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A B S T R A C T   

Plant canopy temperature (Tc) plays a crucial role in regulating plant growth and metabolism. Although 
dominant controls on Tc are observed to differ across timescales, whether this would cause differences in plant 
thermoregulation capability (PTC) remains unclear, raising concerns about extrapolating findings on plant 
thermoregulation from one timescale to another. Here we constructed diurnal and seasonal datasets of Tc, air 
temperature (Ta), and other biotic and abiotic factors from global hourly flux data, and explored diurnal and 
seasonal variations in PTC (indicated by Tc vs. Ta regression slope, with lower slopes indicating higher Tc stability 
and stronger thermoregulation). Our result revealed significantly lower Tc vs. Ta slopes (i.e. stronger PTC) at 
seasonal than diurnal timescales, primarily due to different transpiration cooling at high Ta between the two 
timescales. At the diurnal timescale, transpiration rates initially increase before decreasing with Ta after reaching 
a specific temperature threshold (~85th percentile of Ta; related to midday depression of stomatal activities); 
Conversely, at the seasonal timescale, transpiration rates consistently increase with Ta (related to the coincidence 
among high water availability and the peak annual Ta). PTC also displays considerable spatial variability, with 
latent heat vs. net radiation relationship and water availability being the dominant regulators. Collectively, we 
recommend caution when extrapolating thermoregulation-relevant conclusions drawn from short-term obser-
vations to longer-term predictions, and vice versa, since they have different patterns and underlying mechanisms.   

1. Introduction 

Canopy temperature (Tc) importantly mediates plant metabolic 
rates. Low Tc inhibits the photosynthetic carboxylation rate of plants, 
while extremely-high Tc can lead to a high catabolic rate (e.g., dark 
respiration) and even irreversible tissue damage (Jones, 2013; Wright 
et al., 2017; Still et al., 2021). As a result, the net photosynthesis rate 
often peaks at an intermediate Tc (Huang et al., 2019). Additionally, Tc 
also regulates plant transpiration through the interactions between 
leaf-to-air vapor pressure deficit (VPD) and stomatal behaviors, and in 
turn is also regulated by this transpiration cooling (Medlyn et al., 2011; 
Guo et al., 2022). Ultimately, the influence of Tc on plant metabolic rates 
could affect the health and growth of plant individuals as well as the 
large-scale water and carbon cycles (Lin et al., 2020; Farella et al., 

2022). Therefore, understanding whether and to what extent plants can 
thermoregulate their Tc to adapt to their living environments for 
photosynthesis and growth is a central question in ecology, with critical 
insights for accurate projections of ecosystems’ response and resilience 
to climate change (Pau et al., 2018; Still et al., 2019). 

Plant thermoregulation refers to the ability of plants to regulate their 
Tc within a relatively stable range, despite the variability in Ta 
(Michaletz et al., 2016; Still et al., 2019; Guo et al., 2023). This ability is 
influenced by plant functional traits (e.g., intrinsic plant water use 
strategy, leaf morphology, and canopy structure; Still et al., 2019) and 
their living environments (e.g. light, VPD, and wind speed; Michaletz 
et al., 2015) (Fig. 1a). Specifically, plants can be heated up by absorbing 
solar radiation, while they can also be cooled down through various 
processes (Campbell and Norman, 2012; Jones, 2013). One common 
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process is transpiration, where plants lose water vapor from their leaves, 
leading to a cooling effect on Tc. In addition to transpiration cooling, 
non-evapotranspiration cooling, such as enhancing leaf-to-air heat 
dissipation, can effectively cool Tc, especially under water-limited con-
ditions (Gates et al., 1968; Rotenberg & Yakir., 2010; Leigh et al., 2017; 
Muller et al. 2021). Leaf orientation or structure is another method of 
plant thermoregulation. For example, some plants have leaves that can 
change orientation to avoid direct sunlight and reduce heat absorption 
(Ehleringer & Forseth, 1989), and other plants have succulent leaves or 
hairy surfaces that reduce heat absorption or increase heat dissipation 
(Wuenscher, 1970). 

The issue of whether and to what extent plant thermoregulation 
occurs remains a topic of debate in biological research (Helliker and 
Richter, 2008; Drake et al., 2020; Still et al., 2022). Some argue that Tc 
and air temperature (Ta) are rapidly in equilibrium and can simply be 
considered equivalent (Drake et al., 2020), while others suggest that Tc 
is homeothermic despite variations in Ta (Helliker and Richter, 2008). In 
this study, we used the terminology ‘thermoregulation’ to describe the 
systematic deviation of Tc from Ta without implying any specific direc-
tionality. To quantify the degree of plant thermoregulation, we used the 
regression slope between Tc vs. Ta as an indicator, as it is a general and 
widely accepted method (Blonder & Michaletz, 2018; Guo et al., 2023). 
It is hypothesized that if plant thermoregulation occurred, Tc would 
change more slowly than Ta over time, leading the Tc vs. Ta regression 
slope to be less than 1. A lower regression slope means higher stability of 
Tc when facing the dynamics in Ta over time, thus indicating a stronger 
plant thermoregulation capability (PTC) (Fig. S1; Michaletz et al., 2016; 
Drake et al., 2020). To date, many empirical studies have shown that the 
slope metric varies widely across species and biomes (Dong et al., 2017; 
Blonder & Michaletz et al., 2018; Blonder et al., 2020). For example, 
across global extratropical vegetated ecosystems, plant ecosystems were 
observed to exhibit diverse PTC from slope<1 (limited homeothermy) to 
slope>1.2 (megathermy) (Guo et al., 2023). 

