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Abstract: Edible Macadamia is one of the most important commercial nut trees cultivated in many
countries, but its large tree size and long juvenile period pose barriers to commercial cultivation.
The short domestication period and well-annotated genome of Macadamia integrifolia create great
opportunities to breed commercial varieties with superior traits. Recent studies have shown that
members of the phosphatidylethanolamine binding protein (PEBP) family play pivotal roles in
regulating plant architecture and flowering time in various plants. In this study, thirteen members
of MiPEBP were identified in the genome of M. integrifolia, and they are highly similarity in both
motif and gene structure. A phylogenetic analysis divided the MiPEBP genes into three subfamilies:
MFT-like, FT-like and TFL1-like. We subsequently identified two TERMINAL FLOWER 1 homologues
from the TFL1-like subfamily, MiTFL1 and MiTFL1-like, both of which were highly expressed in stems
and vegetative shoots, while MiTFL1-like was highly expressed in young leaves and early flowers. A
subcellular location analysis revealed that both MiTFL1 and MiTFL1-like are localized in the cytoplasm
and nucleus. The ectopic expression of MiTFL1 can rescue the early-flowering and terminal-flower
phenotypes in the tfl1–14 mutant of Arabidopsis thaliana, and it indicates the conserved functions in
controlling the inflorescence architecture and flowering time. This study will provide insight into
the isolation of PEBP family members and the key targets for breeding M. integrifolia with improved
traits in plant architecture and flowering time.

Keywords: PEBP family; Macadamia integrifolia; MiTFL1; juvenile period; plant architecture

1. Introduction

The phosphatidylethanolamine binding protein (PEBP) family is ancient, and the
encoded protein sequences are highly conserved, being present in plants, animals and
microorganisms [1–3]. In plants, the PEBP family can be divided into three subfamilies:
MOTHER OF FT AND TFL1-like (MFT-like), FLOWERING LOCUS T-like (FT-like) and TERMI-
NAL FLOWERING 1-like (TFL1-like), which are involved in both the regulation of flowering
time and the control of plant architecture [4,5]. MFT-like genes are the ancestors of FT-like
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and TFL-like genes, and both FT-like and TFL1-like genes are found only in flowering plants
now, while MFT-like genes are also present in lower mosses and lycophytes [3,6,7].

The functions of these PEBP genes have been comprehensively studied in Arabidopsis
thaliana. There are six PEBP genes identified in Arabidopsis: MOTHER OF FT AND TFL1
(MFT), FLOWERING LOCUS T (FT), TWIN SISTER OF FT (TSF), BROTHER OF FT AND
TFL1 (BFT), TERMINAL FLOWER 1 (TFL1) and ARABIDOPSIS THALIANA CENTRORA-
DIALIS (ATC) [8]. MFT belongs to the MFT-like subfamily and is mainly expressed in
seeds [9]. As a weak floral inducer, the overexpression of MFT promotes early flowering in
Arabidopsis [10]. In addition to its role in regulating flowering time, MFT also regulates
seed germination via the ABA and GA signaling pathways [9,11] and through BR, partly
against ABA, to regulate seed germination and fertility [12]. Both FT and TSF belong to
the FT-like subfamily, and their functions largely overlap in promoting flowering time [5].
TSF is mainly expressed in the hypocotyl and petiole vasculature, while FT is mainly ex-
pressed in the cotyledons and leaves [13]. FT acts as a floral activator which is transported
from the leaf to the shoot apical meristem and then interacts with another floral regulator,
FLOWERING LOCUS D (FD), to promote flowering via the photoperiod and temperature
pathways [14,15]. The overexpression of FT results in early flowering [8]. In addition
to promoting flowering, FT and TSF also affect the stomatal opening [16]. The TFL1-like
subfamily, including BFT, TFL1 and ATC, all repress flowering [17]. BFT is expressed
in the shoot apical meristem, young leaf, and axillary inflorescence meristems [18]. The
overexpression of BFT leads to the development of abnormal inflorescence, as well delays
in flowering time [18]. The expression of ATC was detected only in the hypocotyls of
young plants but not in the inflorescence meristem [17]. ATC is a short day (SD)-induced
floral inhibitor that moves long distances, interacts with FD and antagonizes FT to affect
flowering [14]. TFL1 is expressed in the SAM and axillary bud meristems to maintain
vegetative phase growth, influencing flowering time and plant architecture [19]. The tfl1
mutants flower earlier and produce fewer leaves, shoots and flowers, and the SAM then
converts into a terminal flower at the late developmental stages in long days [19,20]. In
Arabidopsis, the overexpression of TFL1 produces an expanded vegetative rosette and a
highly branched inflorescence and greatly extends the vegetative period [21]. In previous
studies, TFL1 competes with FT for binding to FD to repress the key flowering genes LFY
and AP1, thereby delaying the flowering time [22].

