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Bauhinia s.s. is a large genus in the family Fabaceae, but its evolutionary and biogeographical history is still unclear
due to the scarcity of fossil records compared to the highly diverse modern species in pantropic regions. Here, we report
the earliest fossil record of Bauhinia s.s., namely Bauhinia tibetensis Y. Gao et T. Su sp. nov., based on leaves from the
latest Paleocene of the southern Tibetan region. Combined with palaeoecological niche simulations and ancestral state
reconstruction, the new fossils suggested a Paleocene origin of Bauhinia s.s. in the Afrotropical realm that subsequently
dispersed to the Neotropical and Indomalayan realms. Bauhinia tibetensis belongs to the Asian clade of Bauhinia s.s.
that reached the southern Tibetan region from the Afrotropical realm via the Kohistan-Ladakh Island Arc in the early
Paleocene. This clade spread to south-eastern China during the Oligocene and entered northern India during the
Neogene or earlier. The discovery of the oldest Bauhinia s.s. from what is now the southern Tibetan Plateau updates our
understanding of the biogeographical history of this genus and demonstrates that the Kohistan-Ladakh Island Arc is an
ancient corridor for floristic interchange between Africa and India.

Keywords: Bauhinia s.s.; biogeography; diversification; Paleocene; leaf fossil; palaeoecological niche simulations

Introduction

Bauhinia s.l. is a large and taxonomically complex
group in Cercidoideae (a subfamily of the Fabaceae),
with nearly 380 living species (Sinou et al., 2020),
encompassing trees, shrubs, lianas and herbs, mainly
distributed in the Pantropical regions (Jia et al., 2022;
Lin et al., 2015; Sinou et al., 2009). Among them, some
species are famous horticultural plants worldwide, e.g.
Bauhinia acuminata (Mak et al., 2008). Bauhinia s.l.
includes a unique form that may be two-lobed with a
prominent apical incision, or in other cases bifoliolate
laminae (Chen & Zhang, 2005; Jia et al., 2022; Lin
et al., 2015; Meng et al., 2014). Recent molecular stud-
ies have divided Bauhinia s.l. into 11 genera (i.e.
Bauhinia s.s., Phanera, Brenierea, Piliostigma, Barklya,
Cheniella, Gigasiphon, Lasiobema, Lysiphyllum,
Schnella and Tylosema) (Sinou et al., 2009, 2020).
Within the latest classification, Bauhinia s.s. is still a
large genus (Sinou et al., 2020). Although extant

Bauhinia species are diverse and wide in distribution,
their fossil records are limited (Fig. 1; Supplemental
material - Appendix 1). Hitherto, the oldest fossil
record, namely Bauhinia wenshanensis and Bauhinia sp.
(morphotypes 2–4), was from the late Eocene Puyang
Basin in south-eastern Yunnan, China (Jia et al., 2022).
Several fossil records from the Oligocene of China have
been reported, including Bauhinia wenshanensis (Meng
et al., 2014), Bauhinia ningmingensis (Wang et al.,
2014), and Bauhinia larsenii (Chen & Zhang, 2005).
Neogene fossil records are relatively richer than those
of the Paleogene and include the Miocene Bauhinia
kachchhensis (Lakhanpal & Guleria, 1982), Bauhinium
palaeomalabaricum (Prakash & Prasad, 1984; Shukla
et al., 2015), Bauhinia sp. cf. B. purpurea (Bande &
Srivastava, 1988), Bauhinia tertiara (Awasthi &
Mehrotra, 1989), Bauhinia krishnanunnii (Guleria et al.,
2000) and Bauhinia miocenica (Mehrotra et al., 2011)
discovered in India; Bauhinia fotana (Jacques et al.,
2015) and Bauhinia ungulatoides (Lin et al., 2015) in
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China; and Bauhinia ecuadorensis (Berry, 1945) discov-
ered in Ecuador. The middle Miocene to Pliocene fossil
record comprises Bauhinia nepalensis, from Nepal
(Awasthi & Prasad, 1989), while Pliocene fossil records,
namely Bauhinia siwalika (Khan et al., 2019) and
Bauhinia waylandi (Chaney, 1933) are from India and
Uganda, respectively.
Phylogenetic analysis and fossil records suggest that

Bauhinia s.l. might have originated in Laurasia during
the Paleocene (Meng et al., 2014); however, the age of
the fossil species Bauhinia wenshanensis placed as a
representative of the crown node in that study has been
revised from the late Miocene to the early Oligocene
based on radiometric dating (Tian et al., 2021).
Moreover, the phylogenetic relationships within
Bauhinia s.l. have also been revised in the latest analy-
ses based on molecular data (Sinou et al., 2020).
Therefore, any new fossil records of Bauhinia s.s., espe-
cially early occurrences, could significantly improve our
understanding of the origin and evolution of this genus.
The Tibetan Plateau, the highest plateau on Earth,

experienced drastic topographic and environmental
changes, from warm and relatively low elevations in the
Paleogene to the present high plateau (Spicer et al.,
2021). Because the plateau landscape did not exist dur-
ing the Paleogene, we use the term ‘Tibetan region’
instead of the Tibetan Plateau in this study. The Tibetan
region played an important role in the evolution of
Asian or even global plant diversity during the
Cenozoic (Su et al., 2020), and recent fossil discoveries

suggest that the Tibetan region was a crossroads for
floristic interchange in the Northern Hemisphere (Deng
et al., 2020; Liu et al., 2019; Zhou et al., 2023).
Currently, however, the fossil record is still not suffi-
cient to reveal the important roles that the Tibetan
region played in the evolution and biogeographical his-
tory of the plants there, or even globally.
In this study, we report the oldest fossil record of