Compared with the studies exploring the spatial dynamics 
mentioned above, understanding the patterns and drivers of diverse 
plant thermoregulation behaviors across timescales is also important but 
remains poorly studied. Tc is regulated by both abiotic and biotic factors, 
with dominant controls varying by timescale (Fig. 1). Within a day, 
stomatal conductance (Matthews et al., 2018) and leaf angle (for certain 
species; Ehleringer & Forseth, 1989) can significantly affect Tc by 

altering the flux of transpiration and/or net radiation (Leuzinger and 
Körner, 2007). Contrastingly, across seasons, factors such as leaf age 
demography, canopy structure, and soil water content also play key 
roles (Still et al., 2021; Jin et al., 2022) (Fig. 1b). Adjust their Tc with 
seasonal changes has important physiological meaning for plants. Spe-
cifically, during early growing seasons with cool temperature, plants 
may adjust their leaf pigments or angles to increase light absorption that 
can further increase Tc and thus enhance photosynthetic carbon uptake 
(Jones, 2013). While during the peak growing seasons with hot tem-
perature, plants usually increase total leaf area and/or change leaf 
clustering to enhance the transpiration and/or heat dissipation rates, 
which ultimately help to reduce their Tc (Guo et al., 2023; Muller et al., 
2023). These collectively imply that the seasonal thermoregulation 
could be a strategy to allow plants to adjust their Tc to better adapt to 
their seasonal climate (i.e., avoiding the heat stress while mitigating the 
cold temperature impact), thus prompting plant growth. Even though 
the dominant drivers responsible for Tc vary with the timescale of in-
terest, it has not been assessed whether they would result in distinct PTC 
across timescales. If such differences were to exist, they would have 
important implications for applying conclusions drawn from short-term 
(e.g., diurnal) observations to longer-term (e.g., across seasons) pre-
dictions and vice versa; thus, they ought to be urgently explored. 

To gain an improved understanding of plants’ thermoregulation ca-
pabilities across diurnal and seasonal timescales, we leveraged global 
datasets of Tc, Ta, and other environmental and biotic variables from 
FLUXNET2015, Asiaflux, European flux, and Brazil flux network (see 
section 2.1 for more details), and comprehensively evaluated the Tc vs. 
Ta relationship at both timescales of interest. We hypothesized that 
plants exhibit stronger PTC (corresponding to a smaller slope indicator; 
Fig. S1) across seasonal timescales since more factors and processes are 
involved in the Tc regulation at this timescale than the diurnal timescale. 
Accordingly, we asked the following three questions: 1) Do plant can-
opies show different PTC across diurnal and seasonal timescales? 2) If 
yes, what are the mechanisms underlying this difference? 3) What are 
the drivers of spatial variability in PTC across the two timescales of in-
terest? To address these questions, we first explored the thermoregula-
tion patterns and mechanisms of plant ecosystems across diurnal and 
seasonal timescales, and then used an integrated framework of state-of- 
the-art machine learning model and game-theory interpretation (i.e., 
XGB-SHAP; Wang et al., 2022) to assess the relative contribution of each 

Fig. 1. Abiotic and biotic variables jointly regulate the canopy temperature (Tc) but the dominant factors differ on different timescales. (a) The main factors that 
regulate Tc include environmental and biological variables. (b) The dominant controls on Tc differ on diurnal and seasonal timescales. 
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abiotic and biotic variable to the spatial variability in PTC across global 
flux sites. 

2. Materials and methods 

2.1. Flux data 

We used eddy covariance (EC)-based flux data from FLUXNET2015 
(Pastorello et al., 2020), Asiaflux (https://db.cger.nies.go.jp/asiafluxd 
b/), European flux (https://www.icos-cp.eu/data-products/2G60- 
ZHAK), and the Brazil flux network (Restrepo-Coupe et al., 2013) 
(Fig. 2). It includes observations of carbon (e.g., gross primary pro-
ductivity—GPP), and energy fluxes (e.g., net radiation—Rn, longwave 
radiation—RLW, sensible heat—H, and latent heat—LE), as well as key 
meteorological data (e.g., Ta, relative humidity—RH, and wind-
speed—u, shear velocity—u*). A total of 155 sites (including 869 
site-years observations; Fig. 2), spanning a large latitudinal gradient 
from 70◦ N to 37◦ S were used after removing sites that did not meet our 
requirements (see Section 2.3.1). This dataset was selected for several 
reasons. First, the dataset is publicly available and covers major plant 
functional types (PFTs) around the world. Second, this dataset was 
processed following a rigorous data-processing pipeline including 
quality control, gap-filling, and photosynthesis partitioning (Pastorello 
et al., 2020; Restrepo-Coupe et al., 2013), and provided 
quality-controlled meteorological and flux data for consistent assess-
ments of Tc vs. Ta relationships. Notably, only the measured or gap-filled 
data with good quality (QC=0 for direct measurements or 1 for good 
quality gap-filled data) were used in this study, and the energy fluxes 
data were corrected with the energy balance closure. Third, many 
models and theories have been developed to infer Tc from these flux 
measurements with demonstrated accuracy (Doughty & Goulden, 2008; 
Jones., 2013; Guillevic et al., 2018). Finally, it provides hourly obser-
vations and covers the full annual cycle(s), allowing us to extract diurnal 
and seasonal signals from original flux observations (see Section 2.3.2 
for details). 