Unlike annual herbaceous Arabidopsis, perennial trees experience much longer juvenile
periods, often lasting years to decades before first acquiring flowering capacity; during
the subsequent adult period, they show seasonal alternations between vegetative and
reproductive growth [23]. Moreover, trees exhibit huge and complex architectures. TFL1
is a major floral repressor that maintains meristem indeterminacy and also has a strong
impact on plant architecture [24–26]. In plants with longer juvenile stages, the reduced
expression of TFL1 accelerates flowering [27]. The woody biofuel plant Jatropha curcas can
flower around the age of nine months, while transgenic plants overexpressing three JcTFL1
genes showed an extreme late flowering phenotype that did not flower after having been
planted for three years, and JcTFL1b RNAi plants flowered three months earlier than wild-
type plants [28]. The JcTFL1 genes also affected morphology and architecture in J. curcas.
Lines overexpressing JcTFL1s did not exhibit branching in the first year after planting.
European pear has a long juvenile period, and the silencing of PcTFL1-1 and PcTFL1-2 via
RNAi greatly shortened the juvenile period and early flowering in lines [29]. The RNAi
transgenic line of pear is small in size, and the apical meristems eventually terminate
with flowers, while one or more lateral buds continue to grow. Similarly, silencing the
MdTFL1 gene in apple reduces the juvenile phase and generation time, causing the trees to
be less vigorous, with shorter branches [30,31]. Mutations in the KSN (TFL1 homologues)
gene affected the flowering time of rose and greatly shortened the vegetative phase [32].
PopCEN1 belongs to the TFL1-like subfamily that maintains poplar shoot meristem identity,
and the flowering time occurs early in PopCEN1-RNAi trees [33]. The downregulation
of PopCEN1 and its paralog PopCEN2 also affect the inflorescence number and the short
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branch proportion. Thus, TFL1 controls several aspects of plant development, including
the juvenile phase, flowering time, inflorescence architecture, shoot growth pattern and life
history strategies [27]. Given that woody crops generally have large architectures and long
juvenile periods, they are not conducive to commercial production. PEBP family genes
have potential value for breeding optimal flowering times and ideal plant types.

The genus Macadamia F. Muell. belongs to the Proteaceae family [34]. Among four
common nut species of this genus, M. ternifolia and M. jansenii are small trees that produce
inedible nuts, whereas M. integrifolia, M. tetraphylla and their hybrids are cultivated world-
wide for their edible premium kernels [35]. Macadamia nuts have a unique flavor and are
rich in lipids, proteins and important micronutrients and are favored by consumers [36,37].
M. integrifolia is a dicotyledon plant with a genome (2n = 28) size of about 652–896 Mb [38].
At present, the genome sizes of two cultivars are known: 745 Mb for HEAS 741 [39] and
794 Mb for HEAS 344 (Kau) [40]. The domestication history of Macadamia is short, the
record is clear, and the release of genome data provides the possibility of improving the
efficiency of Macadamia breeding [40]. In this study, we first identified all potential PEBP
family genes of M. integrifolia and systematically analyzed their phylogenetic relationships,
chromosome locations, gene structures, motifs and promoter cis-acting elements. In other
species, TFL1 was reported to influence the first flowering time and plant architecture. To
understand the function of the MiTFL1 gene in M. integrifolia, we analyzed the expression
pattern of MiTFL1 and its ectopic expression in Arabidopsis to verify its function. This study
will provide a reference for understanding the different roles of PEBP family members in
flowering time and plant architecture regulation in M. integrifolia.

