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Abstract Obtaining reliable species identification of the legume genus Caragana has been challenging. Until now,
species identification was mostly carried out utilizing diagnostic morphological characteristics, in addition to some
successful applications of secondary chemical compounds. This study was designed to establish a DNA barcoding
protocol enabling unambiguous identification of 238 accessions belonging to 67 species of Caragana. The
performance of four DNA barcoding regions nrITS, trnH‐psbA, matK, and rbcL was explored using three analytical
approaches, Pairwise Genetic Distance, Sequence Similarity and Phylogenetic Tree method. The chloroplast
regions rbcL and matK showed lower discriminatory power compared with the nuclear region internal transcribed
spacer (ITS) and the chloroplast region trnH‐psbA. The nrITS outperformed the other regions in the resolution
rate. The present study brings forth an efficient barcode locus for Caragana. A barcode based either on a single‐
locus nrITS or the combination of nrITS and trnH‐psbA was found to be most suitable for species discrimination
with distinctive barcoding gaps. An attempt has also been made to resolve taxonomic issues in the Caragana
opulens complex. DNA barcoding tools when complemented with alpha taxonomic evidence can aid in solving
complex systematic problems, especially when taxa are characterized by overlapping traits, such as species
belonging to the Fabaceae family.
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1 Introduction
The ecologically and pharmacologically important legume
genus Caragana Fabr. contains ~91 species occurring
throughout the boreal and temperate climate zones of the
Northern Hemisphere, particularly in arid and semiarid areas
(Zhao, 1993; Zhang, 1997; Zhang et al., 2009, 2016; Rather
et al., 2021). With ~80 species, the Euro‐Asian range, which
extends toward Japan, Korea, and Siberia in the north and
northeast, toward central Asia and Europe in the west and
along the Himalayas toward Northern India, Bhutan, and
Nepal in the South, is considered the center of diversity of
the genus (Lock, 2005; Liu et al., 2010). However, China alone
hosts more than 66 species (i.e., 70% of the total species) of
Caragana (Zhao, 1993; Zhang et al., 1996, 2002; Zhang, 1997;
Zhou et al., 2002; Duan et al., 2015, 2016; Rather et al., 2021).
Caragana plays a key role in the cold desert ecosystem

throughout the Asian continent (Bhardwaj et al., 2013). The
roots, flowers, pods and seeds of many species like C. sinica,
C. pygmaea, C. arborescens, C. brevispina, and so forth,
are consumed as food throughout China (Tanaka, 1976;

Manandhar, 2002). Some of the species of Caragana (C.
korshinskii in particular) have proved to be suitable for the
restoration of eroded, desertified and degenerated lands in
China due to the high soil holding capacity imparted through
drought‐tolerant root systems (Wang et al., 2019). The genus
is, therefore, widely popular for ecorestoration projects
where the species has been shown to modify the
physiological properties of the substratum resulting in
improved soil stability (Yin et al., 2022). Accurate identi-
fication of taxa in the genus is therefore imperative to avoid
ambiguity and select the correct species for the rehabilitation
of degraded ecosystems.
Further, the demand for authentic identification of

Caragana is extremely important, as more than 20 species
are recognized for pharmacological utility (Tanaka, 1976;
Niu, 1988; Manandhar, 2002; Wang et al., 2004, 2005).
Several species, such as C. arborescens, C. bicolor, C. sinica,
C. brevifolia, C. franchetiana, C. frutex, C. intermedia, C. jubata,
C. leucophloea, C. microphylla, C. polourensis, C. pygmaea, C.
rosea, C. tangutica, C. tibetica, and C. stenophylla, are
represented in Chinese, Indian (Ayurvedic, Homeopathic,
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Unani, and Siddha), Mongolian and Tibetan traditional
medicines due to their analgesic, anti‐inflammatory and
antipyretic properties. In Chinese folk medicines also, the
genus is widely used for the treatment of cold, toothache,
skin lesions, stomach ache, headaches, asthma, fever,
wound, anemia, irregular menstruation, cough, nose
bleeding, hypertension, anoxia, rheumatoid arthritis, breast
cancer, uterine cervical cancer, rheumatic pains, leukorrhea,
mastitis, metrorrhagia, and fatigue (Jia et al., 1997; Wang
et al., 2005; Meng et al., 2009). As some herbal medicines are
prone to adulterations or substitution with cheap alter-
natives, authentic identification of utilized plants with novel
techniques like DNA barcoding becomes relevant to ensure
reliable screening (Luo et al., 2012; Dai et al., 2018). DNA
barcode has emerged as a tool for resolving taxonomic
anomalies and can also be actively employed to detect
adulterations in herbal products (Yang et al., 2019; Cui
et al., 2020; Skjua et al., 2020).
The taxonomic treatment of Caragana has been chal-