2.2. Satellite and reanalysis-based data 

In addition to flux observations, some other abiotic and biotic vari-
ables from satellite and reanalysis data were also used as candidate 
variables for explaining the spatial variability in PTC (indicated by the 
Tc vs. Ta regression slope; Michaletz., et al., 2016; Drake et al., 2020). 
Specifically, 5 additional abiotic and biotic variables showing direct 
linkages with the canopy energy balance process were extracted and 
used, namely, elevation (from SRTM90_V4; Van, 2001), soil water 

content (SWC, from ERA5L, Muñoz-Sabater et al., 2021), leaf area index 
(LAI; from MCD15A3H; Myneni & Park, 2015), canopy height (Hc, from 
ETH_GlobalCanopyHeight_2020_10m_v1, Lang et al., 2022), and plant 
functional type (PFT; from MCD12Q1, Friedl & Sulla-Menashe, 2015) 
(Table 1). For each site, the average value of each variable within a 3*3 
pixels window around the site was calculated. These datasets were 
selected for two reasons. First, they are publicly available on Google 
Earth Engine and have been pre-processed following standard protocols 
(Gorelick et al., 2017). Second, they have been demonstrated to have 
high accuracy and are widely used in many global scale studies (Van, 
2001; Myneni & Park, 2015; Muñoz-Sabater et al., 2021). 

2.3. Methods 

A flowchart outlining the full data analysis procedure is provided in 
Fig. 3, which includes three parts: 1) data processing; 2) evaluating the 
patterns of PTC at the diurnal and seasonal timescale, respectively; 3) 
exploring the drivers of spatial PTC variability. 

2.3.1. Data processing  

1) Extraction of growing season data for densely vegetated sites. 
The flux-derived ecosystem temperature usually includes the tem-
perature of bare soil and plant canopies (Still et al., 2022). To 
minimize the contamination from the bare soil background (which 
has a considerable effect in either the early/late growing season with 
less leaf cover or sparse vegetation with higher soil fraction all year 
round), we here followed Guo et al. (2023), and only focused on the 
data within the growing season of densely vegetated sites, in which 
we assume that plant canopies dominate the ecosystem-scale surface 
temperature. The detailed implementation includes two steps. Step 
1—Identify the growing season. The start and end of the growing 
season in each year were calculated based on the seasonality of gross 
primary productivity (GPP) for each site following Piao et al. (2007), 
including three sub-steps. First, we smoothed the daily EC-derived 
GPP data with a 10-day moving window and then extracted the 
maximum (GPPmax) and minimum (GPPmin) GPP values for each 
year. Second, we defined 30% of the GPP amplitude (i.e., GPPmin +

0.3*(GPPmax - GPPmin) as the threshold of the growing season, and 
the period with GPP less than this threshold was labeled as a 
non-growing season. Finally, we filtered out all the non-growing 
season observations. Step 2—Identify the densely vegetated sites. 
The LAI data from MCD15A3H (Myneni & Park, 2015) was used to 
filter out the sites with sparse vegetation. Following the protocol of 
Guo et al. (2023), the sites with mean growing season LAI (LAIgs) <

Fig. 2. Distribution of 155 flux sites from FLUXNET 2015, European Flux, AsiaFlux, and Brazil flux (including 869 site-years of observation) used in this study, 
indicated by circles. (a) Location of each site on latitude and longitude grid; (b) Location of each site on classic Whittaker Biome Classification by the climate of mean 
annual temperature and precipitation. 
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2.0 m2/m2, as well as the observations during the early or late 
growing season with LAI < 2.0 m2/m2, were removed.  

2) Derivation of canopy temperature (Tc). To derive Tc from the EC 
flux measurements, two approaches are widely used, including 

aerodynamic-based (obtaining aerodynamic Tc, i.e., Tc_Aero; Eqn. 1) 
and longwave radiative-based (obtaining longwave-based Tc, i.e., 
Tc_LW; Eqn. 2) (Campbell and Norman, 2012; Jones, 2013). We 
selected Tc_LW as the primary approach because it is independent of 

Table 1 
Summary of the eddy covariance data, remote sensing data, and reanalysis data used in this study.  