Bauhinia s.s. in the form of leaves collected from the
upper Paleocene Liuqu Formation, Lazi County, south-
ern Tibet. These leaf fossils are assigned as a new spe-
cies following detailed morphological comparison with
living and previously reported fossil species.
Furthermore, with this new fossil evidence, we recon-
struct the evolutionary and biogeographic histories of
Bauhinia s.l. and emphasize the importance of the
Tibetan region and Kohistan-Ladakh Island Arc during
the early stages of its dispersal.

Material and methods

Geological setting
The fossil site is located in Liuxiang, Lazi County
(29.15� N, 88.15� E, �4160 m above sea level), Xigaze,
southern Tibet, China, which tectonically belongs to the
Tethys Himalaya in the southern Tibetan Plateau. Fossil
specimens were collected from the Liuqu Formation
(Ding et al., 2017; Fang et al., 2005; Tao et al., 1988),
also known as the Liuqu Conglomerate, which mainly

Figure 1. Modern and fossil distribution of Bauhinia s.s. Extant distribution data of Bauhinia s.s. were extracted from the Global
Biodiversity Information Facility (GBIF, http://www.gbif.org) (Supplemental material - Appendix 2).
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consists of thick coarse clastic rocks derived from the
passive terrestrial margin of the Indian Plate and the
ophiolites in the Yarlung-Zangpo suture (YZS), record-
ing the tectonic evolution of the southern Tibetan region
(Davis et al., 2002; Ding et al., 2017; Fang et al., 2005;
Leary et al., 2016). The formation is restricted to an
east–west elongated zone along the southern margin of
the YZS, extends approximately 150 km, and varies in
width from hundreds of metres to kilometres (Ali &
Aitchison, 2008; Ding et al., 2017). It was formed by
fluvial and sediment-gravity flow and is locally inter-
bedded with mature paleosols (Leary et al., 2016). The
fossils were collected from a fine sandstone layer in the
upper part of the section (Fig. 2). The age estimated for
the Liuqu Formation has been controversial and has
ranged from Cretaceous to early Miocene (Davis et al.,
2002; Ding et al., 2017; Fang et al., 2005; Leary et al.,
2016, 2017; Li et al., 2015). However, Ding et al.
(2017) conducted U-Pb dating with zircons from tuffite
samples in the upper part of Liuqu Formation and con-
strained the age of Liuqu flora to approximately 56Ma.
Younger ages (Leary et al., 2017) are likely from
Miocene dikes that crosscut the Liuqu Formation.
Previously, plentiful fern and angiosperm fossils, such
as Christella nervosa, Annona prercticulata and Ficus
protobenjamina, have been discovered (Fang et al.,
2005; Tao, 1988; Xu et al., 2019), indicating a subtrop-
ical to tropical environment.

Morphological observation
This study used a Nikon D850 camera for photography
and a Leica S8APO stereomicroscope for fossil observa-
tion. The terminology of leaf architecture follows
Hickey (1973) and Ellis et al. (2009). Ninety-four living
species represented by 643 specimens (Supplemental
material - Appendix 3) were obtained from the data-
bases of the Chinese Virtual Herbarium (CVH, https://
www.cvh.ac.cn) and Royal Botanic Gardens, Kew
(http://apps.kew.org/herbcat/navigator.do) for morpho-
logical comparison. All plant scientific names we used
strictly adhere to the unified standards of WFO Plant
List (https://wfoplantlist.org/) to ensure consistency in
nomenclature.

Geometric morphometrics
Geometric morphometrics (GMM) allows for the quanti-
tative analysis and comparison of morphological differ-
ences among organisms (Bookstein, 1997; Klingenberg,
2022). In recent years, GMM has been widely used to
analyse and compare quantitatively morphological dif-
ferences among leaves of living species (Akli et al.,
2022; Klein & Svoboda, 2017; Stojni�c et al., 2022;
Yang et al., 2022). More importantly, it has been shown
to be an effective method for identifying fossil leaves
when comparing spatial coordinate information of leaves
with modern plant species (Chen et al., 2021; Meng
et al., 2014).

Figure 2. Geological map and fossil site in Liuxiang, Lazi County, Tibet (modified from Leary et al., 2016).
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GMM was used to quantify morphological similarities
among fossils and modern species of Bauhinia s.l. The
steps for GMM are as follows:
1. Marking landmark and semi-landmark points.

Landmark points are homologous points with
distinct discriminatory features, and there are three
types of landmark points for biological study. Type I
landmark points are mainly the intersection points
between different tissues, such as the intersection of
primary veins and leaf margins; Type II is defined
as depressions or protrusions in structures, such as
leaf bases and leaf apices; Type III relates to the
extreme values of the structure, such as the widest
and longest points of the leaf blade. Semi-landmark
points are a series of sliding points that outline
biological contours and can add details to
morphological variation. The software ‘tps series’
(Rohlf, 2015) can digitally analyse geometric
morphometry, and this study used the software
routines tpsUtil and tpsDig for image digitization.
First, multiple specimen images of the same species
are set into a single ‘tps’ file using tpsUtil. Then,
the ‘tps’ file is opened with tpsDig to calibrate
landmark and semi-landmark points to obtain
coordinate information in the specimen images. Six
landmark points were marked for each specimen
containing type I or type II and 34 for the semi-
landmarks (Fig. 5A). Steps 2–4 were all performed
using the package ‘geomorph’ (Adams et al., 2020)
in the software R to quantify the morphological
variations and differences.