lenging because of recent radiation in the genus (Zhang
et al., 2016), resulting in several species complexes due to
overlapping morphological characteristics. Furthermore,
many species of Caragana show considerable morphological
variability, while some have specific ecological and habitat
preferences (Zhang et al., 2009; Duan et al., 2015, 2016;
Rather et al., 2021). Unambiguous species identification is
often hampered by the overlap of morphological character-
istics and/or limited differences in leaf shape/size or flower
morphology. A further challenge is the preparation of
voucher specimens and maintaining all information required
to achieve reliable identification. According to Pan & Zhu
(2010), pubescence, the shape of stipules and leaflets and
pods are basic diagnostic characters used for preparing key
of Caragana species, while the length of pedicels, inflor-
escence, and seed number have negligible taxonomic value.
The absence of flowers and fruits in herbarium specimens of
the Caragana species causes misidentifications. Using
morphological characters alone may incorporate an element
of ambiguity, especially when applied to highly fragmented
plant materials. Finally, convergent evolution and intra-
species morphological variations render identifying and
classifying Caragana species laborious.
This study aims to establish a DNA barcoding standard to

enable reliable identification of Caragana species that will
help in quality control procedures especially for highly
fragmented herbal materials. Since the inception of DNA
barcoding to land plants, a constant challenge has been to
determine a universal DNA barcode that works for all land
plants. For example, a barcode combining fragments of the
plastid genomic genes, such as rbcL and matK, which have
been endorsed as universal barcodes for many land plants
(CBOL Plant Working Group, 2009); however, subsequent
research showed rather poor performance of these barcodes
in many plant genera (Xiang et al., 2011; Yan et al., 2011;
Clement & Donoghue, 2012; Li et al., 2012; Zhang et al., 2012).
Therefore, alternative barcodes such as the plastid intergenic
spacer trnH‐psbA and the nuclear ribosomal internal tran-
scribed spacer (ITS) are still a matter of scientific discussion
(Chen et al., 2010; China Plant BOL Group, 2011; Li et al., 2011a;
Amritha et al., 2020; Zhang & Jiang, 2020). In this study, four
widely utilized regions, namely nrITS, trnH‐psbA, matK, and

rbcL either individually and/or in combinations have been
considered to determine a DNA barcode for Caragana. The
present study is the first attempt to utilize DNA barcoding for
Caragana and its relatives. For our assessment, the most
comprehensive taxon sampling of this genus was conducted
that overachieved any sampling used in previous phyloge-
netic studies on Caragana. The following research questions
have been addressed: (i) Determine the performance of
standardized DNA fragments to distinguish closely related
Caragana; (ii) testing the hypothesis that Caragana species
sampled from China form a distinct clade within the genus;
(iii) determine the accuracy of Caragana species identified
utilizing DNA barcoding; and (iv) identify the most powerful
barcode for the correct species identification in Caragana.

2 Material and Methods
2.1 Taxon sampling
In total, 238 accessions belonging to 67 species of Caragana
were included in the present study. Approximately 74% of the
extended diversity present in the genus was sampled.
Hedysarum alpinum and Astragalus coluteocarpus were
incorporated as outgroup taxa. Fresh and healthy leaves
were collected and stored in silica from different localities
across the known range of these legumes in China (Fig. 1).
Voucher specimens were deposited at the Northwest A&F
University Herbarium (WUH; Table S1). The taxonomic
identity of each accession was confirmed by considering
published taxonomic treatments (Zhao, 1993; Liu et al., 2010).

