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Abstract
1. Epiphytic communities offer an original framework to disentangle the contri-

butions of environmental filters, biotic interactions and dispersal limitations to 
community structure at fine spatial scales. We determine here whether varia-
tions in light, microclimatic conditions and host tree size affect the variation in 
species composition and phylogenetic structure of epiphytic bryophyte com-
munities, and hence, assess the contribution of environmental filtering, phylo-
genetic constraints and competition to community assembly.

2. A canopy crane giving access to 1.1 ha of tropical rainforest in Yunnan (China) 
was employed to record hourly light and microclimatic conditions from 54 da-
taloggers and epiphytic bryophyte communities from 408 plots. Generalized 
Dissimilarity Modelling was implemented to analyse the relationship between 
taxonomic and phylogenetic turnover among epiphytic communities, host- tree 
characteristics and microclimatic variation.

3. Within- tree vertical turnover of bryophyte communities was significantly about 
30% higher than horizontal turnover among- trees. Thus, the sharp vertical vari-
ations in microclimatic conditions from tree base to canopy are more impor-
tant than differences in age, reflecting the likelihood of colonization, area, and 
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1  |  INTRODUC TION

The relative influence of community assembly mechanisms varies 
depending on spatial and temporal scales (Kneitel & Chase, 2004; 
Kraft & Ackerly, 2014). In Grime's competitive, stress- tolerant, rud-
eral (CSR) theory of plant ecological strategies (Grime, 1977), com-
munity composition is controlled by selection for traits depending 
on levels of competition, stress and disturbance. Along a gradient of 
decreasing habitat filtering, community composition is expected to 
shift from a dominance of stress- tolerant species to competitive and 
ruderal species (Escobedo et al., 2021). At larger spatial scales, and 
hence, as variation in environmental conditions increases, commu-
nity composition is conversely increasingly driven by environmental 
filtering (Powell et al., 2015). The contribution of environmental and 
biotic filters to community assembly is, however, often confounded 
(Cadotte & Tucker, 2017), especially at small spatial scales, at which 
both processes may occur (Xu et al., 2021).

In this context, phylogenetic turnover, which characterizes the 
phylogenetic structure of communities, offers an appealing frame-
work to disentangle the processes involved in community assembly 
(Graham & Fine, 2008). While taxonomic turnover measures the 
extent to which some species are replaced by others along envi-
ronmental gradients, phylogenetic turnover measures the extent to 
which species replacement is phylogenetically constrained, so that 
species within a community are more or less phylogenetically related 
to each other than expected by chance.

Positive phylogenetic turnover occurs when species in a com-
munity are more closely related to each other than species from 
different communities. A clumped phylogenetic distribution of taxa 
(phylogenetic clustering) indicates that habitat- use is a conserved 

trait within the pool of species in the community, and hence, ev-
idences phylogenetic niche conservatism (Webb et al., 2002). The 
application of the phylogenetic niche conservatism hypothesis has 
substantial ecological and evolutionary implications because it 
makes it possible to determine whether niche preferences are evo-
lutionarily labile or, to the reverse, are phylogenetically constrained, 
potentially hampering the chances of species to respond to climate 
change.

Negative phylogenetic turnover (phylogenetic overdispersion) 
occurs when species from the same community are more phylo-
genetically distant than species from different communities. While 
phylogenetic overdispersion points to non- random species assem-
blages, its interpretation has been controversial. In line with Darwin's 
competition- relatedness hypothesis, which posits that closely re-
lated species compete more strongly than distantly related ones 
(Cahill et al., 2008), phylogenetic overdispersion has primarily been 
interpreted in terms of competition among related species sharing 
limited resources within the same niche (Anacker & Strauss, 2014; 
Wiens & Graham, 2005). Phylogenetic overdispersion may, however, 
also result from niche convergence (Cavender- Bares et al., 2004) or 
facilitation (Valiente- Banuet & Verdu, 2007) among phylogenetically 
unrelated species.

Epiphytes appear as an interesting model to address the ques-
tion of the factors shaping community structure at small spatial 
scales (Adams et al., 2017, 2019; Méndez- Castro et al., 2020). For 
epiphytes, host- trees typically function as habitat islands, exhibiting, 
like oceanic islands but at much smaller spatial scales and shorter 
time frames, sharp spatio- temporal variations in their abiotic envi-
ronment (Adams et al., 2017; Hidasi- Neto et al., 2019; Itescu, 2019; 
Taylor & Burns, 2015).

Support Plan, Grant/Award Number: 
YNWR- QNBJ- 2020- 066; Fundación 
BBVA, Grant/Award Number: INVASION- 
PR19_ECO_0046

Handling Editor: Glenn R Matlack

habitat conditions between young and old trees, in shaping the composition of 
epiphytic bryophyte communities.

4. Our models, to which microclimatic factors contributed most (83– 98%), ac-
counted for 33% and 18% of the variation in vertical turnover in mosses and liv-
erworts, respectively. Phylogenetic turnover shifted from significantly negative 
or non- significant within communities to significantly positive among communi-
ties, and was slightly, but significantly, correlated with microclimatic variation. 
These patterns highlight the crucial role of microclimates in determining the 
composition and phylogenetic structure of epiphytic communities.

5. Synthesis. The mostly non- significant phylogenetic turnover observed within 
communities does not support the idea that competition plays an important role 
in epiphytic bryophytes. Instead, microclimatic variation is the main driver of 
community composition and phylogenetic structure, evidencing the role of phy-
logenetic niche conservatism in community assembly.