2. For statistical analyses, selected landmarks and
semi-landmarks were transformed into
morphological variables. The Generalized Procrustes
Analysis (GPA) method was used to eliminate the
nonmorphological variation through a series of
processes involving rotation, angle adjustment,
scaling and overprinting to align the corresponding
points of each species as much as possible.

3. The interrelationship of morphological variation
among specimens was explored by principal
component analysis.

4. The obtained coordinate data were visualized on
deformed grids using the thin-plate spline method to
obtain ideal simulated images.

Phylogenetic analyses
We analysed the chloroplast gene tRNA-Leu (trnL) and
the intergenic spacer trnL-trnF of 10 genera in
Cercidoideae from GenBank (https://www.ncbi.nlm.nih.
gov/nuccore, downloaded on 19 September 2022). The
sequence data were compared, corrected, and sequenced
using Aliview (v. 1.28) (Larsson, 2014). The tRNA-Leu

(trnL) gene and trnL-trnF intergenic spacer sequence
files in ‘fasta’ format were converted to ‘nex’ file for-
mat using ClustalX (v. 2.0) (Larkin et al., 2007). Then,
the ‘nex’ file format was imported into the software
PhyloSuite (v. 1.2.2) (Zhang et al., 2020), and the best-
fit substitution model, GTRþ FþG4 (Supplemental
material - Appendix 4), was calculated by ModelFinder
(Kalyaanamoorthy et al., 2017). After that, the sequence
data in ‘nex’ format was imported into the software
BEAUti (v. 1.10.4) (Suchard et al., 2018) to perform the
node calibration, set priors and adjust relevant parame-
ters. The marginal likelihood estimated by path sam-
pling was used to compare the combinations of
molecular clock models and coalescent models. The
combination that best fit our data was the lognormal
relaxed molecular clock model and Birth-Death Progress
(Supplemental material - Appendix 5). Markov chain
Monte Carlo (MCMC) was run for 10,000,000 genera-
tions and sampling was performed once every 1000 gen-
erations. The final ‘xml’ file exported from BEAUti was
used in BEAST (v. 1.10.4) (Suchard et al., 2018) to
generate trees. We used Tracer (v. 1.6) (Suchard et al.,
2018) to check the effective sample size (ESS) of each
‘log’ file parameter, ensuring that ESS values (>200)
achieved convergence. We kept 90% of the generated
trees and discarded the first 10% of trees as burn-in by
using Tree Annotator (v. 10.4) (Suchard et al., 2018)
(Supplemental material - Appendix 6).
We set 66.0Ma as the stem node of Bauhinia s.l.

(Zhao et al., 2021) and placed one fossil calibration
point (56.0Ma), the earliest fossil record of Bauhinia
s.s., namely Bauhinia tibetensis, reported here as a rep-
resentative of the crown node for Bauhinia s.s.

Biogeographical analyses
According to the natural distribution patterns of
Bauhinia s.l., four major regions were considered for
biogeographical analysis (Supplemental material -
Appendix 7): (A) the Indomalayan realm, (B) the
Neotropical realm, (C) the Afrotropical realm and (D)
the Australasian realm (Olson et al., 2001). The ances-
tral states were reconstructed by S-BGB (Statistical
BAYAREALIKE in BioGeoBEARS) analysis in the
software RASP (v. 4.2) (Matzke, 2014; Yu et al., 2020).
The best fit biogeographic model statistical analysis of
S-BGB was BAYAREALIKEþ J (based on the highest
AICc_wt: 0.25) (Supplemental material - Appendix 5).
To minimize the influence of tree topology uncertainty
on the reconstructed ancestral state, 2000 trees were ran-
domly selected from 9000 trees calculated by BEAST
(v. 1.10.4) (Suchard et al., 2018).
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Palaeoecological niche model
We used the Hadley centre-coupled ocean-atmosphere
general circulation models (HadCM3LBM2.1D) from
the Hadley Centre (Met Office, UK) for palaeoclimate
simulation (Valdes et al., 2017, 2021). Eight bioclimatic
variables likely to be important for Bauhinia s.s. growth
were selected, i.e. the coldest month mean surface air
temperature (CMM), the coldest three continuous
months mean surface air temperature (CSM), the driest
month precipitation (DRYMON), the difference for wet-
test month-driest month precipitation (WETDRYMON),
the wettest season precipitation (WETSEA), the warmest
month mean surface air temperature (WMM), the warm-
est month-coldest month temperature difference
(WMMCMM), and the warmest season-coldest season
temperature difference (WSMCSM). We assume that
these bioclimate variables for modern Bauhinia s.s.
obtained from MaxEnt (v. 3.4.1) (Steven et al., 2022)
have the same explanatory power for Bauhinia s.s. in
the geological past. Each fossil record was checked, and
their locations were transferred into palaeocoordinates to
obtain accurate bioclimatic data. Palaeocoordinates were
reconstructed using GPlates (https://gwsdoc.gplates.org/
reconstruction) and based on the PALEOMAP palaeo-
geographic model of Scotese (2016). The extracted bio-
climatic data for each corresponding epoch were
aggregated as the total climatic range and were used as
the climatic range of each period within that climatic
group to construct the climatic ecological niche of each
time bin. This method avoids the situation in which the
climate range extracted in a certain time slice is too nar-
row due to the deficiency of fossil records in that
period. Since each bioclimatic variable range in the
same time bin projects to a different geographic area,
the mask function of the R language ‘Raster’ package
was used to obtain a common geographic area for these
eight bioclimatic variables (Hijmans et al., 2020). The
suitability of the climate for Bauhinia s.s. was evaluated
using the Mahalanobis distance (MD), with values of
MD ¼ 0 representing the most suitable and values of
MD ¼ 1 representing the most unsuitable. We designed
a value of MD < 0.25 for the most suitable potential
distribution (MSPD) region for Bauhinia s.s.