2. Results
2.1. Identification of the PEBP Family in M. integrifolia

A total of 13 PEBP genes were identified in the whole genome of M. integrifolia by
combining an HMM and a BLASTP search. These 13 PEBP genes encode 16 transcripts
(Table 1) because MiMFT3, MiFT1 and MiFT3 have two transcripts each due to variable
splicing. The M. integrifolia PEBP family proteins range from 172 to 207 amino acids in length
and from 18.98 to 23.12 kDa in molecular weight (MW), with a minimum protein isoelectric
point (PI) of 5.87 and a maximum of 9.47 (Table 1). The Grand average of hydropathicity
(GRAVY) values of less than 0 indicate that all MiPEBPs are hydrophilic (Table 1).

Table 1. Detailed information of the PEBP genes of M. integrifolia. Three different colors indicate
three different subfamilies. The unit of molecular weight is kDa.

Gene
Subfamily Gene ID Transcript

ID Sequence ID Number of
Amino Acid

Molecular
Weight
(MW)

Theoretical
Isoelectric
Point (PI)

Grand
Average of Hy-

dropathicity
(GRAVY)

MFT-like

MiMFT1 MiMFT1 XP_042502857.1 172 18.98 9.16 −0.058

MiMFT2 MiMFT2 XP_042520767.1 180 19.69 9.42 −0.236

MiMFT3
MiMFT3.1 XP_042509881.1 203 22.66 5.87 −0.158

MiMFT3.2 XP_042509888.1 172 19.03 7.02 −0.132

FT-like

MiFT1
MiFT1.1 XP_042482853.1 190 21.73 9.4 −0.464

MiFT1.2 XP_042482854.1 183 20.83 9 −0.483

MiFT2 MiFT2 XP_042494244.1 174 19.71 6.12 −0.402

MiFT3
MiFT3.1 XP_042503696.1 174 19.74 7.95 −0.304

MiFT3.2 XP_042503697.1 174 19.8 9.41 −0.347

MiFT4 MiFT4 XP_042516980.1 185 20.96 7.68 −0.263

MiFT5 MiFT5 XP_042517052.1 183 20.983 8.49 −0.425
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Table 1. Cont.

Gene
Subfamily Gene ID Transcript

ID Sequence ID Number of
Amino Acid

Molecular
Weight
(MW)

Theoretical
Isoelectric
Point (PI)

Grand
Average of Hy-

dropathicity
(GRAVY)

TFL1-like

MiBFT1 MiBFT1 XP_042506411.1 173 19.58 9.47 −0.279

MiBFT2 MiBFT2 XP_042510995.1 174 19.62 7.89 −0.352

MiBFT3 MiBFT3 XP_042511022.1 207 23.12 9.41 −0.286

MiTFL1-like MiTFL1-like XP_042489543.1 172 19.42 9.18 −0.273

MiTFL1 MiTFL1 XP_042494365.1 172 19.44 8.66 −0.281

2.2. Gene Structure, Conserved Motif and Chromosomal Location Analysis of MiPEBP Genes

Most of the 13 PEBP family genes in M. integrifolia contain four exons and three
introns except for MiMFT3 and MiFT3, both of which contain five exons and four introns.
Among them, the MiFT3 gene is longer than the other genes, with a length of more than
65,000 bp (Figure 1A). A total of six conserved motifs were identified in the family of
MiPEBP proteins. The motifs 1 to 5 were observed in almost all MiPEBP, and the sequences
were consistent, indicating that MiPEBP genes are relatively conserved. Motif 6 was only
present in some genes of the MFT-like and TFL1-like subfamilies but was not present in the
FT-like subfamily (Figure 1B). In Figure 1C, the MiPEBP genes were mainly distributed on
seven chromosomes, which were chromosomes 01, 03, 05, 06, 08, 10 and 11, respectively,
and the distribution was uneven. Chromosomes 03, 06 and 08 contained two MiPEBP
genes, while the remaining chromosomes contained only one gene for each. In addition,
MiFTL1-like and MiFT1 genes were located on two unanchored scaffolds.
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bors three genes, including MiMFT1, MiMFT2 and MiMFT3. Five genes were clustered 
into the FT-like subfamily, which were MiFT1, MiFT2, MiFT3, MiFT4 and MiFT5. There 
were five genes including MiTFL1-like, MiTFL1, MiBFT1, MiBFT2s and MiBFT3 identified 
in the TFL-like subfamily (Figure 2A). 
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2.3. Phylogenetic Analysis and Classification of the PEBP Gene Family in M. integrifolia