Variables Definition Unit Resolutions (spatial/temporal) Data source Accessed links 

Tc_aero Aerodynamic canopy temperature oC site/hourly FLUXNET A 
Tc_LW Radiative canopy temperature oC site/hourly FLUXNET A 
Ta Air temperature oC site/hourly FLUXNET A 
RH relative humidity % site/hourly FLUXNET A 
u Wind speed m s− 1 site/hourly FLUXNET A 
P Precipitation mm site/hourly FLUXNET A 
PAR Photosynthetically active radiation µmol m− 2 s− 1 site/hourly FLUXNET A 
GPP Gross primary productivity μmol m− 2 s− 1 site/hourly FLUXNET A 
Rn Net radiation W/m2 site/hourly FLUXNET A 
LE Latent heat (evapotranspiration) W/m2 site/hourly FLUXNET A 
H Sensible heat (convection) W/m2 site/hourly FLUXNET A 
LAI Leaf area index m2/m2 500m/4day MCD15A3H B 
Hc Canopy height m 30m/- ETH C 
SWC Soil water content % of volume 9km/hourly ERA5L D 
ε Canopy surface emissivity – 500m/daily MOD21A2 E 

A: https://fluxnet.org/data/fluxnet2015-dataset/subset-data-product/. 
B: https://lpdaac.usgs.gov/products/mcd15a3hv006/. 
C: https://samapriya.github.io/awesome-gee-community-datasets/projects/canopy/. 
D: https://www.ecmwf.int/en/era5-land. 
E: https://lpdaac.usgs.gov/products/mod21a2v006/. 

Fig. 3. Workflow for studying the diurnal and seasonal variability in plant thermoregulation capability and its drivers on a global scale.  
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Ta and therefore avoids the recycle use and bias issues when calcu-
lating the relationship between Tc and Ta. Meanwhile, when 
cross-comparing Tc_LW with Tc_Aero, we found the two Tc metrics and 
associated Tc vs. Ta relationship display very strong agreements with 
each other (Fig. S2). These Tc metrics were calculated using Eqns. 1 
and 2 as follows: 

Tc Aero =

(
u

(u∗)
+ 6.2u∗− 2/3

)

×

(
H

cpρa

)

+ Ta (1)  

Tc LW =

[
1
εσ

(
LWcanopy − (1 − ε)LWsky

)
]1/4

(2)   

In Eqn. 1, u is the horizontal wind speed (m/s) obtained from flux 
data, u* is the friction velocity (m/s) obtained from flux data, H is the 
sensible heat flux (W/m2) obtained from flux data, cp is the specific heat 
capacity of air (29.3 J/mol/K), ρa is the density of moist air (kg/m3); In 
Eqn. 2, ε is the emissivity (unitless) obtained from the MODIS emissivity 
product (MOD21A2), which is averaged within a 3*3 pixel window 
around the flux site (Guo et al., 2023); σ is the Stefan-Boltzmann con-
stant (5.67 × 10− 8 W/m2/K4), LWcanopy is the upward longwave radia-
tion emitted by the canopy surface (W/m2) obtained from flux data, and 
LWsky is the downward longwave radiation emitted by the sky (W/m2) 

obtained from flux data. 

3) Remove the LE observation on rainy days. Flux-based LE obser-
vations are composed of plant transpiration, canopy intercepted 
evaporation, and soil evaporation (Zhang et al., 2019, 2022). To 
minimize the interference from the soil evaporation and canopy 
interception evaporation, we removed LE observations on rainy days 
(daily rainfall > 1mm) and their subsequent 2 days, following Kna-
uer et al. (2018). 

2.3.2. Deriving the patterns of plant thermoregulation capability across 
timescales 

To answer question 1 (do plant canopies show different thermoreg-
ulation capacities across diurnal and seasonal timescales?), we derived 
PTC (indicated by the regression slope of Tc vs. Ta; Fig. S1) at the diurnal 
and seasonal timescales, respectively. The derivation includes two steps. 
Step 1—extracting diurnal and seasonal signals, respectively, from 
hourly EC observations covering the full growing seasons (Fig. 4). For 
this purpose, we followed Tiwari et al (2013) and conducted a 
moving-window average analysis on the hourly Tc and Ta time-series 
data, respectively, with the window size equal to the sample number 
(n=24 hours; we resampled all flux data to hourly intervals) of each day. 
The moving-window-averaged Tc (Tc_MA) and Ta (Ta_MA) as a result of 
this step (i.e., the conceptual line shown in Fig. 4a-iii) only contains the 
seasonal information. By subtracting Tc_MA and Ta_MA from their original 

Fig. 4. Partitioning the time-series of hourly air (Ta) and canopy (Tc) temperature into the diurnal and seasonal signals using eddy covariance flux measurements. 
Panel (a) displays the conceptual time-series dynamics on an annual cycle (a-i) that can be further partitioned to the signals on the diurnal (a-ii) and seasonal (a-iii) 
timescales, respectively. Panel (b-d) displays the examples of the three real-world vegetated ecosystems, including (b) a forest site of AU-Tum (35.66◦ S, 148.15◦ E), 
with a mean growing-season LAI of 5.2 m2/m2; (c) a shrubland site of US-Wi7 (49.65◦ N, 91.07◦ W), with a mean growing-season LAI of 3.6 m2/m2; and (d) a 
grassland site of CH-Cha (47.21◦ N, 8.41◦ W), with a mean growing-season LAI of 2.9 m2/m2. From left to right, the panels illustrate the results of (i) original, (ii) 
diurnal, and (iii) seasonal data. 
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hourly Tc and Ta data, it is possible to derive residual data that only 
includes diurnal information (Fig. 4a-ii; Tiwariet al., 2013). Step 
2—deriving PTC at hourly and seasonal timescales. Here we followed 
Guo et al. (2023) and only focused on the Tc vs. Ta relationship during 
those daytime observations when photosynthetically active radiation 
(PAR) is over 100 μmol m− 2 s− 1. This is because the night-time Tc vs. Ta 
relationship can be mainly driven by physical processes like radiative 
cooling (Jones, 2013; Guo et al., 2022) and thus does not reflect the full 
picture of PTC that is subject to both abiotic and biotic controls. With the 
above-derived diurnal and seasonal data (including daytime observa-
tions only), we calculated the regression slope of Tc vs. Ta to derive the 
corresponding PTC on both timescales of interest. In addition, we further 
compared the diurnal vs. seasonal PTC patterns for different PFTs. 