Systematic palaeontology

Order Fabales Bromhead, 1838
Family Fabaceae Laurent de Jussieu, 1789

Subfamily Caesalpinioideae Pyramus de Candolle,
1825

Genus Bauhinia Plumier ex Linnaeus, 1753

Species Bauhinia tibetensis Y. Gao et T. Su sp. nov.
(Figs 3, 4)

Holotype. XZLZLX1-0118 (Fig. 3I).

Paratypes. XZLZLX1-0106 (Fig. 3A, B), XZLZLX1-
0112 (Fig. 3D, E), XZLZLX1-0119 (Fig. 3G),
XZLZLX1-0110 (Fig. 4I), XZLZLX1-0415 (Fig. 4F),
XZLZLX1-0417 (Fig. 4A), XZLZLX1-0418 (Fig. 4B),
XZLZLX1-0420 (Fig. 4J, K), and XZLZLX1-0541
(Fig. 4E).

Material. The holotype and paratypes are deposited in
the Paleoecology Collections of Xishuangbanna Tropical
Botanical Garden, Chinese Academy of Sciences.

Type locality. Liuxiang village, Lazi County, Xigaze,
Tibet, China (Fig. 2).

Etymology. The specific epithet ‘tibetensis’ refers to the
region where the species was found.

Type horizon. The upper part of the Liuqu Formation,
late Paleocene; �56Ma.

Diagnosis. Leaf size microphyll to mesophyll, lamina
orbicular to broadly elliptical, simple, bilobed, apex of
each lobe round-obtuse, base round, or ovate. Veins
actinodromous, primary veins 7–9, midvein ending at
the sinus; secondary veins simply brochidodromous, ter-
minating at leaf margin; tertiary veins mixed percurrent
between secondary veins and primary veins.

Description. The leaf blade is suborbicular or broadly
ovate, microphyll to mesophyll in size, symmetrical,
bilobed, and both lobes are round at the apex (Figs 3G–
J, 4B, D). The apex incision is approximately 1/6–2/5 of
the blade length (Figs 3D, F, I, J, 4B, D). The petiole is
not preserved. The leaf base is symmetrical, truncate to
shallow cordate (Figs 3G–J, 4B, D, E, G). The lamina
length is approximately 1.7–4.3 cm, the width is
approximately 2.6–5.4 cm, the length-to-width ratios are
approximately 0.5–0.8, and the blade area is approxi-
mately 4.2–19.7 cm2 (Figs 3, 4). Primary veins are 7–9,
not convergent toward the apex (Figs 3A–C, G–J, 4A–
E, G). The angle between the main veins is consistent
(Figs 3, 4). Simple agrophic veins are present (Fig. 3D,
F–H). The midvein is straight and ends at the sinus
(Figs 3A–C, I, J, 4A–D). Secondary veins are simple
brochidodromous with inconsistent angles and irregular
spacing (Figs 3, 4). Intersecondary veins occasionally
have less than one intersecondary vein in each interval
(Fig. 4J–L). The tertiary veins are mixed percurrent
between the secondary veins and the main veins (Fig.
4J–L). Higher-order veins are not preserved.
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Figure 3. Fossil leaves and line drawings of Bauhinia tibetensis Y. Gao et T. Su sp. nov. from the Upper Liuqu Formation,
Liuxiang village, Lazi County, Xigaze City, Tibet, China. A, XZLZLX1-0106; B, XZLZLX1-0106 (counterpart); C, line drawing of
A; D, XZLZLX1-0112; E, XZLZLX1-0112 (counterpart); F, line drawing of D; G, XZLZLX1-0119; H, line drawing of G; I,
XZLZLX1-0118; J, line drawing of I. Scale bars equal 1 cm.
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Results

Leaf geometry and morphometric pattern
The results of the principal component analysis of the
interrelationships of leaf shape among modern and fossil
species of Bauhinia s.l. (Fig. 5) indicates that Bauhinia
s.s., Piliostigma, Phanera, Cheniella, Lysiphyllum,
Schnella, and Tylosema overlap in general leaf morph-
ology. Nevertheless, their leaves could be distinguished
by detailed morphological characters at the species level
(Fig. 5). The first two principal components (PC1 and
PC2) accounted for 76.61% of the total variables of leaf
shape across samples (Supplemental material -
Appendix 5). Thin-plate spline deformation grids (Fig.
5B) show that PC1 represents the common variation in
width between two lobes and the depth of the base con-
cavity, accounting for 53.80% of the total variables of
leaf shape. PC2 represents the variation in the depth
between the two lobes, apex shape, and the ratio of lam-
inar length to width, accounting for 22.81% of the total

variables of leaf shape (Fig. 5). From the PCA results,
B. tibetensis was morphologically similar to Cheniella
damiaoshanensis and Bauhinia variegata. However,
when the size of the leaf blade and the number and
structure of the leaf veins were considered, B. tibetensis
was the closest to B. variegata in morphology.