K E Y W O R D S
beta diversity, biotic interactions, environmental filters, epiphytic bryophytes, forest canopy, 
microclimates, niche conservatism, phylogenetic constraints
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The ecological conditions that prevail along a vertical gradient, 
from the base to the uppermost canopy, typically vary in terms 
of extrinsic (e.g. air humidity, light intensity, temperature) and in-
trinsic (physical properties of the substrate, such as bark texture 
and physico- chemistry, branch orientation and diameter) features 
(Cornelissen & ter Steege, 1989). In the outer canopy, the high 
light intensity and extremely low humidity, high wind exposure 
and daily variation in temperature and relative humidity, exert 
strong selection pressure for traits similar to those seen in des-
ert habitats, such as leaf succulence, small stature, slow growth 
rate, water and nutrient storage capabilities and UV protection 
(Spicer & Woods, 2022). Progressing towards the tree base, phys-
ical stability of the support and relative humidity (RH) increases, 
while light, temperature and the daily variation in microclimatic 
conditions decrease, resulting in a more stable environment in-
habited by species that are less tolerant of drought and high light 
intensity (Cornelissen & ter Steege, 1989; Freiberg, 1996; Watkins 
et al., 2007; Woods et al., 2015).

These conditions further vary along horizontal gradients not 
only due to differences among host- tree species in terms of branch-
ing architecture, bark texture and physico- chemistry (Hidasi- Neto 
et al., 2019) but also due to age differences among host trees. As 
the likelihood of colonization increases with time, old trees typically 
exhibit a higher epiphytic species richness than young ones (Taylor 
& Burns, 2015). Old trees also have a larger area for colonization 
and a higher diversity of micro- habitats than young ones (Paillet 
et al., 2019).

In this context, Grime's CSR theory of plant ecological strategies 
(Grime, 1977) allows us to make predictions on the importance of in-
teractions among epiphytes depending on the ontogenetic stage of 
their host- tree and the habitat they occupy (Spicer & Woods, 2022). 
On a tree, competition is expected to increase from the canopy, 
characterized by large variations in light and microclimatic condi-
tions, to tree base, with more buffered environmental variations. 
Competition is also expected to increase from young to old host- 
trees, as pioneer species progressively accumulate before entering 
competition with specialized competitors (Ellis & Ellis, 2013).

Despite these expectations, where and when competition and 
facilitation dominate, if at all, remains relatively unexplored in ep-
iphyte ecology (Francisco et al., 2018; Spicer & Woods, 2022). 
Furthermore, while the vertical structures of epiphyte commu-
nities (Gehrig- Downie et al., 2013; Mota de Oliveira et al., 2009; 
Mota de Oliveira & ter Steege, 2015; Zotz, 2016) and, to a lesser 
extent, associated variations in microclimatic conditions (Murakami 
et al., 2022; Stuntz et al., 2002; Toivonen et al., 2017), have long 
been documented, no analysis has, to our knowledge, examined the 
relationship between microclimatic variation and species composi-
tion in a spatially explicit framework. In fact, although forest canopy 
science has been an active discipline since the 19th century, its prog-
ress has been slow, partly due to the limited accessibility of canopies 
(Nakamura et al., 2017) and the limited availability of fine- scale mi-
croclimatic data (De Frenne et al., 2021), a critical issue for canopy 
epiphytes (Murakami et al., 2022).

Bryophytes represent an important component of epiphytic 
floras, to which they contribute up to 75% of the biomass, and hence, 
play a key role in nutrient and water cycles (Gradstein et al., 2010). 
Bryophytes are poikilohydric and rely on rainfall or moisture in the 
atmosphere for water uptake. They are hence ideal models to inves-
tigate the impact of microclimatic variation on community compo-
sition, which strikingly varies from the base to the canopy (Mota de 
Oliveira & ter Steege, 2015; Sporn et al., 2010). Although mounting 
evidence points to the relevance of climatic niche conservatism for 
the assembly of bryophyte floras over large spatial and evolutionary 
time scales (Collart et al., 2021; Piatkowski & Shaw, 2019; Wilson 
& Coleman, 2022), whether shifts in community composition along 
vertical microclimatic gradients and along horizontal gradients in 
host- tree size are structured phylogenetically, that is, whether niche 
conservatism could operate at such micro- scales, remains to be 
tested.

Furthermore, it has been suggested that bryophytes may not 
compose communities similar to those of vascular plants, but in-
stead, that the distributions of individual species would be driven 
by niche preferences and dispersal capacities, regardless of other 
species (Wilson et al., 1995). The unbounded relationship between 
epiphytic species richness and tree age has been interpreted in 
terms of the unrestricted increase in species richness in the absence 
of competition in unsaturated communities (Boudreault et al., 2000; 
Fritz, Brunet, & Caldiz, 2009). In line with this hypothesis, a signifi-
cantly lower evenness, which could reflect weaker competition, was 
reported in bryophyte communities compared with those formed by 
vascular plants (Steel et al., 2004). Results from common garden ex-
periments conversely revealed that competition is more important 
than temperature for the performance of bryophyte species (Greiser 
et al., 2021). The role of competition in bryophyte communities has, 
thus, long been questioned (Rydin, 2009). Wilson et al. (1995) con-
cluded that there is community structure among bryophytes, in that 
species exclude each other to the same degree as higher plants do 
in their communities. They failed, however, to identify groups of 
species within a community that are mutually exclusive because of 
similarity in resource use, leading them to conclude that bryophyte 
species all form one guild.

Taking advantage of one of the world's 22 canopy cranes, the 
goal of the present study is to determine whether variations in 
light, microclimatic conditions and host tree size affect the varia-
tion in species composition and phylogenetic structure of epiphytic 
bryophyte communities, and hence, assess the contribution of en-
vironmental filtering, phylogenetic constraints and competition 
to community assembly. More precisely, we address the following 
questions: Is variation in species composition among epiphytic com-
munities more important vertically, reflecting within- tree changes in 
microhabitat and microclimatic conditions, or horizontally, reflecting 
differences in age, and hence size and microhabitat diversity, among 
trees (Q1)? To what extent are these changes in community compo-
sition phylogenetically constrained (Q2)? Among communities, we 
test the hypothesis of an increasingly positive phylogenetic turn-
over along microclimatic gradients, pointing to phylogenetic niche 
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conservatism (H1). Within communities, we test the hypotheses that 
species exhibit increasingly competitive interactions, and hence, in-
creasing phylogenetic overdispersion, from the canopy to the base, 
and from young to old trees (H2).