2.3.3. Exploring the mechanisms underlying thermoregulation differences 
between diurnal and seasonal timescales 

To answer question 2 (what are the mechanisms underlying the 
differences between diurnal and seasonal PTC?), we compared diurnal 
vs. seasonal differences in the key processes that regulate plant ther-
modynamics. For plants, their canopies are often warmer than air during 
the middy due to high solar radiation (Jones, 2013; Guo et al., 2023; 
Still et al., 2022). Therefore, to avoid extremely high tissue tempera-
tures, plants usually thermoregulate to reduce absorbed net energy (Rn) 
and/or enhance transpiration cooling (latent heat; LE) and canopy-to-air 
convection (related to sensible heat, H). Because Tc is mainly determined 
by the balance of Rn, LE, and H (Rn = H + LE+ G, here G is stored energy 
by soil, which usually is proportional to Rn; Jones, 2013), we compared 
how LE and H respond to Rn change between diurnal and seasonal 
timescales. 

We expected that as Rn increases, if more absorbed energy is used for 
transpiration cooling (converted to LE), this means that less energy was 
converted to H, which will result in a smaller positive canopy-to-air 
temperature difference (ΔT) (Fig. S3). [Notably, a higher H may not 
increase ΔT if aerodynamic conductance for heat exchange (GH) in-
creases simultaneously (Muller et al., 2023). However, we did not 
analyze the impact of GH due to a lack of necessary plant trait infor-
mation for GH calculation.] Specifically, we used LE (and H) vs. Rn slope 
to indicate the relative change of LE (and H) to Rn. A larger LE vs. Rn (or 
smaller H vs. Rn) slope indicates that more Rn converted to LE and less to 
H, resulting in a slower warming rate for plants (i.e. smaller Tc vs. Ta 
slope). Our pre-analysis based on observations of 155 flux sites confirms 
this pattern, showing that sites with larger LE vs. Rn slopes have smaller 
Tc vs. Ta slopes (Fig. S4a,b), and LE (or H) vs. Rn slope correlates better 
with PTC than LE or H alone (Fig. S4c,d). 

2.3.4. Exploring the drivers of global spatial PTC variability across both 
diurnal and seasonal timescales 

To answer question 3 (What are the drivers of spatial variability in 
plant thermoregulation capability across the two timescales of inter-
est?), we used a tree-based machine learning model (eXtreme Gradient 
Boosting, XGB; Chen et al., 2015) coupled with the SHapley Additive 
exPlanations (SHAP) framework (Lundberg et al., 2020) to explore the 
contribution of each biotic and abiotic variable to the variability of PTC 
across sites. The XGB model is a nonlinear model, which has been widely 
used for local interpretations in the SHAP framework (Valavi et al., 
2022; Wang et al., 2022; Zhang et al., 2021). The SHAP method is based 
on the Shapley value concept from game theory (Lundberg & Lee, 2017), 
which directly monitors the impacts of individual features (e.g., those 
abiotic and biotic variables) on model loss using the differences between 
the model predicted and expected values (Lundberg et al., 2020). Spe-
cifically, the predicted value is the output of the XGB model with all 
features as inputs, while the expected value is the mean of the output 
obtained from all combinations of features other than the target feature. 
A higher difference indicates greater feature importance. The average of 
the absolute SHAP values is viewed as the SHAP feature importance of a 
certain variable. 

18 abiotic and biotic variables showing direct linkages with the en-
ergy balance process were used as explanatory variables (details are 
shown in Table 1). These variables were derived from FLUXNET, satel-
lite, and re-analysis products following the standard methods (also see 
Section 2.2 above), including Ta, RH, elevation, u, u*, VPD, SWC, PAR, 
precipitation (P), LAI, water availability (indicated by actual ET/po-
tential ET ratio), Hc, water use efficiency (WUE, indicated by GPP/ET 
ratio), PFT, LE, H, the LE vs. Rn regression slope, and the H vs. Rn 
regression slope. To minimize collinearity among these variables, we 
calculated the correlation between each of the two variables and found 
that some variables are highly correlated, such as VPD with Ta and LE 
with PAR (Fig. S5a). We thus removed those highly correlated variables, 
including VPD, LE, H, and the H vs. Rn slope from the following analysis. 
The remaining variables exhibited R2 < 0.44 (Fig. S5b). The analysis 
includes two steps. First is model development and validation. We 
calibrated and evaluated the XGB model (‘xgboost’ package in Python) 
across all global sites with the above 14 variables being model inputs 
and the slope of Tc vs. Ta being the model output. The model displayed a 
satisfactory performance with an R2 above 0.5 for leave-one-out cross- 
validation (Fig. S7). The second is feature importance (SHAP values) 
calculation. We applied the SHAP method (‘shap’ package in Python) to 
detect each variable’s effect on the slope of Tc vs. Ta, which is indicated 
by the SHAP values of each variable. Notably, the above analyses were 
conducted on the diurnal and seasonal timescale, respectively. 