Phylogenetic relationships and divergence times
According to our analyses, with the assignment of
66.0Ma as the stem node, the divergence age of Bauhinia
s.l. was in the earliest Paleocene (ca. 65.3Ma, 95%
Highest Posterior Density (HPD): 62.8–66.8Ma), with
the clade of Bauhinia and Phanera diverged by 63.0Ma
(95% HPD: 60.3–65.5Ma). In the Bauhinia clade,
Bauhinia s.s. had diverged by 59.7Ma (95% HPD: 57.0–
62.6Ma); then, the Asian and American-African clades
diverged by 55.8Ma (95% HPD: 54.9–56.8Ma). In the
middle Eocene (45.3Ma, 95% HPD: 29.68–55.69Ma), it
diverged into the American and African clades (Fig. 6).

Figure 4. Fossil leaves and line drawings of Bauhinia tibetensis Y. Gao et T. Su sp. nov. from the Upper Liuqu Formation,
Liuxiang village, Lazi County, Xigaze City, Tibet, China. A, XZLZLX1-0417; B, XZLZLX1-0418; C, line drawing of A; D, line
drawing of B; E, XZLZLX1-0541; F, XZLZLX1-0415; G, line drawing of E; H, line drawing of F; I, XZLZLX1-0110; J,
XZLZLX1-0420; K, XZLZLX1-0420 (counterpart); L, line drawing of K. Scale bars equal 1 cm.
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Biogeographical reconstruction
Most Bauhinia species are distributed in tropical and
subtropical regions. There are three modern distribution
centres: south-east Asia, South America, and South
Africa (Fig. 1). An ancestral state reconstruction was
conducted in RASP 4.2, and the results showed that the
most recent common ancestral distribution range of
Bauhinia s.l. is probably in the Afrotropical realm
(98.5%, node: 85). The ancestral distribution of diver-
gent clades of Bauhinia and Phanera is also probable in

the Afrotropical realm (98.3%, node: 83), followed by
Bauhinia s.s., Brenierea and Piliostigma, which also
probably originated there (98.7%, node: 67). The ances-
tral state of the crown Bauhinia s.s. (node 64 in Fig. 4)
is most likely to be in the Afrotropical realm (90.0%),
followed by Asia (6.5%). This result suggested that the
early divergence of Bauhinia s.l. took place in the
Afrotropical realm. For the Bauhinia clade, it was not
until the divergence of Bauhinia s.s. that it spread out
of the Afrotropical realm.

Figure 5. Principal component analysis and range of leaf shape within two fossil species, namely B. tibetensis and B. wenshanensis,
and living species of Bauhinia s.l. A, position and description of landmarks and semi-landmarks. B, distribution of specimens
according to the first principal component (53.80% variability) and the second principal component (22.81% variability). Different
colours represent different genera in Bauhinia s.l. Red triangle represents Bauhinia tibetensis. Red square represents Bauhinia
wenshanensis. The thin-plate spline deformation grid represents the leaf shapes corresponding to the most positive (þ) and negative
(–) principal component scores.
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Historical distribution of Bauhinia s.s
For extant Bauhinia s.s., the MaxEnt model results
(Supplemental material - Appendix 8) show that tem-
perature is amongst the most important factors limiting
the natural distribution of Bauhinia s.s. The possible
temperature range for survival of Bauhinia s.s. corre-
sponds to CSM between 16 �C and 25 �C and

WSMCSM between 2 �C and 7 �C. It indicates that
Bauhinia s.s. preferred regions with high temperatures
in winter and small temperature differences between the
warmest and coldest seasons. Precipitation factors, espe-
cially WETDRYMON and WETMON, also play crucial
roles in affecting the survival of Bauhinia s.s. A
WETMON higher than 140mm makes it suitable for
Bauhinia s.s. to grow, while a DRYMON higher than
38mm makes it possible for Bauhinia s.s. to grow.
Using the palaeoecological niche model, the potential

distribution of Bauhinia s.s. was reconstructed for each
Cenozoic epoch (Fig. 7). During the Paleogene, the
most suitable potential distribution (MSPD) of Bauhinia
s.s. extended across the whole pantropical area (Fig. 7A,
B), and some even entered higher latitudes in Asia. In
the Miocene, the MSPD of Bauhinia s.s. was limited in
low latitudes, and a wide potential distribution existed
in Africa (Fig. 7C). A further contraction of the MSPD
occurred during the Pliocene, but Bauhinia s.s. persisted
within a pantropical distribution (Fig. 7D).