2  |  MATERIAL S AND METHODS

2.1  |  Study site and sampling design

This study took place in a 1.44 ha square plot in a lowland (643– 
700 m) seasonal rain forest (101°34′59.1′′E, 21°37′2.6′′N) in Mengla, 
one of the five subdistricts that together form Xishuangbanna 
National Natural Reserve (Yunnan, SW China). Mean monthly RH 
and mean monthly temperature recorded by dataloggers from 12 
trees at 2 m during 2017– 2019 were 95.3% and 20.8°C, respec-
tively, with the coldest month in January (15.8°C) and the warmest 
month in June (25.2°C). This site was selected because it is equipped 
with an 81 m- high canopy crane (TCT7015- 10E, Zoomlion Heavy 
Industry, Changsha, China) whose 60 m- long arm provides access to 
the canopy within a 1.1 ha circular area (Figure 1c).

Xishuangbanna National Natural Reserve covers an area 
of 242,510 ha that comprises the largest tropical forest area in 
China. The region experiences a typical monsoon climate with a 
6- month dry season from November to April and a rainy season 
from May to October. In a 20- ha plot of tropical seasonal rain-
forest of Xishuangbanna, 468 tree species in 213 genera and 70 
families were recorded. The tallest trees attain 70 m, and there 
are 4791.70 stems and a total basal area of 42.34 m2 per hect-
are (Lan et al., 2012). Within the 1- ha plot investigated, the can-
opy layer (height > 30 m) is dominated by Parashorea chinensis 
(Dipterocarpaceae), which contributes 19.5% of the trees with a di-
ameter at breast height (DBH) ≥ 5 cm and most of the tallest trees. It 
is accompanied by Canarium album, Pometia tomentosa, Sloanea to-
mentosa and Semecarpus reticulata. The sub- canopy layer (16– 30 m) 
is dominated by Ficus langkokensis, Litsea dilleniifolia, Barringtonia 
fusicarpa, Diospyros atrotricha and Pseuduvaria indochinensis, and 
the understorey layer (6– 16 m) by Pittosporopsis kerrii, Baccaurea 
ramiflora, Diospyros xishuangbannaensis, Cleidion brevipetiolatum 
and Mitrephora maingayi.

Epiphytic bryophytes were recorded only on the dominant 
host- tree species, Parashorea chinensis, to control for host spec-
ificity (González- Mancebo et al., 2003; Guan et al., 2017; Schmitt 
& Slack, 1990). Parashorea chinensis is an evergreen species, char-
acterized by large buttresses, and hosts abundant epiphytic bryo-
phytes (Shen et al., 2018). Although our analyses were restricted 

to the communities found on P. chinensis, these are representative 
of the entire epiphytic bryophyte community of the area. 102 ep-
iphytic bryophyte species we found on 42 tree individuals, that is, 
slightly more than the 90 species reported from 69 individual trees 
belonging to 14 different tree species in the same plot in a previous 
investigation (Shen et al., 2018).

Trees with a DBH < 5 cm or covered by vines and lianas were 
discarded, resulting in a total of 42 with a DBH ranging from 5.4 
to 135 cm. Each tree was divided into six height zones based on a 
slightly modified version of Johansson's (1974) zonation scheme (see 
e.g. Figure 7.11 in Zotz, 2016), which is not based on absolute height, 
but on tree architecture, as follows: tree base (zone 1), <2 m and 
corresponding to the buttresses; lower trunk (zone 2), between zone 
1 and middle height of the trunk; upper trunk (zone 3), between the 
middle height of the trunk and the first ramifications of the canopy; 
inner, middle, and outer canopy (zones 4– 6), corresponding to the 
lowest, middle and upper thirds of the canopy.

For each height zone, two plots were haphazardly located verti-
cally. From the 504 initial plots, 96 had no bryophyte species, lead-
ing us to focus on 408 plots (see Shen (2021a) for individual plot 
coordinates) with at least one species, suitable for analyses of beta 
diversity (see below). Although orientation typically plays a limited 
role in explaining variation in epiphytic community composition in 
tropical cloud forests (Song et al., 2011), we controlled for this factor 
by sampling, for each plot, four sub- plots of 20 × 20 cm (as measured 
with a tape) on the trunk or branches (zones 1– 4). These four sub- 
plots were organized in pairs, with the two plots of a pair being dia-
metrically opposed and the pairs being perpendicular to each other. 
At zone 5, branches may be narrower than 20 cm, and we recorded 
epiphytes within a shape of 80 × 5 cm. At zone 6, we recorded an 
area of c. 400 cm2 of twigs. This led to a total of 1632 sub- plots, 
1156 of which had bryophytes.

Within each sub- plot, a complete species inventory was con-
ducted. Representative specimens of each species were sampled in 
each sub- plot, resulting in 1156 collections that were subsequently 
analysed in the laboratory using relevant microscopic techniques 
and monographs (Shen et al., 2018). In some instances, the material 
available was too scanty to allow for an identification at the species 
level, and sometimes, even at the genus level. This was the case for 
six moss taxa, labelled as sp1– 6, respectively (Table S4). Voucher 
specimens of each of the species included in the 1156 collections 
are kept at the Herbarium of the University of Liège (LG). The obser-
vations performed at the level of each sub- plot were then merged to 
produce presence- absence data for each of the moss and liverwort 
communities at the level of each plot (data available at https://doi.
org/10.6084/m9.figsh are.17057 615.v8).

F I G U R E  1  Experimental design and 3D microclimatic modelling of temperature (T), relative humidity (RH), photosynthetically active 
radiation (PAR) and light intensity (L) in a 1.44 ha tropical canopy crane facility, Yunnan, SW China. (a) Vertical profile of day (orange line) and 
night (black line) monthly averages (and standard deviation, grey ribbon) of T, RH, PAR and L modelled at the level of Tree #1; (b) topographic 
map of the study area representing the position of the 42 sampled trees in a x- y space and the modelled horizontal variation in monthly 
average of day T, RH, PAR, and L at 2 m (n = 50) and at 50 m (n = 10) height, respectively; (c) experimental design. Circle diameters in (b) are 
proportional to tree DBH.
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2.2  |  Geographic and environmental variables

Nine ecological and geographic variables were recorded at each plot 
and were used to derive differences in ecological and geographic 
conditions among plots for subsequent analyses (Figure 2a).