To investigate the relationships among the MiPEBP proteins, a phylogenetic tree was
constructed via the neighbor joining method based on a multiple-sequence alignment
of 126 sequences from Oryza sativa, Zea mays, Brachypodium distachyon, Sorghum bicolor,
Arabidopsis thaliana, Vitis vinifera, Solanum lycopersicum, Malus domestica and Macadamia
integrifolia. These 126 PEBP protein sequences were found to be classified into MFT-like,
FT-like and TFL-like subfamilies (Figure 2A). Each species contains a different number of
PEBP genes (Figure 2A). Compared to dicotyledonous plants, monocotyledonous plants
exhibit higher numbers of PEBE genes (Figure 2B). In M. integrifolia, the MFT-like subfamily
harbors three genes, including MiMFT1, MiMFT2 and MiMFT3. Five genes were clustered
into the FT-like subfamily, which were MiFT1, MiFT2, MiFT3, MiFT4 and MiFT5. There
were five genes including MiTFL1-like, MiTFL1, MiBFT1, MiBFT2s and MiBFT3 identified
in the TFL-like subfamily (Figure 2A).
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(Bd), S. bicolor (Sb), A. thaliana (At), V. vinifera (Vv), S. lycopersicum (Sl), M. domestica (Md) and
M. integrifolia (Mi).
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2.4. Analysis of Cis-Acting Regulatory Elements in Promoter Regions of MiPEBP Genes

An analysis of 3000 bp promoter sequences on the upstream of each of the 13 MiPEBP
genes revealed that there are multiple types of cis-acting elements which are involved
in light-responsive, stress-responsive and hormone-responsive related elements. Among
these regulatory elements, light-responsive elements are the most abundant (Figure 3). The
stress-responsive elements include drought stress response, low temperature response,
wounding response, anaerobic induction, defense and stress response elements (Figure 3).
Hormone-responsive elements are also abundant, and the number of responsive elements
ranged from the highest to lowest ranked as the MeJA-responsive element, abscisic acid
responsive element, gibberellin responsive element, auxin responsive element and salicylic
acid responsive element (Figure 3). Results of the promoter cis-acting element analysis
indicated that the PEBP gene family in M. integrifolia plays important roles in hormonal
regulation, responses to light signals and resisting abiotic stress.
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2.5. Identification and Multiple Alignment of MiTFL1 Homologue

To further analyze members of the TFL1-like subfamily of M. integrifolia, proteins
which are homologous to the Arabidopsis TFL1-like subfamily and the Macadamia TFL1-like
subfamily were selected to construct the phylogenetic tree. The results showed that the
Macadamia TFL1-like members are mainly classified into two clades. Two are homologous
to the TFL1, while three are homologous to the BFT (Figure 4A).

A multiple sequence alignment of the MiTFL1s and other TFL1 homologs showed
that the key amino acid residues His88 and Asp144 in TFL1, which lead to the functional
divergence between TFL1 and FT in Arabidopsis, are quite conserved in MiTFL1 and MiTFL1-
like (Figure 4B). Two motifs are highly conserved among proteins of the PEBP family,
D-P-D-X-P and G-X-H-R, which contribute to the conformation of the PEBP family. Ligand
binding site motifs are also present in exons 2 and 4 of MiTFL1 and MiTFL1-like (Figure 4B).
Exon 4 plays a key role in the function of FT/TFL1 proteins, and the B and C segments are
particularly important in the determination of the functional specificity of FT and TFL1.
Unlike FT, the amino acids in segment B evolved rapidly between TFL1 homologs and
show similarities between MiTFL1 and MiTFL1-like (Figure 4B).
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2.6. Subcellular Localizations of MiTFL1 and MiTFL1-like

To detect the subcellular localizations of MiTFL1 and MiTFL1-like, 35S::MiTFL1-GFP
and 35S::MiTFL1-like-GFP fusion plasmids were constructed and transiently expressed in
tobacco leaves. The GFP signals of MiTFL1and MiTFL1-like were distributed in both the
nucleus and cytoplasm and were detected via confocal microscopy. The green fluorescent
protein of the control group was distributed in the nucleus and the cytoplasm (Figure 5).
These results suggest that both MiTFL1 and MiTFL1-like proteins are localized in the
cytoplasm and nucleus to function.
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2.7. Expression Patterns of MiTFL1 and MiTFL1-like in M. integrifolia