Discussion

Morphological comparison
We classified species in Bauhinia s.l. using leaf shape,
apex, base, and the number of primary veins
(Supplemental material - Appendix 5). Piliostigma has
five living species. Among them, the leaves of P. foveo-
latum, P. reticulatum, P. thonningii and P. tortuosum are
macrophyll, significantly larger than fossils from Lazi
County, and the leaves of P. malabaricum are microphyll
to mesophyll with two round apexes, but the base is
deeply cordate. Leaves in Lysiphyllum are 2-foliolate or
unlobed, and leaves in Barklya and Gigasiphon are both
unlobed. For leaves of Schnella, the base is deeply cord-
ate, and the apex is usually acuminate to straight. In
Cheniella, the leaf blade shape of C. damiaoshanensis is
similar to our fossils, but C. damiaoshanensis has only
seven primary veins. Most species in Phanera show
acute or acuminate leaf apices. Although the leaf apex in
a few Phanera species is round or obtuse, their leaf base
is deeply cordate (e.g. P. semibifida and P. yunnanensis).
Bauhinia s.s. is a large genus with a wide range of

leaf shapes, such as 2-foliolate (e.g. B. divaricata, B.
grevei, B. bauhinioides, unlobed (e.g. B. cinnamomea,
B. brachycalyx, B. acuruana), the apex is acuminate or
straight (e.g. B. aculeata, B. decandra, B. esquirolii),
the apex is round with deeply cordate base (e.g. B. gal-
pinii, B. racemosa, B. ellenbeckii), and the apex is round
with deeply bilobed (e.g. B. leucantha, B. morondaven-
sis, B. grandidieri). After checking 47 species repre-
sented by 354 specimens (Supplemental material -

Figure 6. Ancestral distributions at each node of the
phylogeny of Caesalpinioideae obtained by S-BGB. Each pie
chart indicates the probabilities of distribution. Numbers
represent nodes (46–89). The colour of each node represents
the distribution range: A, the Indomalayan realm; B, the
Neotropical realm; C, the Afrotropical realm; and D, the
Australasian realm.
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Appendix 3), we found that B. variegata is quite similar
to our fossil specimens. Both have a shallow cordate,
sometimes truncated base and two round apices, the leaf
shape is broadly ovate to round, and the width of the
leaf blade is usually longer than the length.
In addition, we performed morphometric analysis

among Bauhinia s.l. and our fossils (Fig. 5). The results
suggest that the apex shape, the depth and width of the
bilobation, and the base shape are the main characters
that express 76.6% of the leaf shape variation in Bauhinia
s.l. We also found that B. variegata closely resembles
fossils from Lazi County (Fig. 5). Nevertheless, those fos-
sils still have some morphological differences from B.
variegata, as evidenced by the 7–9 primary veins in our
fossils compared to 9–13 in B. variegata.
To date, 14 leaf fossil species supposedly representing

Bauhinia s.l. have been reported worldwide (Jia et al.,
2022). Among them, nine species, namely B. waylandi,
B. wenshanensis, B. ningmingensis, B. cheniae, B.
fotana, B. ungulatoides, B. ecuadorensis, B. nepalensis
and Bauhinia sp. cf. B. purpurea present two straight
apexes (Awasthi & Prasad, 1989; Bande & Srivastava,
1988; Berry, 1945; Chaney, 1933; Jacques et al., 2015;
Jia et al., 2022; Lin et al., 2015; Meng et al., 2014;
Wang et al., 2014). Two fossil species show round leaf
apices and are deeply bilobed, namely Bauhinia larsenii

(Chen & Zhang, 2005), and Bauhinia sp. (morphotype
2–3) (Jia et al., 2022). B. krishnanunnii and B. siwalika
are incomplete in that the apex and base of the leaf
blade are not preserved (Guleria et al., 2000; Khan
et al., 2019). Although the leaf shape of Bauhcis mora-
nii from the Oligocene of Mexico is similar to that of
Bauhinia s.s., the character of the secondary veins that
rise from a midvein is close to that of Cercis (Calvillo-
Canadell & Cevallos-Ferriz, 2002). In comparison, these
leaf fossils from Lazi County are obviously different
from any previously reported leaf records; therefore, we
designated them as a new species, namely Bauhinia
tibetensis Y. Gao et T. Su sp. nov.

Biogeographical implications
By palaeoecological niche model simulation, the MSPD
of Bauhinia s.s. covered a wide range within the
Indomalayan, Neotropical and Afrotropical realms dur-
ing the Eocene (Fig. 7A). After the Eocene–Oligocene
Transition (EOT), the global climate transformed from a
warmhouse to a coolhouse (Westerhold et al., 2020;
Zachos et al., 2001), which may have caused the MSPD
of Bauhinia s.s. to undergo a significant latitudinal con-
traction in both the northern and southern hemispheres
(Fig. 7B). During the Miocene, due to the high adapt-
ability and tolerance of Bauhinia s.s. to climate change,

Figure 7. Potential distribution regions of Bauhinia s.s. from the Eocene to Pliocene based on key climatic parameters. Mahalanobis
distance (MD) from 0 to 1 indicates the most suitable to the least suitable distribution of Bauhinia s.s.
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the MSPD of Bauhinia s.s. dramatically increased (Fig.
7C), especially during warm periods such as the middle
Miocene Climate Optimum (MMCO) (Westerhold et al.,
2020). In the Indomalayan realm, the MSPD expanded
to India. During the Pliocene, the MSPD of Bauhinia
s.s. disappeared in the Afrotropical realm probably due
to the aridification of Africa after the late Miocene
(Zhang et al., 2014), and the distribution of this genus
emerged as a modern pattern at this time (Fig. 7D).
Generally, although MSPD showed a fluctuating trend
from the Eocene to the Pliocene, it has been consistently
present in the Indomalayan, Neotropical and
Afrotropical realms since the Eocene.
Modern Bauhinia s.s. species are widespread in Asia,