The X– Y coordinates of each tree (Shen, 2021a) were used to 
compute the horizontal distance (hereafter, ‘GeoDist’, ranging be-
tween 0 and 114.82 m) among tree bases and the relative posi-
tion between two treesin the x– y space (distance to a reference 

point, ‘TreePos’). Tree height and plot height on the tree (Z co-
ordinate) were measured with a tape from the hanging basket of 
the canopy crane. DBH of each tree was measured at 1.3 m above 
ground. The difference in DBH (hereafter, ‘ΔDBH’) was computed 
among all pairs of trees. We measured the elevation at 10 m in-
tervals via the autopilot vehicle (LiAIR VUX- 1350) equipped with 
VUX- 1UAV Laser (RIEGL Laser Measurement Systems GmbH) and 
generated a 10 m resolution map with the measurements as pixel 
centroids using the raster package (Hijmans, 2021). The difference 

F I G U R E  2  Statistical design implemented for the analysis of the turnover (βsim) and nestedness (βsne) components of beta diversity and 
the phylogenetic turnover (πst) among epiphytic moss and liverwort communities. (a) Factors used in the analyses. Ecological and geographic 
distances among plots used as predictors include the horizontal (.h) and vertical (.v) differences in relative humidity (ΔRH), temperature (ΔT), 
light (ΔL), photosynthetically active radiation (ΔPAR), microtopography (relative difference in elevation among trees), ΔElev, derived from 
a topographic map of the area (insert), a variable accounting for within vs among trunk/canopy comparisons (Treediv), a variable reporting 
the relative position between two trees in the x– y space (distance to a reference point, TreePos), difference in DBH among trees (ΔDBH), 
the geographic distance among trees (GeoDist); (b) comparisons of the vertical (.v) and horizontal (.h) variation in βsim, βsne and πst; (c) 
horizontal variation in βsim, βsne and πst within each of the six height zones (Z1– Z6) as a function of differences in ΔRH, ΔT, ΔL, ΔPAR, 
ΔDBH and GeoDist; (d) vertical variation in βsim, βsne and πst among height zones within trees as a function of ΔRH, ΔDBH, ΔElev, TreePos 
and Treediv.
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in elevation (‘ΔElev’) was then computed among all pairs of trees. 
To characterize the main habitat difference between the trunk 
and the canopy, a binary variable (‘Treediv’) was used to describe 
whether plots were both located on the trunk or in the canopy. 
In pairwise plot comparisons, two plots located on the trunk or 
the canopy had a ‘Treediv’ of 0, whereas pairs of plots including 
one plot from the trunk and the other plot from the canopy had 
a ‘Treediv’ of 1. Finally, we generated a binary variable indicating 
whether pairs of plots being compared are located on the same 
tree (0) or on different trees.

Air temperature (‘T’, °C), relative humidity (‘RH’, %), photosynthet-
ically active radiation (‘PAR’, µmol m– 2 s– 1) and light intensity (‘L’, W m–2)  
were used to characterize light and microclimatic environmental con-
ditions. T and RH were measured by HYS15 air temperature and rel-
ative Moisture Sensors, Unism, China. PAR and L were measured by 
LI- 190R Quantum Sensor, LI- COR Biosciences (Figure S1). These vari-
ables were recorded by 54 dataloggers every hour during 30 months 
from July, 2017 to December, 2019, to document the spatio- temporal 
variation of microclimates and calibrate microclimatic models (see 
below). To cover the range of vertical and horizontal microclimatic 
variation within the 1.44 ha plot, these dataloggers were located at 
regular height intervals on 12 trees scattered across the study area 
(Table S1). Because of datalogger failures, for instance during storm 
events, data could not be collected by all the dataloggers over this 
entire time period. To avoid missing data, we therefore averaged 
the values recorded for the same hour and month across years (data 
available at https://doi.org/10.6084/m9.figsh are.17057624).

2.3  |  Spatial microclimate modelling

To predict the light and microclimatic conditions at each of the 
408 plots from the data collected by the 54 dataloggers, we mod-
elled hourly variation in T, L, RH and PAR in an X– Y– Z space (thus 
including tree height and elevation) using Random Forest (Liaw & 
Wiener, 2002) as implemented by the randomForest package in R 
v4.0.4 (R Development Core Team, 2021). Random forest is an ef-
ficient technique to model complex interactions among predictor 
variables (Cutler et al., 2007) and non- linear responses (Arulmozhi 
et al., 2021), which has increasingly been used in climatic modelling 
(Arulmozhi et al., 2021; Ellis & Eaton, 2021; Su et al., 2021). 80% and 
20% of the data were used to train and assess the models, respec-
tively. The models were tuned by searching the best hyperparameter 
values after 10- fold cross- validation (see Figure S2 for a flow chart 
of the protocol used). Model predictions were used to compute the 
Euclidian distance (ΔT, ΔRH, ΔL, ΔPAR) of the hourly difference in 
predicted microclimatic conditions between each pair of plots.

2.4  |  Taxonomic and phylogenetic beta diversity

Taxonomic beta diversity was partitioned into nestedness (βsne) and 
turnover (here represented by Simpson's dissimilarity index, βsim) 

with the betapart package (Baselga & Orme, 2012). Nestedness oc-
curs when species found at the poorest plots represent a subset of 
the species pool found in the richest plots (Baselga, 2010), reflect-
ing, for example, the accumulation of species on trees with time. 
Species turnover, in turn, reflects the shift in species composition 
that typically occurs along ecological gradients, and is expected here 
among communities from the base to the canopy.