To check the expression patterns of MiTFL1 and MiTFL1-like genes, different tissues of
M. integrifolia trees which were about 10 years old and grown in Jinghong, Yunnan Province,
were collected (Figure 6A–I), and the transcripts of the two genes were detected via real-
time quantitative PCR. Compared with the floret- and fruit-related tissues, MiTFL1-like is
mainly expressed in the vegetative shoot, stem and young leaf (Figure 6J). It is noteworthy
that the transcript of MiTFL1 is highly and specifically detected in the vegetative shoot and
stem and is hardly detected in the racemes and florets of different stages (Figure 6K). This
indicates that the functional diversity between MiTFL1 and MiTFL1-like may occur at the
transition from the vegetative to the reproductive development stage in M. integrifolia.
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Figure 6. Morphologies of different organs and expression patterns of MiTFL1 and MiTFL1-like in
different tissues of M. integrifolia. (A) A ten-year-old M. integrifolia tree. (B) A mature M. integrifolia
nut. (C) A branch of M. integrifolia tree containing a vegetative shoot (V-shoot) and a young stem.
(D) The leaves at different development stages of M. integrifolia. ML—mature leaf; YL—young
leaf. (E) Raceme, about 1 cm. (F–H) Racemes of different lengths with florets in different periods.
(I) Florets in different periods, collected from different part of racemes. (J) Relative expression of
MiTFL1. (K) Relative expression of MiTFL1-like.
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2.8. The Role of MiTFL1 in Regulating Flowering Time

The 35S::MiTFL1 transgenic lines of Arabidopsis, which were obtained via the flower
dip transformation of a tfl1–14 mutant, were planted to analyze the plant phenotypes.
In contrast to the Arabidopsis tfl1–14 mutants, several MiTFL1 transgenic lines did not
produce visible flower buds until 15 days after the flowering of tfl1–14 mutants, and several
transgenic lines of MiTFL1 never produced visible flower buds (Figure 7A). These transgenic
lines flowered significantly later compared to the tfl1–14 mutant (Figure 7B). The flowering
time line 187# was significantly later than the flower time of the wild-type (Figure 7B). The
transgenic lines showed more rosette leaves than the mutant tfl1–14 (Figure 7C), indicating
that the transgenic lines underwent longer vegetative periods.
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Figure 7. The flowering time analysis of transgenic Arabidopsis. (A) The phenotypes of MiTFL1
transgenic lines 10 days post anthesis for tfl1–14. (B) The days to flower and (C) the number of rosette
leaves. Data were collected at bolting time with 15 plants per line (Tables S3 and S4). In (B,C), a, b, c,
d, different letters indicate statistically significant differences between each other. The comparison
was conducted via a one-way analysis of variance (ANOVA), and a significance level of p < 0.05 was
considered as statistically significant.

2.9. The Phenotypic Analysis of MiTFL1 in Arabidopsis

Compared with the tfl1–14 mutant of Arabidopsis, 35S::MiTFL1 transgenic lines had
higher main stem heights, longer lateral branches and more lateral branches on the main
stem, indicating that the transformation of MiTFL1 essentially restored the mutant phe-
notypes of tfl1–14 (Figure 8). The meristems of the transgenic lines exhibited a longer
vegetative period similar to that of the wild-type, which was different from the terminal
flower phenotype of the tfl1–14 mutant (Figure 8). These results indicate the essential
function of MiTFL1 in maintaining meristem activity during the vegetative phase, which is
similar to that of TFL1 in Arabidopsis. Meanwhile, some transgenic lines displayed abnormal
flowers and siliques, with sepal and petal fusion, pedicel elongation and lack of silique
fullness (Figure 8).
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Figure 8. Phenotypic traits of ectopically overexpressed MiTFL1 in transgenic Arabidopsis. Flowering
plants of tfl1–14 (A), Col-0 (F) and the transgenic lines 183# (K) and 187# (P). Close-up images of
inflorescence in tfl1–14 (B), Col-0 (G) and the transgenic lines 183# (L) and 187# (Q). The close-up
images of inflorescence apex in tfl1–14 (C), Col-0 (H) and the transgenic lines 183# (M) and 187# (R).
Normal flowers in tfl1–14 (D) and Col-0 (I). Abnormal flowers in 183# (N) and 187# (S) transgenic
Arabidopsis. Normal siliques in tfl1–14 (E) and Col-0 (J) and abnormal siliques in 183# (N) and
187# (S) transgenic Arabidopsis. The terminal-flower in tfl1–14 (B,C). The vegetative shoot maintains
characteristics similar to the vegetative bud for a long time (R), and a new inflorescence structure will
grow at the position where the flower should grow (Q). The flower morphology is abnormal: sepals
and petals fuse, and sometimes the fruit stalk elongates during the development of siliques (N,S).
The unfilled siliques (O,T).