Africa, and the Americas, but there is only one fossil
record in Africa (namely B. waylandi) (Chaney, 1933)
and the Americas, respectively (namely B. ecuadorensis)
(Berry, 1945). The currently known earliest fossil record
of Bauhinia s.s., namely B. tibetensis described here, is
from the latest Paleocene (�56Ma) of the southern
Tibetan region and provides crucial information on the
evolution of Bauhinia s.s., especially in its early stage.
We conducted Bayesian divergence time analyses of the
subfamily Caesalpinioideae with the latest fossil and
molecular evidence. The results indicated that Bauhinia
s.s. may have diverged around 59.7Ma, slightly younger
than proposed by the previous study, which suggested a
divergence time around 62.7Ma for Bauhinia s.l. as a
whole (Meng et al., 2014). Subsequent to their study, the
age of the fossil species (namely Bauhina wenshanensis),
used as the crown node, was reassigned from late
Miocene to early Oligocene, �32.0Ma (Tian et al., 2021)
based on radiometric dating. Moreover, Bauhinia yunna-
nensis has been revised as Phanera yunnanensis (Sinou
et al., 2020), which was considered to originate from Asia
with evidence of the earliest divergence of Bauhinia s.s.
In this study, we simulated the MSPD of Bauhinia

s.s. from the Eocene to Pliocene. However, given the
global climate pattern throughout the Cenozoic, we sug-
gest that the MSPD of Bauhinia s.s. may have been pre-
sent in the Afrotropical realm since the Paleocene,
which provided suitable environmental conditions for
the origin of Bauhinia s.s. Other studies have also
shown similar phenomena. For example, given that the
earliest fossil record of Asclepiadoideae (Apocynaceae)
was found in Tibet (Del Rio et al., 2020); molecular
phylogenetic studies suggest that its centre of origin was
in Africa (Del Rio et al., 2020; Rapini et al., 2003).
In addition, the ancestral state reconstruction indicates

that Bauhinia s.s. probably diverged first in the
Afrotropical realm (Fig. 6). Although B. tibetensis is the
earliest fossil record worldwide to date, the results of
ancestral state reconstruction suggest that the ancestral

distribution of Bauhinia s.l. was likely in the
Afrotropical realm (node: 85, 96.8%). By 63.0Ma,
Bauhinia s.l. diverged to form the clades of Bauhinia
and Phanera locally in the Afrotropical realm, followed
by Bauhinia s.s. at 59.7Ma. Therefore, this study sug-
gests that Bauhinia s.s. originated in the Afrotropical
realm and experienced a floristic interchange pattern
typical of the ‘out of Africa’ model.
This pattern is also supported by other fossils and

phylogenetic evidence. Previous studies, such as that of
Asclepiadoideae (Del Rio et al., 2020; Rapini et al., 2003),
have indicated that floral interchange between the
Afrotropical realm and Indomalayan realm already existed
by the latest Paleocene. Our study of B. tibetensis provides
further evidence for this interchange pattern. Additionally,
the fruit fossils of Illigera found in the Jianglang flora of
Tibet also provide important evidence suggesting this
interchange between the Afrotropical realm and the
Indomalayan realm in the Eocene (Wang et al., 2021).
The Kohistan-Ladakh Island Arc (KLIA) was an

important dispersal corridor between Africa and India
(Ali & Aitchison, 2008; Ashton et al., 2021; Chatterjee
et al., 2013; Morley, 2018; Smith et al., 2016). For
example, the biogeographic analysis based on pollen fos-
sils suggests that Dipterocarpaceae originated from Africa
during the mid-Cretaceous, and it spread to India through
the KLIA during the Late Cretaceous to Paleocene
(Bansal et al., 2022). The discovery of B. tibetensis further
supports the existence of this passage: Bauhinia s.s. may
spread from Africa via the KLIA to the southern Tibetan
region by the late Paleocene, and then dispersed to Asia.
During the late Paleocene, the southern Tibetan region
was warm and no more than 1 km above mean sea-level
(Ding et al., 2017), which should be suitable for the sur-
vival of Bauhinia s.s. After the closure of the north India
Sea (Yuan et al., 2022), it dispersed to southern India.
The North Atlantic Land Bridge (NALB) has been