3. Results 

3.1. Question 1: Diurnal vs. seasonal thermoregulation capability 

Our results show that Tc is linearly correlated with Ta at both diurnal 
and seasonal timescales, showing very high average R2: 0.84 for diurnal 
data and 0.92 for seasonal data. However, slopes of Tc vs. Ta are 
significantly larger (p<0.001 for paired t-test) at diurnal (mean: 1.18) 
than seasonal (mean: 0.98) timescales, meaning that Tc changes faster 
with Ta at the diurnal timescale and thus indicating a significantly 
stronger seasonal thermoregulation capability (Fig. 5). Among all 
examined EC flux sites around the world, diurnal Tc vs. Ta slopes vary 
largely from 0.9 to 1.8, with 80% of all sites having slopes>1.1 (meg-
athermy), 19% of all sites having slopes 0.9-1.1 (poikilothermy), and 1% 
of all sites having slopes<0.9 (limited homeothermy) (Fig. 5a). The 
seasonal Tc vs. Ta slopes, by contrast, have a smaller variation range from 
0.8 to 1.3, with 40% of all sites having slopes>1.1, 41% of all sites 
having slopes 0.9-1.1, and 19% of all sites having slopes<0.9 (Fig. 5b). 

To further assess whether the PTC difference between the two 
timescales of diurnal and seasonal is persistent within and across PFTs, 
we aggregated those sites belonging to the same PFT. Regardless of the 
PFTs being analyzed, i.e., forest, grassland, shrubland, savanna, crop-
land, and wetland, our results show that the diurnal slopes are signifi-
cantly larger than the seasonal slopes (Fig. 5c). 

3.2. Question 2: Underlying mechanisms of thermoregulation differences 
between diurnal and seasonal timescales 

Our results demonstrate a significant difference in the response of LE 
and H to Rn between the diurnal and seasonal timescales, with LE 
increasing faster at the seasonal timescale, while H increasing faster at 
the diurnal timescale. Specifically, we observed a larger slope of LE 
against Rn at the seasonal timescale (slope: 0.47) than at the diurnal 
timescale (slope: 0.41), indicating transpiration cooling increases faster 
at the seasonal timescale (Fig. 6b). Conversely, for H, we observed an 
opposite trend, with the diurnal slope being larger (0.49) than the sea-
sonal slope (0.45). The stronger transpiration cooling response at the 
seasonal timescale resulted in a smaller increase in ΔT on the seasonal 
timescale (slope: 0.0017) than on the diurnal timescale (slope: 0.0034) 
for the same increase in Rn (Fig. 6c), which helps explain why Tc in-
creases more slowly at the seasonal timescale, as shown in Fig. 5. 
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To further explore the reason for the different transpiration re-
sponses at the diurnal and seasonal timescale, we compared LEnorm (i.e. 
LE× ∂Ta

∂Rn
, indicating LE normalized by Rn, see Method S1 for details) vs. Ta 

relationships between the two timescales (Fig. 7). We found that the 
different transpiration responses across the two timescales are mainly 
induced by the different responses of LEnorm to high Ta: at the diurnal 
timescale, LEnorm firstly increases with Ta, peaks at around intermediate 
Ta (blue dashed line in Fig. 7a), and then decreases afterwards; at the 
seasonal timescale, LEnorm always increases with Ta (orange line in 
Fig. 7a). In other words, transpiration cooling works in a wider tem-
perature range at seasonal than diurnal timescale (evident also by the 
larger slope of LEnorm to Ta at seasonal timescale; panel a-ii of Fig. 7). The 
findings are consistent across all six PFTs examined (Fig. 7b), including 
forest, grassland, shrubland, savanna, cropland, and wetland. 

3.3. Question 3: The relative contribution of each abiotic and biotic 
variable to the spatial variability in plant thermoregulation capability 

To assess the relative importance of each abiotic and biotic variable 
in driving the large spatial PTC variability (Fig. S6), we utilized the XGB- 
SHAP modeling framework. The resulting XGB models for the diurnal 
and seasonal timescale explained 53% and 51% of the global PTC 
variability, respectively (Fig. S7a,b). By applying the SHAP framework 
to these models, we obtained the rank importance of each variable 
(Fig. 8b,c,d,e). Among the 14 variables examined, the LE vs. Rn slope and 
water availability (indicated by the ratio of actual ET and potential ET), 
display the highest and second highest explanatory power on the global 
PTC variability, consistently across both diurnal (Fig. 8b) and seasonal 
(Fig. 8e) timescales. However, we also noted that the importance of 
other variables varies considerably between the two timescales (Fig. 8b, 
e). Focusing on the two most important variables (the LE vs. Rn slope and 

water availability; Fig. 8c,f), we found both variables to exhibit signif-
icant, negative relationships with PTC, indicating that higher LE vs. Rn 
slope and greater water availability tend to increase the cooling effect, 
thus enhancing the PTC (leading to lower slopes of Tc vs. Ta). 