2.2 DNA isolation, PCR amplification, and sequencing
Genomic DNA was extracted from silica‐dried leaves
following the modified CTAB method (Doyle & Doyle, 1987)
and DNA extraction kits (DNeasy Extraction Kits; Qiagen).
Postisolation, the extractions were stored at −20 °C prior to
amplification with one nuclear (nrITS) and three chloroplast
DNA regions (trnH‐psbA, matK, rbcL). These regions were
selected based on recent discussions of DNA barcode
selection in plants (Kress & Erickson, 2007; Taberlet
et al., 2007; CBOL Plant Working Group, 2009; Kress
et al., 2009; Chen et al., 2010; China Plant BOL Group, 2011;
Hollingsworth et al., 2011; Kress, 2017). Amplification was
performed in a 25‐µL reaction volume, which consisted of
2.5 mL of 10× buffer containing 2 mM MgCl2, 1 U of Taq DNA
polymerase, 1 µL of dNTP (0.125 mM), 1 µL of each primer
(5 pM), and 30–50 ng of total DNA. Nuclease‐free water was
added to attain the final volume in the reaction mixture.
Following the PCR protocol described by Boatwright et al.
(2008), we made slight modifications to our approach.
Specifically, we utilized 10–40 ng of DNA template and
incorporated 1–3 µL of trehalose‐based additives in the PCR
reactions to enhance the efficiency of the primers. The
inclusion of these additives proved effective in significantly
improving the PCR efficiency for all the primers used in our
study (Samarakoon et al., 2013). The primer and PCR program
information for each primer is provided in Table S2. PCR
products (2 mL) were visualized on 0.8% agarose using gel
electrophoresis. The amplified products were purified using
the BioMed multifunctional DNA fragment purification
recovery kits (Beijing, China). The processed samples were
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then sequenced in an ABI 3730 automated sequencer at
Beijing Qingke Biological Technology Co. Ltd. (Applied
Biosystems, Carlsbad, CA, USA). DNA segments that did not
meet the quality requirements during the quality check were
either resequenced or excluded from the final analysis.

2.3 Sequence acquisition from GenBank
The data set was expanded by tracking DNA sequences used
in earlier studies (Zhang et al., 2016). The rbcL and matK
sequences were retrieved from GenBank (ncbi.nlm.nih.gov).
As NCBI sequence data are not necessarily linked with
taxonomically validated voucher specimens, an examination
of all available sequences downloaded from GenBank was
carried out to ensure that correctly identified information
was being used in the study.

2.4 Sequence alignment and data analysis
Each marker sequence was assembled and inspected using
Sequencher 4.1 (Codes G. Sequencher), aligned with the
MUSCLE (Edgar, 2004) as implemented in MEGA 7.0 (Kumar
et al., 2016), and further checked manually using Se‐Al
version 2.0a11 (Rambaut, 2007). Gaps in the DNA sequences
were treated following the suggestions of the China Plant
BOL Group (2011). Both individual and all possible
combinations of the four loci were used for the DNA

barcoding survey. The base compositions, genetic dis-
tances, variable sites, and parsimony‐informative site
values were estimated using MEGA 7.0 as per the Kimura‐
2‐parameter (K2P) model (Kimura, 1980). Three analytical
approaches were employed to explore the performance of
the four regions and their combination as a DNA barcode.
The approaches used in these evaluations were: the
Pairwise Genetic distance (PWG‐distance), the Sequence
Similarity (TaxonDNA), and a Phylogenetic Tree.
Intraspecific and interspecific divergences were calcu-

lated with the K2P model in MEGA 7.0 (Kumar et al., 2016).
To detect the presence of a barcoding gap, the minimum
interspecific and maximum intraspecific distances were
compared (Meyer & Paulay, 2005; Zhang et al., 2015). To
assess the accuracy of each individual barcode and all
possible combinations for species discrimination, the
functions of the best match, best close match, and all
species barcodes functions were intended in the program
TaxonDNA were used under the K2P‐corrected distance
model (Meier et al., 2006). The “best match” tool was used
to search for the closest barcode match for each query. The
identification was deemed successful only if both
sequences were from the same species, while mismatched
names were interpreted as failures. If there were several
equally valid “best matches” from different species, they

