ̊C, whereas the maximum temperature for seed germination was 40 ̊C (Geneve et al., 2022). The optimum temperature of the 
plant species mirrors its physiological and genetic adaptation toward the environmental temperature range (Berry and Bjorkman, 
1980). This greater variation in the temperature range could be explained by the high degree of plasticity exhibited by the plants in 
response to temperature based photosynthesis. 

Our findings of declines in the abundance of cannabis with humidity contradict the previous findings that the required humidity 
level is 75% for the development stage, 55–65% in the vegetative and flowering stage (Chandra et al., 2017), and as high as 90% in the 
propagation stage (Hawley, 2018; Magagnini et al., 2018). The disagreement of our findings with the previous studies could be 
attributed to the fact that relative humidity is measured at different stages of the life cycle under control conditions. However, our 
study is regardless of any particular stage of the life cycle as well as the control conditions. Furthermore, the altitudinal gradient, which 
is seen in our study, changes the microclimatic conditions, such as humidity, temperature, and precipitation (Vittoz et al., 2010; Zhang 
and Shao, 2015), which could attribute to distinct vegetation (Champion et al., 1965; Khan et al., 2011, 2013a; Nasrullah et al., 2015) 
and differs greatly from the experimental setup under controlled conditions. 

The soil’s pHis one of the major underlying abiotic variables that has a complex effect on plant growth, and it leads toward the 
variation in the distribution of the plant species in calcareous or acidic soils, which determines the floristic variation in different 
communities (Diekmann and Lawesson., 1999; Simberloff, 2009a,b). However, pH appears to have a trivial effect on the abundance of 
cannabis in the current study. The suitable pH for its growth ranges between 6.0 and 7.5 (Amaducci et al., 2015), whereas an optimum 
pH occurs in the range of 5.8–6.0 (Bocsa and Karus, 1998). Several weeds possess excellent ability to grow across a wide range of pH 
such as Campsis radicans Seem (Chachalis and Reddy, 2000), Eleusine indica (L.) Gaertn (Chauhan and Johnson, 2008), Solanum ros-
tratum Dunal (Wei et al., 2009), and Urena lobata L. (Wang et al., 2009), and they are comparable with our findings that pH is not a 
limiting factor for their distribution and abundance. 

Soil saturation and Cannabis abundance were found to be positively correlated. Our results are consistent with (AJ and CA, 1947). 
They suggested that cannabis grows well in high water holding soils and shows sensitivity toward droughts. Cannabis requires a high 
moisture content right through its growing season, particularly during their establishment stage in the first six weeks of growth 
(Dewey, 1913; Ozturk et al., 2022). The plant can endure drier conditions once the plant becomes well rooted because their roots have 
the capacity to penetrate 2–3cmin depth in order to extract moisture (Amaducci et al., 2002). 

Soil organic matter, available P and K, shows a positive and weak correlation with cannabis. The weak positive correlation of 
cannabis with P and K and organic matter might be due to low concentrations and the low availability of these nutrients in wild 
habitats. Our findings corroborate with Caplan et al., (2017), Khan et al. (2023). They reported that organic fertilizers improve plant 
growth at their vegetative stage. The findings by Vera et al. (2004) are in agreement with our findings that P increases plant height, 
even though its effect on the total biomass and the seed yields were minimal and inconsistent. The study by Finnan and Burke (2013) 
also reported that P had a negligible impact on the stem yield. Furthermore, our results of K’s negligible positive effect are comparable 
with Cockson et al. (2019), which included that K did not significantly affect the total biomass and the seed yield of hemp plants. 

Anthropogenic activities have a significant impact on the abundance of cannabis. Our findings support the previous studies by Van 
Der WAL et al. (2008b), Catford et al. (2009), Pauchard et al. (2009), Pollnac et al. (2012). Our findings are further supported by the 
study by Fuentes-Lillo et al. (2021), who reported that the invasive species abundance and richness are derived from anthropogenic 
factors both at the local and regional scales. The mountains in different regions also witnessed anthropogenic factors as one of the most 
important invasion drivers, which included Ecuador (Sandoya et al., 2017), Yellowstone National Park (Pollnac et al., 2012), Bolivia 
(Fernández-Murillo et al., 2015), and Norway (Lembrechts et al., 2017; Clavel et al., 2021). The increases in the success rate of invasion 
due to the anthropogenic factor might be explained by the fact that it acts as a vector for the propagules transportation on one hand, 
whereas it modifies the prevailing abiotic and biotic conditions on the other, which therefore increases the possibility of their suc-
cessful establishment in new habitats (Van Der WAL et al., 2008a; Catford et al., 2009; Pauchard et al., 2009; Pollnac et al., 2012; 
Cabra-Rivas et al., 2016; Lembrechts et al., 2017). 

Habitat degradation and invasion are interrelated (Marvier et al., 2004; Didham et al., 2007; Ewers and Didham, 2007; Foxcroft 
et al., 2011b)which significantly increases the cannabis abundance in Western Himalaya. Our findings are consistent with other 
studies, such as (Vilà et al., 2007; Thiele et al., 2008; Dawson et al., 2015). The habitat disturbance hypothesis supports our findings 
that habitat alternation or degradation favors the establishment of invasive species (Hobbs and Huenneke, 1992; Richardson and 
Pyšek, 2007) by modifying both the abiotic and biotic conditions, which cause the habitat to become vulnerable to invasion (Lonsdale, 
1999; Colautti et al., 2006; Catford et al., 2009). Native species are generally adapted to undisturbed habitat conditions, which is 
contrary to invasive species (Nordheimer and Jeschke, 2018; Khan et al., 2022). The degraded and disturbed habitat therefore becomes 
less suitable for native species and this decline in native species is filled by invasive species (Hobbs and Huenneke, 1992; Didham et al., 
2005). 
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Habitat disturbance due to human activities, such as road transportation, tourism (Foxcroft et al., 2011a; Anderson et al., 2015; 
Nath et al., 2019), and streams, creates the dispersal corridors for invasive species and increases their competition with the local 
vegetation (Parendes and Jones, 2000). Furthermore, roads and tracks result in the fragmentation of the natural areas, which 
consequentially brings changes in the microclimatic conditions particularly the availability of light (Brothers and Spingarn, 1992; 
Yates et al., 2004), giving invasive species a competitive advantage. These types of suitable attributes in disturbed and degraded 
habitats provide an opportunity window for the successful establishment and spread of invasive species (Hobbs and Huenneke, 1992; 
Ning et al., 2019). 

5. Conclusion 

It is concluded that environmental variables such as elevation, humidity, and temperature, significantly affect the abundance and 
distribution of the Cannabis sativa in the Western Himalayas in general and Kashmir, Pakistan in particular. Anthropogenic pressures 
along with habitat disturbance has a prominent role in facilitating cannabis with respect to its abundance and invasiveness. Electrical 
conductivity is also important among the edaphic factors. The content of organic matter, P and K, has a positive relation with the 
cannabis abundance. Furthermore, the proportion of the bare land also favors the cannabis establishment. The present study provides 
useful information in regard to the successful establishment of cannabis in wild habitats. The continuous monitoring program of 
C. sativa would help to control and manage its further establishment in new habitats and thus preserving natural habitats from in-
vasion. Furthermore, future studies should focus on the potential of cannabis invasion at a broader scale and quantification of its 
impact on biodiversity. 
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