Phylogenetic turnover was quantified through the πst statistics, 
which is a measure of the average phylogenetic distance among spe-
cies within versus among plots (Hardy, 2008; Hardy et al., 2012). To 
determine whether there was a significant phylogenetic overdisper-
sion (πst < 0) or clustering (πst > 0) of epiphytic communities (Q2), 
we computed an average πst from all pairwise comparisons of plots, 
both within and among height zones and DBH classes. We deter-
mined whether πst was significantly lower or higher than expected 
by chance by comparing the distribution of observed πst values with 
that obtained with 100 randomized phylogenies among the tips to 
build the distribution of the null hypothesis. For each of the 100 ran-
domly resolved phylogenetic trees, we re- computed the pairwise πst 
values among plots, which served to generate the distribution of 100 
average πst among plots that would be expected if phylogenetic rela-
tionships among species were random. An observed average πst was 
significantly lower or higher than expected by chance if it was lower or 
higher than 95% of the values obtained after phylogeny permutations.

Phylogenetic distances among species pairs were computed from 
the moss and liverwort chronograms produced by Laenen et al. (2014). 
These chronograms resulted from large- scale analyses using genera 
as sampling units and including a single species per genus. The liver-
wort phylogeny was derived from the analysis of eight genes from all 
genomic compartments and includes 303 genera, representing 84% 
of the total extant generic diversity. The moss phylogeny was based 
on the analysis of one nuclear, one mitochondrial and one chloroplast 
gene and includes genera representing 64% of the total extant ge-
neric diversity of mosses. Phylogenetic trees were pruned to only 
keep the tips corresponding to observed species to generate suitable 
distributions of the null hypothesis (Hardy & Senterre, 2007). Twelve 
genera, which were not sampled in the phylogenies, were assigned 
to their closest genus based on phylogenetic evidence (Table S2). 
Since the phylogenies included a single species per genus, all con-
generic species included in the present dataset were grafted onto 
the genus- level phylogeny, ensuring that phylogenetic relationships 
and branch lengths within genera were random and that the ages of 
genus crown nodes ranged between time present and the age of their 
stem node. In total, 100 trees with randomly resolved relationships 
among congeneric species were generated and separately analysed 
to take phylogenetic uncertainty into account. Taxa which could not 
be identified at the genus level were omitted from the analysis.

2.5  |  Statistical analyses

Comparing vertical and horizontal patterns in βsim, βsne and πst (Q1) 
involves the inclusion of the same plot multiple times, violating the 
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assumption that the observations are independent from each other. 
We therefore computed, for each tree, the average βsim, βsne and 
πst among plots on the same tree, avoiding comparisons among plots 
located within the same height zone. This generated a distribution 
of 42 average vertical βsim, βsne and πst (Figure 2b). We then com-
puted, again for each tree, the average βsim, βsne and πst among 
plots between the focal tree and all other trees, making sure to re-
strict the comparisons among plots from the same height zone and 
to trees that belong to the same DBH class to avoid non- homologous 
comparisons (e.g. plots from the canopy of a 9 m and 70 m tree). The 
categories considered were small trees (DBH of 5.4– 19.6 cm, n = 16), 
medium trees (DBH of 20.3– 39.6 cm, n = 15), and large trees (DBH 
of 66.9– 135 cm, n = 11). This generated 42 average horizontal βsim, 
βsne and πst distributions (Figure 2b). The vertical and horizontal 
distributions of average βsim, βsne and πst significantly departed 
from normality (Kolmogorov– Smirnov test, p < 0.001) and homosce-
dasticity (Bartlett's test, p < 0.001) for both mosses and liverworts. 
We therefore applied a paired Wilcoxon rank test to test the hy-
pothesis that, on average, vertical βsim, βsne and πst are larger than 
horizontal βsim, βsne and πst values.

To disentangle the contribution of the factors affecting βsim 
and βsne along horizontal and vertical gradients, we implemented 
Generalized Dissimilarity Modelling (GDM; Ferrier et al., 2007). 
Because the GDM program needs values in the biological dissim-
ilarity matrix ranging between 0 and 1, πst values were rescaled 
accordingly in these analyses. For horizontal gradients, we gener-
ated six matrices (Figure 2c), each of which encompassed all pair-
wise comparisons among plots located within the same height zone 
within and among trees. Predictors included GeoDist, ΔDBH, ΔElev, 
ΔT, ΔRH, ΔL and ΔPAR among each pair of plots. For the vertical 
patterns, we focused on pairs of plots located on the same tree and 
generated a matrix including all pairwise plot comparisons within 
the 42 trees (Figure 2d). Predictors included ΔT, ΔRH, ΔL, ΔPAR and 
Treediv. To inform the model of the structure in the data, wherein 
only within- tree comparisons were allowed, we added the variable 
TreePos.

To circumvent collinearity among predictors, we computed, for 
each analysis, the correlation between environmental predictors as 
well as the variation inflation factor (VIF). If any of the predictors 
exhibited a VIF >5, the predictor with the highest VIF was removed. 
The VIF of the remaining variables was re- computed, and so on 
until all predictors had a VIF <5 (Akinwande et al., 2015). We then 
performed variable significance testing with 50 permutations per 
step until only significant (p < 0.05) variables remained in the model. 
We finally estimated the contribution of each variable to the model 
using the gdm.varImp function (Fitzpatrick et al., 2021).

To determine how πst varies along environmental gradients, we 
performed analyses at the level of average πst within and among 
communities and pairwise πst among plots. We visualized the varia-
tion of average πst per DBH class and height zone as a function of an 
ordinal ecological distance, computed as the number of height zone 
difference between communities. The significance and strength of 
this relationship was assessed with a Mantel test (vegan package, 

Oksanen et al., 2020). We then performed a second series of analy-
ses using pairwise plot comparisons using the GDM framework de-
scribed above.