Fig. 1. Map illustrates the distribution pattern of the Caragana genus across different provinces in China. The pink dots on the
map indicate the collection sites where various species of the Caragana genus have been found.
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were considered ambiguous (Meier et al., 2006; Zhang
et al., 2012).
Phylogenetic analyses using combinations of nrITS and the

three cpDNA markers were performed with the maximum
likelihood (ML) method. The optimal fitting model was
determined using MODELTEST v.3.7 (Posada & Crandell, 1998)
by applying the Akaike information criterion (AIC; Posada &
Buckley, 2004). The ML analysis was performed with IQ TREE
v.1.6.0 (Nguyen et al., 2015). The degree of species resolution
(identification) for the four DNA barcode regions was
evaluated using the ML method. Species discrimination was
considered successful when all conspecific individuals formed
a clade in the ML tree with a bootstrap value of more than
60% (Zhang et al., 2012).
NCBI BLAST 2.2.29+ (Tao, 2010) was used for all sequences

and analyzed using the “BLASTn” (https://blast.ncbi.nlm.nih.
gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&
LINK_LOC=blasthome) command to index local reference
databases. Successful discrimination was deemed when the
species had the highest hit matching only a conspecific
individual; to improve clarity, the query sequence was
removed from the list of top hits (Meyer & Paulay, 2005).

3 Results
3.1 Amplification and sequence success
The amplification success percentage for four loci (nrITS,
trnH‐psbA, matK, and rbcL) was 100%; the sequencing success
rates ranged from 100% for nrITS and trnH‐psbA to 85% for
rbcL to 61% for matK (Table 1). The de novo generated
sequences combined with sequences obtained from Gen-
Bank to a data set bringing the total to 449 sequences
consisting of 146, 147, 60, and 96 belonging to nrITS, trnH‐
psbA, matK, and rbcL respectively.

3.2 Characteristic analysis of each barcode locus
The sizes of aligned sequences varied from 1392 bp for rbcL to
397 bp for trnH‐psbA (Table 1). nrITS contained the highest
number of parsimony‐informative characters and variable sites
were found in ITS, followed by trnH‐psbA, matK, and rbcL.
Specifically, the nrITS region had 758 bp with 5 bp long indels,
52.9% GC content, 129 bp parsimony‐informative sites and 171 bp
variable sites distributed equally across the matrix. The trnH‐psbA
sequence region was 397 bp with 25.2% GC content and 6bp long
indels, whereas the distribution of parsimony‐informative sites
(77) and variable sites (95) were dispersive and sparse across the
matrix. The size of the aligned matK region was 825 bp with 50
sparse parsimony‐informative sites and 82 variable sites across
the matrix and there were 3 bp long indels with 31% GC content.
The rbcL region alignment generated a length of 1392 bp with
43.3% GC content and contained 35 dispersive parsimony‐
informative sites and 60 sparse variable sites across the
sequence matrix without indels (Table 1). Among the nine
barcodes, namely the 04 single regions, 03 two regions, 01 three
regions and 01 four region barcodes, the pairwise intraspecific
distances varied between 0 and 1.84 (Table 1). The mean
intraspecific distances were found to be highest for nrITS (0.31)
and lowest for matK+ rbcL (0.003). Subsequently, pairwise
interspecific distances varied from 0 to 3.94 (Table 1), with the
average interspecific distance highest for ITS (0.89) and lowest

for rbcL (0.007; Table 1). In summary, nrITS revealed the highest
mean intra‐ and interspecific distances, number of parsimony‐
informative sites and variable sites (Table 1).