3. Discussion

Flowering is a key process which indicates the transition from vegetative to repro-
ductive growth for plants, and genes of the PEBP family play important roles during this
process and in the final plant architecture [3]. Up to now, the genes of the PEBP fam-
ily have been identified in many plant species, such as quinoa, perilla, sugarcane, rice,
garlic, etc., and the number of PEBP genes varies among these species [41–45]. A total
of 13 PEBP family members were identified in M. integrifolia, and they were classified
into three subfamilies: MFT-like, FT-like and TFL1-like. Further duplications of the PEBP
genes may occur as flowering plants evolve, which would give rise to a varied number of
PEBP genes among species. Dicot species tend to have fewer PEBP genes than monocot
species. In the phylogenetic tree, the FT-like subfamily of dicots showed less branches than
that of monocots, suggesting that the function of the FT gene may be more complex in
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monocots. In most MiPEBP family members, the gene structure is very conserved, with
four exons and three introns. Almost all MiPEBP members contain motifs 1 to 5, which are
arranged in a consistent order. This illustrates that members of MiPEBP family are rela-
tively conserved in sequence similarity, consistent with the high conservation of the PEBP
gene among different species. The complex physiological process of flowering is regulated
by photophore, hormone biosynthesis and signaling [46]. An analysis of the promoter
elements of the MiPEBP family revealed the presence of a large number of different types
of cis-acting elements on their promoter regions, with an abundance and high number of
light- and hormone-responsive element types, implying that they may play important roles
in regulating the photoperiod pathway and gibberellin pathway of plant flowering. Thus,
the characterization of PEBP gene functions is a key means of fine-tuning the flowering of
M. integrifolia.

Functional studies of PEBP genes have been widely reported in different species.
FT and TFL1 are two important genes acting downstream of the flowering regulation
network [47]. FT and TFL1 have highly similar amino acid sequences but have antagonistic
functions for flowering time in plants [48]. This functional difference is only caused by the
differentiation of one critical amino acid residue and a conserved amino acid segment in the
PEBP domain [48]. Several other genes have been reported to regulate flowering. Within
the SAM domain, TFL1 forms a complex with the bZIP transcription factor FD and 14-3-3
proteins to repress the expression of the flowering-time-related genes LFY, AP1 and CAL,
thereby repressing the floral transition [22]. The photoperiod signal is transmitted to FT by
CO, and then the FT protein begins to translocate from the leaf to the SAM [49]. Similar to
TFL1, FT competitively binds FD and activates the downstream flowering-related genes
SOC1, AP1 and LFY to promote flowering [50]. In addition to delaying flowering time, TFL1
influences the growth habit and inflorescence architecture in plants. The TFL1-like gene
CENTRORADIALIS (CEN) of Antirrhinum majus was the first PEBP gene identified in plants.
The flowering time in the cen mutant was unaffected, but the plants were short and compact,
and the inflorescences terminated early [51]. Rice (Oryza sativa) has four TFL1 homologous:
RCN1, RCN2, RCN3 and RCN4. RCN1 and RCN2 delay flowering and increase the number
of tillers [52]. Similarly, knocking out RCN genes in rice will lead to smaller panicles
and fewer branches [53]. In soybean (Glycine max), GmTFL1b/Dt1 is involved in the stem
determinate growth [54]. The tomato TFL1 ortholog SP regulates the indeterminate growth
habit of the apical meristem and delays flowering time [55]. All these comparative studies
indicate the conserved function of TFL1 in the inflorescence architecture and flowering
among different plant species. The expression of MiTFL1 genes in different tissues of
M. integrifolia was analyzed. The expression patterns of MiTFL1 and MiTFL1-like were
similar, and both were expressed in the stem and vegetative shoot. MiTFL1-like is also
expressed in young leaves and early flowers, suggesting that MiTFL1-like may play other
functions during flower and leaf development. All transgenic Arabidopsis lines which
overexpressed MiTFL1 showed delayed anthesis and indeterminate inflorescence. Based
on the above studies, we have confirmed that there are significant differences in expression
patterns between MiTFL1 and MiTFL1-like, with MiTFL1 having a conserved function in
flowering regulation and plant architecture. In view of the conservative function of the
TFL1 gene in flowering regulation and plant architecture, other Macadamia cultivars may
also show similar expression patterns and functions.