4. Discussion 

Plant canopy temperature (Tc) plays an important role in affecting 
plant growth as it tightly and non-linearly regulates the rates of plant 
photosynthesis, respiration, and transpiration (Still et al., 2021; Huang 
et al., 2019). Despite having evidence that the dominant drivers 
responsible for Tc depend on the timescale of interest (Jones, 2013; and 
our Fig. 1b), it has not been assessed whether they would result in 
distinct plant thermoregulation capabilities (PTCs) across different 
timescales. This knowledge gap poses a concern regarding whether the 
short-term findings related to PTC (based on diurnal observations) can 
be extended to longer-term predictions (season and beyond). Previous 
studies on the PTC effect were conducted at different timescales and 
have reported contradictory results (Fauset et al., 2018; Miller et al., 
2021; Still et al., 2022). For example, relying on diurnal observations 
made across several days from infrared thermal sensors in a subtropical 
evergreen forest, Fauset et al (2018) evaluated the Tc vs. Ta relationship 
and found that upper canopies usually show megathermy thermoregu-
lation patterns (i.e., the slope of Tc vs. Ta is above 1). Later, Drake et al 
(2020) examined the same issue but using much longer time-series ob-
servations, and found much smaller regression slopes of Tc vs. Ta close to 
1. Such reported thermoregulation differences across studies may be the 
results of the variation of PTC across timescales (e.g. diurnal observa-
tions in Fauset et al (2018) vs. mixed timescale observations of both 
diurnal and seasonal in Drake et al (2020)). Furthermore, a synthesis 
study helps to examine the PTC issue across a wide range of forest types 

Fig. 5. Diurnal and seasonal relationships of the plant canopy (Tc) vs. air (Ta) temperature displayed at the site and PFT level. Temporal-scale regressions of Tc vs. Ta 
across diurnal (a) and seasonal (b) timescales using EC data, including (i) fitted results derived from data across all available sites (n=155); (ii) fitted results for each 
EC site, where each grey line corresponds to each site, histograms indicate frequency distributions of regression slope and R2, the orange dashed line is the mean of 
the slope. (c) The slope indicators for each site were grouped by PFT. The error bar indicates 1 standard deviation; * and ** refer to p<0.05 and 0.01 of paired t-test, 
respectively. 
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and climate zones (Still et al., 2022), while whether similar findings can 
be extended to other vegetated ecosystems around the world remain 
unknown. 

Using the global eddy flux dataset (n=155 sites) covering all major 
PFTs around the world, we found that PTC (indicated by the regression 
slope between timeseries of Tc and Ta) is significantly smaller at the 
seasonal than the diurnal timescale, at both site and PFT levels. This 
finding indicates a slower change in Tc with a given change in Ta (and 
thus implies a stronger PTC) at the seasonal timescale (Fig. 5), which has 
important implications for broader thermal ecology studies. First, our 
study largely expanded the ecosystem types and regions for PTC hy-
pothesis testing. Previously, the ‘limited homeothermy’ hypothesis 
(Mahan and Upchurch, 1988; Michaletz et al., 2016) has often been used 
to describe PTC, but was only tested from limited experimental data of 
crop plants (Still et al., 2019; Cook et al., 2021) or from limited natural 
plant canopies/ecosystems (Drake et al., 2020; Still et al., 2022). By 
expanding the scale of the study to the globe and including multiple 
ecosystem types (i.e. forest, grassland, shrubland, savanna, cropland, 
and wetland), our study helps to reconcile diverse PTC patterns observed 
previously ranging from no (Drake et al., 2020; Still et al., 2022) to 
moderate (Blonder & Michaletz et al., 2018; Cook et al., 2021) PTC. Our 
results demonstrated that plant ecosystems indeed exhibit diverse PTC 
patterns across the globe with the Tc vs. Ta regression slope changing 
from 0.7-1.3, implying that these divergent results reported previously 
may not be incompatible. Instead, they could be caused by different 

biotitic and abiotic conditions. 
Secondly, our finding of stronger PTC at the seasonal than the diurnal 

timescale implies that plants may deal better with slow, gradual tem-
perature change (from day to day along seasons) than rapid, short-term 
temperature change (large diurnal fluctuations within a day). The po-
tential reason for this may be that plants cannot avoid extreme heat by 
changing their leaf shape or branch orientation at the short timescale (i. 
e., diurnal). Whereas on the seasonal scale, plants have abilities to 
change these at a slow rate in line with the seasonal changes of envi-
ronmental conditions (e.g. soil water content and solar radiation), which 
helps reduce the solar radiation received or increase the rate of heat 
diffusion and transpiration, leading to enhanced cooling (Jones, 2013; 
Muller et al., 2021; Muller et al., 2023). Consequently, we expect that 
short-term temperature extremes (e.g., the anomaly aspect of climate 
change) may put more stress on plant functioning and health than 
long-term, gradual temperature increases (e.g., the mean trend of 
climate change). This implication seems to support recent large-scale 
observations that increasing the frequency and intensity (on average, 
8 days/year during the 1960s to 20 days/year during the 2010s) of heat 
waves leads to significant negative impacts (up to -34% compared to no 
heatwave) on regional plant productivity and terrestrial photosynthetic 
carbon uptake (Perkins-Kirkpatrick & Lewis, 2020; Ainsworth & Long, 
2021; Breshears et al., 2021). Finally, due to the PTC difference between 
diurnal and seasonal timescales (Fig. 5-7), one should be wary of 
extending the conclusion drawn from short-term observations to 

Fig. 6. The responses of (i) latent heat (LE), (ii) sensible heat (H), and (iii) canopy-to-air temperature (ΔT) to increasing net absorbed radiation (Rn) at the diurnal 
and seasonal timescale, respectively. Panel (a) shows the diurnal relationship, while panel (b) shows the seasonal relationship. Panel (c) presents a comparison 
between the diurnal and seasonal relationships. “***” represents a p-value less than 0.001. 
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longer-term predictions. If ignoring the difference between timescales, 
we may generate inaccurate predictions in canopy temperatures and 
other metabolic processes dependent on canopy temperature (Farella 
et al., 2022; Still et al., 2022). 