regarded as one of the most important passages for
Pantropical flora in the Paleogene of the Northern
Hemisphere (Davis et al., 2002; Zhou et al., 2006, 2020).
The leaf fossils of Berhamniphyllum (Rhamnaceae)
reported from Markam in the south-eastern Tibetan region
indicate that the group spread from the Neotropical realm
to the Palearctic realm via the NALB and then into the
Afrotropical realm during the middle Eocene (Zhou et al.,
2020). Based on model simulation and palaeogeography,
we suggest a potential migration route: Bauhinia s.s. fol-
lowed the route of Berhamniphyllum, but in the opposite
direction. It originated from the Afrotropical realm, spread
toward the Mediterranean region, and then entered the
Neotropical realm via the NALB after the early Oligocene
(Fig. 8). Nonetheless, this hypothesis requires further sub-
stantiation with additional fossil evidence in future.
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Although no early fossil evidence of Bauhinia s.s. has
been found in Africa, phylogenetic analyses strongly
suggest that the ancestral taxa of Bauhinia s.s. likely
originated in the Afrotropical realm. The Kohistan-
Ladakh Island Arc, recognized as a significant dispersal
pathway from Africa to the Indian plate during the Late
Cretaceous to the Paleocene, aligns with our findings, as
our fossil discovery lies within this pathway (Ali &
Aitchison, 2008; Ashton et al., 2021; Chatterjee et al.,
2013; Morley, 2018; Smith et al., 2016). Hence, we con-
sidered the Kohistan-Ladakh Island Arc as an ancient
corridor between Africa and India for Bauhinia s.s.
from the late Paleocene onwards. We have discovered
late Eocene fossils in the Wenshan (Jia et al., 2022),
Oligocene fossils in the Ningming (Chen & Zhang,
2005; Wang et al., 2014), and Miocene fossils of
Bauhinia s.s. in Fujian (Jacques et al., 2015; Lin et al.,
2015). All these fossil findings are consistent with our
phylogenetic analysis, suggesting that Bauhinia s.s.
spread eastwards from Lazi by the Eocene, reaching
south-eastern China by the Oligocene. Besides, only
Miocene fossil records of Bauhinia s.s. were found in
India, indicating its relatively late dispersal from the
southern Tibetan region to northern India. In the
Americas, there is a single Miocene fossil record of
Bauhinia s.s. (Berry, 1945), which aligns with our
hypothesis that it spread to the Neotropical realm after
the early Oligocene. However, further fossil evidence is
still needed to bolster our hypothesis.

Above all, we suggest two main routes for the bio-
geographic history of Bauhinia s.s. during the
Paleogene: (1) the Asian clade, to which our fossils
belong, originated from the Afrotropical realm before
moving to India via the Kohistan-Ladakh Island Arc
and later spread to south-eastern China during the
Oligocene and to southern India in the Neogene or ear-
lier period; and (2) the American clade originated from
the Afrotropical realm and spread to the Neotropical
realm via the North Atlantic Land Bridge.

The floristic status of the Tibetan region in the
Paleogene
During the Paleogene, multiple lines of fossil evidence
confirmed that the Tibetan region was a crossroads for
floristic interchange, and the tectonic evolution of this
region was an important factor for the formation of spe-
cies diversity in Asia (Ding et al., 2020; Zhou et al.,
2023). In addition to B. tibetensis described in this
study, there are also plenty of currently known earliest
fossil records worldwide found in the central Tibetan
region, e.g. Asclepiadospermum marginatum (Del Rio
et al., 2020; Su et al., 2020), as well as the earliest fos-
sil records in Asia, e.g. Limnobiophyllum pedunculatum
(Low et al., 2020), Illigera eocenica (Wang et al., 2021)
and Koelreuteria kvacekii (Chen et al., 2022). Thus, the
Tibetan region is a pivotal region for the origin, disper-
sal, and migration of many taxa.

Figure 8. The dispersal routes of Bauhinia s.s.
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The India-Asia collision process occurred during the
early Paleocene (Ding et al., 2014, 2017; Yuan et al.,
2022). At approximately 55–50Ma, the Lazi region, now
in the southern Tibetan region, was rich in plant diversity,
and many plants survived at low elevation together with
Bauhinia s.s., e.g. Livistona, Annona and Ficus (Fang
et al., 2005; Tao et al., 1988). Ding et al. (2017) used the
Climate-Leaf Analysis Multivariate Program (CLAMP)
to reconstruct the palaeoenvironment of the Liuqu flora,
which suggested that during the late Paleocene, the Lazi
region was still at a relatively low altitude (�1000 m or
even lower) with a mean annual temperature of �23.8 �C
and a growing season precipitation was approximately
2205mm, and specific humidity (SH) was 13.5 g/kg. The
warm and humid condition there fitted the climate
requirements of Bauhinia s.s. Accompanying the rise of
the southern Tibetan region, the climate changed dramat-
ically, and the biodiversity reorganized and decreased
significantly (Zhou et al., 2023). Bauhinia s.s. could not
survive at such high altitudes but survived at lower lati-
tudes nearby. Therefore, the discovery of B. tibetensis
supports the importance of fossil records in biogeo-
graphic studies, especially those from regions outside
their modern distribution (Su et al., 2020).

Conclusions

We report the oldest fossil record of Bauhinia s.s., namely
Bauhinia tibetensis Y. Gao and T. Su sp. nov. from the lat-
est Paleocene of the southern Tibetan region. Together
with phylogenetic analyses, the results suggest that
Bauhinia s.s. originated from Africa and spread into what
is now the southern Tibetan Plateau by the late Paleocene,
after which the Asian clade began to diverge. The collision
and convergence of the Indian and Eurasian plates opened
a two-way path for floristic interchange between the
Indian Plate and the Tibetan region. With the uplift of the
Himalayan orogenic belt, suitable habitats for Bauhinia
s.s. gradually disappeared. Then, the Asian clade migrated
southwards and spread into warm and humid regions at
low latitudes. The dispersal routes of Bauhinia s.s. support
the hypothesis that the Tibetan region was an ancient
crossroads for biotic interchange during the Paleogene.
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