PEBP-family-related genes mainly play important roles in regulating seed dormancy,
flowering time and plant architecture [3,56], and can solve many problems in the actual
production process, such as improving seed germination rate, prolonging the vegetative
growth period of vegetable crops, prolonging the flowering period of ornamental plants and
shortening the juvenile state of woody plants in breeding. In agricultural production, the sp
mutant of tomato has been widely used in tomato breeding because of its shorter vegetative
growth period, earlier flowering period and earlier fruit maturity [24]. Cucumber plants
with function deletions of the CsTFL1 gene showed significantly limited vegetative growth,
and the plant height was greatly reduced, which was more convenient for management
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and had great application potential [57]. Different from herbaceous crops, Macadamia
is a large subtropical rainforest tree which originates from Australia [58]. Cultivated
Macadamia nuts grow at an average height of 12–15 m and require an average of 15 years
to reach peak yield [58,59]. Both the large plant size and long juvenile period hamper
commercial production and breeding efficiency [35,60]. Large trees require pruning to
maintain productivity, while the small tree variety enables high planting density and
early production [35]. Traditional methods to breed new Macadamia cultivars are time-
consuming, laborious and expensive [61]. Genetic engineering of Macadamia will accelerate
the development of new cultivars with excellent agronomic traits [62]. This research
indicates that the PEBP genes have potential advantages for breeding valuable Macadamia
cultivars with early flowering times and commercial plant architectures.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The M. integrifolia (HEAS 863) trees used in this study were planted in a Macadamia
germplasm base of the Yunnan Institute of Tropical Crops. Different organs from the stem,
leaf, vegetative shoot, inflorescence, flower and nutlet were collected, placed in liquid
nitrogen, and stored at −80 ◦C for RNA extraction.

Arabidopsis thaliana wild type Col-0 and tfl1–14 mutant seeds were sown after 3 days
of treatment at 4 ◦C. Nicotiana benthamiana seeds were sown on wet soil. Arabidopsis and
tobacco grew in a greenhouse under a 16/8 h light (150 µE m−2 s−1)/dark cycle and
24/20 ◦C conditions at a relative humidity of 50–60%; the plants were well-watered and
received adequate nutrition.

4.2. Identification of PEBP Family Genes in M. integrifolia

In order to identify PEBP genes from M. integrifolia, the annotated genome data of M.
integrifolia were downloaded from GenBank (https://www.ncbi.nlm.nih.gov/genbank/,
GCF_013358625.1, accessed on 15 June 2022). The hidden Markov model (HMM) pro-
file of the PBP domain (PF01161) was obtained from the Pfam database and used as the
query; then, M. integrifolia amino acid sequences were also searched using HMMER v3.3.2,
E-value ≤ 10−5. The protein sequences of six PEBP members of A. thaliana were down-
loaded as query sequences from the Arabidopsis database (https://www.arabidopsis.org/,
accessed on 15 June 2022). BLASTP was performed with the protein sequences of M. integri-
folia, E-value ≤ 10−5. Candidate sequences obtained via the two methods were uploaded
to the Pfam website (http://pfam-legacy.xfam.org/, accessed on 17 June 2022) for fur-
ther comparison and screening based on the PEBP domain, and it was confirmed that
all members contained conserved PEBP domains. The physical and chemical parameters
of the PEBP proteins, including the theoretical isoelectric point (PI), molecular weight
(MW) and grand average of hydropathicity (GRAVY), were determined using ProtParam
(https://web.expasy.org/protparam/, accessed on 6 August 2022).