3  |  RESULTS

3.1  |  Microclimatic modelling

Microclimatic conditions exhibited substantial vertical variations 
(Figure 1a). Between 2 and 62 m above ground, day (8 am– 7 pm) 
RH ranged between 53.6% and 99.9% (monthly average 79.7– 
93.5%), day temperature between 12.0 and 31.7°C (monthly 
average 17.8– 27.8°C), light intensity between 2.3 W m−2 and 
208.0 W m−2 (monthly average 27. 8– 51.0 W m−2), and PAR between 
0.0 μmol m−2 s−1 and 407.6 μmol m−2 s−1 (monthly average 41.4– 
94.0 μmol m−2 s−1). Average variations ± standard deviation (SD) in 
the day between 2 m and 50 m were of 2.4 ± 1.6°C for tempera-
ture, −16.7 ± 10.2% for RH, 85.0 ± 47.3 W m−2 for light intensity, and 
128.0 ± 77.1 μmol m−2 s−1 for PAR. Horizontal variation was more 
subtle (Figure 1b), with average maximum variations (differences be-
tween maximum and minimum) in the day at 2 m and at 50 m reaching, 
respectively, 0.9 ± 0.5°C and 0.5 ± 0.3°C for temperature, 4.4 ± 1.9% 
at and 3.3 ± 2.1% for RH, 13.1 ± 13.5 W m−2 and 24.2 ± 18.0 W m−2 
for light, 12.7 ± 12.4 μmol m−2 s−1 and 48.9 ± 40.4 μmol m−2 s−1 for 
PAR. This variation was captured by Random Forest models, with 
R2 ranging from 0.96 for PAR to 0.99 for temperature (Figure S3; 
Table S3).

3.2  |  Species richness and composition

Totals of 50 moss and 52 liverwort species were recorded (Table S4). 
The base (zone 1) was dominated by Circulifolium microdendron, 
Caduciella mariei and Claopodium prionophyllum. Along the trunk 
(zones 2– 3), Plagiochila parviramifera and Plagiochila fordiana pre-
vailed on small trees, and Frullania monocera, Mastigolejeunea repleta 
and Caduciella mariei on large trees. The most representative spe-
cies were Erythrodontium julaceum and Groutiella tomentosa in the 
inner canopy of large trees, Lejeunea flava, Cheilolejeunea eximia and 
Groutiella tomentosa in the inner canopy of medium and large trees, 
and Frullania ericoides, Acrolejeunea recurvata and Sematophyllum 
subhumile in the outer canopy of large trees. The most frequent 
epiphylls were Caudalejeunea reniloba, Cololejeunea planissima and 
Leptolejeunea subacuta.

In mosses, species richness decreased from the base, with an av-
erage ± (SD) of 4.5 ± 1.5 species per plot (14.5 ± 3.3 species per DBH 
class) to 2.6 ± 1.0 species per plot (4.5 ± 2.5 species per DBH class) 
in the outer canopy of large trees. In liverworts in contrast, species 
richness increased from the base (small trees), with 1.4 ± 0.5 species 
per plot (7.6 ± 2.7 species per DBH class), to the outer canopy, with 
2.9 ± 1.3 species per plot (12.3 ± 6.9 species per DBH class) on large 
trees (Figure 3).
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3.3  |  Taxonomic beta diversity

Turnover contributed about three-  to fivefold more to taxonomic 
beta diversity than nestedness (Figure 4). Vertical turnover of moss 
and liverwort communities was significantly higher than horizontal 
turnover (average ± SD of vertical βsim = 0.59 ± 0.25 and 0.66 ± 0.24, 
average horizontal βsim = 0.42 ± 0.20 and 0.50 ± 0.16 in mosses and 
liverworts, respectively, p < 0.001 for the differences between verti-
cal and horizontal βsim in both mosses and liverworts). Nestedness 
exhibited the reverse pattern (average horizontal βsne = 0.15 ± 0.07 
and 0.14 ± 0.06, average vertical βsne = 0.11 ± 0.09 and 0.14 ± 0.06 
in mosses and liverworts, respectively, p < 0.001 for the differences 
between vertical and horizontal βsne in both mosses and liverworts).

In GDM analyses focusing on the horizontal variation in taxonomic 
turnover within the same height zone, which accounted, on average, 
for 19.3 ± 21.8% (mosses) and 11.1 ± 2.6% (liverworts) of the explained 
deviance across height zones, the difference in DBH among trees was 
the best predictor, with a relative contribution ranging between 64.7% 
and 99.8% across height zones (Table S5). For horizontal nestedness, no 
model was significant except for liverworts in height zone 2 (Table S5).

In analyses focusing on the vertical variation in beta diversity 
(Figure S4), models contributed to 33.3% and 17.8% of the total de-
viance of species turnover in mosses and liverworts, respectively. 
Difference in RH among plots was the most important variable in 
the model, contributing to 98.8% and 83.0% of the deviance in spe-
cies turnover of mosses and liverworts, respectively, while Treediv 

F I G U R E  3  Vertical variation in species richness of epiphytic mosses (left) and liverworts (right) in a 1.44 ha tropical canopy crane facility, 
Yunnan, SW China. The box- plots [showing the first and third quartiles (upper and lower bounds), second quartile (center), average (red dots), 
1.5* interquartile range (whiskers) and minima– maxima beyond the whiskers] represent species richness per height zone on small (DBH of 
5.4– 19.6 cm, n = 16), medium (DBH of 20.3– 39.6 cm, n = 15) and large (DBH of 66.9– 135.0 cm, n = 11) Parashorea chinensis individuals. The 
line represents the average (mean ± SD) of moss (green triangles) and liverwort (orange triangles) species richness per DBH class.
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contributed to less than 1% and 15%. No model was significant for 
the vertical variation in nestedness.

3.4  |  Phylogenetic turnover

Average πst per height zone and DBH class significantly increased 
(r = 0.25, p < 0.001 for liverworts and r = 0.09, p < 0.001 in mosses) and 
shifted from mostly non- significant or rarely significantly negative (at 
the base of small trees in both mosses and liverworts and in the outer 
canopy of large trees in mosses, Table S6) to consistently significantly 
positive along a gradient of height zone differences (Figure 5).