Furthermore, we explored how transpiration cooling (LE) and 
canopy-to-air convection (H) respond to Rn, and found that LE increases 
faster (but H increases slower) at the seasonal timescale (Fig. 6). This is 
caused by the different LE responses to high Ta between the two time-
scales, with a convex relationship at the diurnal timescale and a 
monotonous, positive relationship at the seasonal timescale (Fig. 7). 
This finding is novel, but also agrees with the fundamental plant 
ecophysiology and energy balance principles that more transpiration 
cooling usually leads to cooler Tc (Campbell and Norman, 2012; Mohr 
and Schopfer, 2012; Wu et al., 2020). Within a day, plant canopies tend 
to initially increase their transpiration rates with Ta (and solar radiation) 
and then down-regulate their stomata around midday when Ta (and 
VPD) is very high (above ~85th percentile of Ta) for water conservation, 
causing a negative relationship between transpiration and Ta (blue line 
in Fig. 7-i) (Medlyn et al., 2011; Vialet-Chabrand et al., 2013; Matthews 
et al., 2018). While at the seasonal scale, the hottest period tends to 
occur during the peak growing season, which often comes with sufficient 
precipitation (Pascale et al., 2015), resulting in sufficient water supply 
for plant transpiration cooling, despite a high Ta (orange line in Fig. 7-i). 
Such different LEnorm vs. Ta relationships across timescales, explain why 
LE increases faster with Rn (and PTC is stronger) at the seasonal than the 

diurnal timescale (Fig. 5,6). 
Additionally, we observed large spatial PTC variability across 

different plant ecosystems, but no clear trends along the temperature 
and precipitation gradient (Fig. S6), which may imply that Ta and pre-
cipitation are not the dominant drivers of spatial PTC variability. To 
allow for a more holistic understanding of abiotic and biotic controls of 
spatial PTC variability, we further compiled a comprehensive list of 
candidate variables (n=14). We found that the slope of LE vs. Rn has the 
highest explanatory power for PTC for both diurnal and seasonal time-
scales (Fig. 8). It is because energy allocation (i.e. how many fractions of 
energy absorbed is used for LE or H) importantly regulates Tc. If more 
energy is used for transpiration cooling (LE) and less for H, plants will 
have a slower warming rate with absorbed energy increasing (Fig. 6,7, 
S3; Jones, 2013). Water availability (indicated by ET/PET ratio) also 
importantly regulates PTC (Fig. 8c), suggesting that ample water 
availability is essential to sustain plant transpiration cooling and health 
(Jones, 2013; Zhang et al., 2019; 2022). This implies that future changes 
in precipitation and associated transpiration cooling will have an 
important impact on PTC, with areas of increased precipitation likely to 
have higher PTC, while the opposite will be true for areas with reduced 
precipitation. Additionally, non-transpiration cooling associated with 
sensible heat and aerodynamic conductance remains an important topic 
for future work (Rotenberg & Yakir., 2010; Leigh et al., 2017; Muller 
et al. 2021), especially considering that atmospheric dryness will in-
crease in the future (Yuan et al., 2019; Breshears et al., 2021). 

Fig. 7. Diurnal and seasonal relationships of normalized transpiration rate (LEnorm) response to air temperature (Ta). (a) The LEnorm vs. Ta relationship at the diurnal 
(blue line; each circle indicates one hour) and seasonal (orange line; each circle indicates one month) timescale, which is derived based on the data from all flux sites 
(n=155). (b) Site-level linear regression slopes of LEnorm vs. Ta are subsequently grouped into each PFT. The error bar indicates 1 standard deviation; * and ** refer to 
p<0.05 and 0.01 of paired t-test, respectively. SOS and EOS refer to the start and end of the growing season. 
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5. Conclusion 

To understand how plant thermoregulation capability varies across 
different timescales, we extracted diurnal and seasonal signals of Tc, Ta, 
and other relevant variables from hourly flux data, and then compared 
thermoregulation patterns between the two timescales. We found that 
plant canopies exhibit different thermoregulation capabilities between 
the two timescales, with significantly higher thermoregulation capa-
bility at the seasonal than the diurnal timescale. Further, we revealed 
that this difference is mainly caused by the difference in transpiration 
response between the two timescales (i.e., the convex response at the 
diurnal timescale vs. the positive, monotonous response at the seasonal 
timescale). Finally, we explored the drivers of the spatial variability in 
plant thermoregulation capability across the global flux sites and found 
that the LE vs. Rn slope and water availability (indicated by the ET/PET 
ratio) are the two most important explanatory variables. These results 
altogether suggest that caution is needed when expanding conclusions 
for short-term observational PTC studies to longer-term predictions and 
vice versa. 
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