4.3. Gene Structures, Protein Motifs and Chromosome Locations

The exon and intron locations of the PEBP genes were analyzed by comparing the cod-
ing sequences with their genome sequences. The Multiple Em for Motif Elicitation (MEME)
online tool (https://meme-suite.org/meme/tools/meme, accessed on 15 August 2022)
was used to predict protein motifs. The chromosome distributions of PEBP genes were
obtained based on genome GFF3 files. Finally, the gene structures, protein motifs and
chromosome locations were visualized with the software TBtools (v1.120) [63].

4.4. Phylogenetic Analyses and Multiple Alignments

Phylogenetic trees were generated by using MEGA 7.0 with the neighbor-joining (NJ)
algorithm. Bootstrap values from 1000 replications were used to assess group support, and
the substitution model used was the Poisson model. The phylogenetic tree was visualized
with the iTOL tool (https://itol.embl.de, accessed on 2 May 2023). Multiple alignments of

https://www.ncbi.nlm.nih.gov/genbank/
https://www.arabidopsis.org/
http://pfam-legacy.xfam.org/
https://web.expasy.org/protparam/
https://meme-suite.org/meme/tools/meme
https://itol.embl.de
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the sequences were performed using the DNAMAN software. Gene accession numbers are
listed in Supplementary Table S1.

4.5. Analysis of Cis-Acting Regulatory Elements in Promoter of MiPEBPs

The upstream 3000 bp promoter sequences of 13 MiPEBP genes were uploaded to
the PlantCARE Database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/,
accessed on 12 March 2023) to search for cis-acting elements. The physical distribution of
the various cis-acting elements was visualized in TBtools (v1.120) [63].

4.6. RNA Extraction and qRT-PCR

Total RNA from M. integrifolia plants was extracted via a modified CTAB method,
and total RNA from Arabidopsis plants was extracted using a RnaEx™ Total RNA isolation
kit (GENEray Biotech, Shanghai, China). The RNA was quantified using a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Shanghai, China), and the quality was
checked via electrophoresis. The first-strand cDNA was reverse-transcribed with the
HiScript®II 1st Strand cDNA Synthesis Kit (+gDNA wiper) (Vazyme, Nanjing, China). A
quantitative real-time PCR was performed using Magic SYBR Green qPCR Mix (Magic-bio,
Hangzhou, China) on a LightCylcer 480 device (Roche, Basel, Switzerland). AtActin and
MiActin were used as internal reference genes. The data were calculated using the 2−∆∆Ct

method. Primer sequences are listed in Supplementary Materials Table S2.

4.7. Vector Construction and Plant Transformation

The full-length coding sequence of MiTFL1 was amplified via PCR from the cDNA
of vegetative shoots with Phanta MaxSuper-Fidelity DNA Polymerase (Vazyme, Nan-
jing, China). All PCR products were detected via 1.5% agarose gel electrophoresis and
purified using an EasyPure® Quick Gel Extraction Kit (TransGen, Beijing, China). The
PCR-amplified fragment products were inserted into the pCAMBIA3301 vectors between
the NcoI and BstEII sites via a ClonExpress II One Step Cloning Kit (Vazyme, Nanjing,
China) under the CaMV35S promoter. The recombinant plasmid was transformed into the
Agrobacterium tumefaciens EHA105 strain for transformation into the A. thaliana tfl1–14
mutant. Arabidopsis plants were transformed via the floral dip method [64]. T0 transgenic
seeds were sown in the soil and then selected by spraying Basta. The identification of T1
transgenic plants is shown in Supplementary Materials Figure S1.

4.8. Subcellular Localization

The CDS sequences of MiTFL1 and MiTFL1-like were amplified and connected to the
pPYS22-GFP vector between the XhoI and KpnI sites via homologous recombination. The
recombinant plasmids were transferred into Agrobacterium tumefaciens strain EHA105. They
were centrifuged after overnight incubation and resuspended as an Agrobacterium pellet in
an infiltration solution (10 mM of MgCl2, 10 mM of MES and 100 µM of acetosyringone,
PH = 5.6) to a desired optical density (OD600 =1.0). The 4-week-old tobacco leaves were
infected with the mixed solution. After 2 days in the dark, the GFP signal was observed via
a laser confocal microscope and the empty vector was used as a control.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants12142692/s1, Figure S1. Identification of the T1 transgenic Arabidopsis
of 35S::MiTFL1; Table S1. PEBP gene family accession number of Macadamia integrifolia and other species;
Table S2. List of primers; Table S3. Days to flower; Table S4. Number of rosette leaves.
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