In pairwise plot comparisons, horizontal phylogenetic turnover 
could not or could marginally be predicted from horizontal variation 
in microclimatic conditions and differences in DBH among trees 
(Table S5). For vertical phylogenetic turnover (Figure S5), the GDM 
accounted, on average across the 100 phylogenetic trees randomly 
resolved among congeneric species, for 6.6 ± 0.3% and 11.5 ± 0.7% 
of the total deviance in mosses and liverworts, respectively. In 
mosses, the best predictor was RH, which contributed to more than 
99% of the explained deviance. A different pattern was observed in 
liverworts, where the variable accounting for within versus among 
trunk/canopy comparisons accounted for 65.6 ± 3.3% of the ex-
plained deviance, while the position of each individual tree in the 

F I G U R E  4  Vertical and horizontal patterns of turnover and nestedness in epiphytic mosses and liverworts on Parashorea chinensis in a 
1.44 ha tropical canopy crane facility, Yunnan, SW China. Box- plots [showing the first and third quartiles (upper and lower bounds), second 
quartile (center), average (red dots), 1.5* interquartile range (whiskers) and minima- maxima beyond the whiskers] represent the vertical 
turnover, nestedness for pairs of plots on the same tree and horizontal turnover, nestedness within the same height zone and among trees 
belonging to the same class of diameter at breast height (DBH; small trees, DBH of 5.4– 19.6 cm, medium trees, DBH of 20.3– 39.6 cm, and 
large trees, DBH of 66.9– 135 cm) of moss and liverwort epiphytic communities. Letters above each box- plot indicate which comparisons 
significantly differ.
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x- y space and RH each contributed to less than 20% of the explained 
deviance.

4  |  DISCUSSION

The microclimatic data reported here and their three- dimension 
modelling help to fill a gap in our knowledge of the spatial variation 
of forest microclimates and to address the question of how micro-
climatic variation within and below tree canopies impacts commu-
nity species richness and composition (De Frenne et al., 2019; Ellis 
& Eaton, 2021; Murakami et al., 2022). In line with previous assess-
ments of microclimatic variation within canopies (see Murakami 
et al., 2022 and references therein), variations in temperature and 
RH were progressively buffered from the canopy to the tree base, 
with a substantially higher day/night difference in temperature and 
RH in the canopy. Monthly average temperatures of 28.9°C were 
recorded in the upper canopy and 26.1°C at the base, in line with 
previous reports of a mean difference of 4°C between forest un-
derstory and open ground due to the absorption of solar radiation 
by the canopy and increased evapotranspirative cooling (De Frenne 
et al., 2019).

The much wider range of vertical versus horizontal variation 
in microclimatic conditions explains why vertical species turn-
over is significantly higher than horizontal species turnover, de-
spite the large differences in habitat conditions between young 
and old trees in terms of bark texture and chemistry (Fritz & 

Heilmann- Clausen, 2010; Fritz, Niklasson, & Churski, 2009; Wagner 
et al., 2015) as well as the effect of time, reflected by age differences 
among host trees, which impacts on the likelihood of colonization 
(Hidasi- Neto et al., 2019). Due to the prevalence of vertical micro-
climatic gradients, the contribution of nestedness to vertical beta 
diversity is negligible because specialist species segregate among 
height zones. In Amazonian rainforests for instance, more than half 
of the epiphyte species are height- zone specialists (Mota de Oliveira 
et al., 2009). Consequently, communities from the canopy share al-
most no species with communities from the tree base, preventing 
any nested pattern from emerging.

Our models accounted for 33% and 18% of the variation in ver-
tical turnover in mosses and liverworts, respectively, and the pre-
dominant contributions of microclimatic factors (83– 98%) to this 
pattern evidences their crucial role in determining the composition 
of epiphytic communities. The similar explanatory power of micro-
climatic conditions for moss and liverwort species turnover hides, 
however, opposite patterns of species richness in the two groups, 
with moss richness decreasing and liverwort richness increasing 
from the base to the canopy. Horizontal turnover in the two groups 
was similarly explained by the same factor, that is, tree size, but 
moss species richness peaked on large trees, while liverwort spe-
cies richness peaked on small trees. Epiphytic moss and liverwort 
community composition thus responded in an opposite way to the 
same gradients, highlighting substantial differences in niche prefer-
ences between them. In vascular epiphytes, large, old trees tend to 
host a higher epiphytic richness than young ones due to the larger 

F I G U R E  5  Variation of average phylogenetic turnover within epiphytic moss and liverwort communities from the same height zone 
and on trees from the same DBH class in a lowland dipterocarp forest (Xishuangbanna, Yunnan, SW China) along a gradient of height zone 
difference. Average πst for a given environmental distance class that were significantly greater, significantly lower, and non- significantly (NS) 
different than expected by chance, are represented by orange, red and grey dots, respectively.
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amount of time for colonization, larger space availability and greater 
diversity of microhabitats (Mayumi Francisco et al., 2021; Patiño 
et al., 2018; Zotz & Schultz, 2008; Zotz & Vollrath, 2003), and have 
therefore been a major focus for conservation (Adhikari et al., 2021; 
Wang et al., 2017). Our results suggest that epiphytic bryophyte di-
versity assessments in tropical forests must also include small, un-
derstorey trees (Sporn et al., 2010), which should also be considered 
for conservation.

Despite a comprehensive set of environmental variables, our 
models accounted for only 1/5– 1/3 of the variation in species turn-
over, within the range of similar analyses for vascular epiphytes 
(0.10– 0.57, Zotz & Schultz, 2008; Woods et al., 2015). Although 
additional variables characterizing microhabitat conditions, such as 
bark texture and chemistry, branch diameter, or percentage cover of 
canopy humus (Woods et al., 2015), would certainly increase model 
accuracy, we interpret the large proportion of unexplained vari-
ance in terms of stochasticity associated with dispersal limitations. 
Although epiphytes need to track patches of suitable trees (or leaves 
in the case of epiphylls) in a dynamic landscape for persistence (Snäll 
et al., 2005), mounting evidence suggests that dispersal capacity 
is counter- selected in epiphytic bryophytes. Epiphytic bryophytes 
typically exhibit spatially clustered distributions (Löbel et al., 2006; 
Snäll et al., 2003; Wagner et al., 2015) and their fine- scale pat-
terns of genetic variation are strongly spatially structured (Ledent 
et al., 2020; Vanderpoorten et al., 2019), pointing to important ef-
fects of isolation- by- distance. These patterns are paralleled by mor-
phological adaptations counter- favouring dispersal. For instance, the 
peristome, a ring of hygroscopic teeth that enhance spore dispersal 
in mosses, and the seta, which elevates the capsule above the sub-
stratum, are typically reduced in epiphytic species (Hedenäs, 2012). 
Peristome reduction is itself significantly associated with hygro-
chasy, i.e., the release of spores under wet conditions (Zanatta 
et al., 2018), further decreasing chances of long- distance dispersal 
but enhancing rates of establishment (Johansson et al., 2016).

The shift between negative or non- significant average phylo-
genetic turnover to consistently significant clustering that was ob-
served along a gradient of height zone differences suggests that 
phylogenetic constraints further contribute to shaping the assembly 
of epiphytic bryophyte communities. The slight, but significant cor-
relation between this trend for an increasing phylogenetic clustering 
with variation in microclimatic conditions adds to emerging evidence 
for the role of phylogenetic niche conservatism in community as-
sembly through time (Saladin et al., 2019; Segovia et al., 2020), in-
cluding at the much smaller spatial scales of epiphytic communities. 
Phylogenetic niche conservatism in epiphytic bryophyte communi-
ties, along with mounting evidence for niche conservatism in vas-
cular epiphytes (Müller et al., 2017), shows that the specialization 
for vertical niches and their associated microclimatic conditions is 
phylogenetically inheritable, and hence, that species may be limited 
in their ability to shift among niches. The deep phylogenetic level 
(genus- level phylogeny), at which the analysis was conducted, fur-
ther points to deeply nested phylogenetic constraints, which may 
have evolved during the burst of diversification of epiphytic lineages 

triggered by the development of large, humid, megathermal angio-
sperm forests (Feldberg et al., 2014).

The fact that there was no significant horizontal phylogenetic 
clustering of liverworts communities, and that the horizontal phylo-
genetic clustering observed in moss communities was not explained 
by differences in DBH among trees, conversely suggests that the 
succession of communities on a tree depending on its age is not phy-
logenetically constrained. Typically, early pioneers are short- lived 
organisms with a high reproductive effort, whereas late- colonizers 
have a longer lifespan and are characterized by limited reproduc-
tive investment (During, 1992). Although restricted to a set of 42 
trees in a specific 1.44 ha plot, our results thus suggest that these 
life- history strategies arose multiple times during the evolutionary 
history of epiphytes.

The negative πst observed at tree base in mosses and liverworts 
is consistent with the expectation that competition in epiphytic 
communities should occur at levels characterized by lower variation 
of daily and seasonal microclimatic conditions rather than high- up in 
the canopy (Spicer & Woods, 2022). Although even strong competi-
tion levels can leave no trace in community phylogenetic structure 
(Bennett et al., 2013), the non- significant phylogenetic turnover that 
mostly characterized communities from the same height zone and 
trees of the same DBH class does not support the idea that compe-
tition plays an important role in shaping epiphytic bryophyte com-
munities. In vascular epiphytes of lowland rain forests, which use 
only a small proportion of the available bark surface, the importance 
of competition has been similarly questioned (Zotz, 2016; Zotz & 
Vollrath, 2003). Competition could, however, be more important in 
montane forests, where epiphytes are typically much more abundant 
(Burns & Zotz, 2010). Instances of niche displacement were already 
reported among epiphytic bryophytes (Wiklund & Rydin, 2004), 
raising a series of questions on how species may shift niche to avoid 
competition.

5  |  CONCLUSIONS

We provide here, through the spatially- explicit modelling of micro-
climatic conditions in a tropical forest, explicit support for the long- 
held notion that vertical variation in light, temperature and humidity 
conditions are the main driver of epiphytic species turnover along a 
tree. Epiphytic bryophyte communities were phylogenetically clus-
tered, and the low, but significant correlation between phylogenetic 
turnover among communities and vertical microclimatic variation 
evidences fine- scale phylogenetic niche conservatism. Despite the 
comprehensive description of the host- tree environment, our analy-
ses captured, however, only 1/5– 1/3 of the floristic variation among 
communities, calling for further improvements and opening the 
door to new research perspectives. First, our analyses did not allow 
us to assess the potential role of positive interactions. In vascular 
epiphytes, positive co- occurrence patterns suggest potential facili-
tation (Burns & Zotz, 2010; Ceballos et al., 2016), as a dense clump-
ing of epiphytes could enhance temperature and drought stress, 
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which is expected to increase towards the outer canopy (Spicer & 
Woods, 2022). Second, our analyses failed to consider bryophyte- 
vascular epiphyte interactions, whose role in the structuring of bry-
ophyte communities should be further investigated as vascular and 
bryophytic epiphytes significantly co- occur (Lu et al., 2020; Zotz & 
Vollrath, 2003).

The tight link between community composition and microcli-
matic conditions, as well as evidence for niche conservatism, raise 
questions about the ability of epiphytic bryophyte communities to 
move down along the trunk to track the shift of their niche in the 
context of climate change. How macroclimatic changes will impact 
the changes within canopies remains, however, uncertain. While the 
statistical modelling of microclimatic conditions as we implemented 
here may successfully capture the spatial variation of microclimatic 
conditions, the potential of such approaches to forecast novel con-
ditions is somewhat questionable, calling for the development of 
mechanistic models based on first- principles physics (Maclean & 
Klinges, 2021).
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