3.3 DNA barcoding gap analysis and discrimination of
species
The evaluation showed clear barcoding gaps for nrITS, trnH‐
psbA, and the combination of ITS+ trnH‐psbA (Fig. 2). All
other barcodes revealed overlaps without clear barcoding
gaps (Fig. 2). The “Best match” and “Best close match”
revealed distinct performances among the nine barcodes
considered. rbcL yielded poor results for the single region
analysis (BM and BCM: 43.69%; Table 2). nrITS showed the
highest success in species identification (BM and BCM:
92.27%), followed by trnH‐psbA (BM and BCM: 79.12%) and
matK (BM and BCM: 54.68%). The combination of two
barcodes, ITS+ trnH‐psbA showed the highest discrimination
success (BM and BCM: 95.39%). A slightly higher species
identification was achieved by concatenation of all four
regions (ITS+ trnH‐psbA+matK+ rbcL) compared with the
combination of trnH‐psbA+matK+ rbcL regions using the
best match and best close match method (73.42%; Table 2).

3.4 Phylogenetic Tree and similarity‐based method
These two approaches showed highly congruent results by
comparing the effectiveness of the four barcodes and their
combinations considered (Table 3; Figs. 3, 4, S1–S7). Both the
multilocus and single barcodes displayed varying levels of
species discrimination, ranging from 19.29% to 95.52%
(Table 3). Among the four barcodes, the best discrimination
power was shown by the nrITS region (91.04%), followed by
trnH‐psbA (65.67%), and matK (38.46%), while the rbcL gene
demonstrated the lowest level of discrimination (19.29%). The
barcode combining nrITS and trnH‐psbA revealed the
maximum discrimination success (95.52%) compared with
other barcode loci combinations (Table 3).

4 Discussion
4.1 PCR and sequencing efficiency
Discussion on plant DNA barcodes, including those by the CBOL
Plant Working Group, suggests that a working DNA barcode is
required to fit into the following criteria: reliable amplification
and DNA sequencing with low error rates along with high
species discrimination rates (Kress et al., 2005; Kress &
Erickson, 2007; CBOL Plant Working Group, 2009). Previous
research on DNA barcodes considered mostly single‐marker or
multimarker barcodes based on four regions, primarily including
the nuclear ITS region and the chloroplast regions rbcL, matK,
and trnH‐psbA (China Plant BOL Group, 2011; Hollingsworth
et al., 2011). Primer universality has been widely considered one
of the criteria for selecting an ideal barcode (Kress &
Erickson, 2007). The four barcode regions explored in the
present study are universal markers with expected product
length within a range easily amplified and sequenced
(Kress, 2017). The efficiency in gene amplification and rate of
sequencing are indicators for evaluating a DNA barcode. In the
present study, ITS and trnH‐psbA demonstrated the best
amplification and sequencing results among all four regions,
consistent with previous studies (Xu et al., 2015; Yan et al., 2015).
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4.2 The resolution of tested candidate barcodes in Caragana
The nuclear ITS has been considered a universal barcode for
angiosperms (Li et al., 2011b; Xu et al., 2015; Yan et al., 2015).
Few studies reject this proposal, since they have observed
poor species resolution (Alvarez & Wendel, 2003; Chase
et al., 2007; Hollingsworth et al., 2009; Starr et al., 2009). In
contrast, other studies observed higher interspecific diver-
gences and lower intraspecific variation in the ITS region
compared with chloroplast markers (Chen et al., 2010; Yao
et al., 2010; Li et al., 2011a; Zhu et al., 2017). In the present

work, ITS showed the highest number of variation sites,
parsimony‐informative sites, accumulation of larger intra‐
and interspecific distances, most efficient amplification and
high discriminatory power in comparison to the chloroplast
markers (Table 1). Specifically, nrITS displayed the highest
species‐level resolution when employed individually or when
combined with other barcoding regions (Figs. 3, 4, S4, S5, S7;
Table 3). The ITS region was touted as a successful DNA
barcode due to ITS rapid evolution rate, which was found to
be, on average, three to four times faster than in chloroplast

Fig. 2. Relative distribution of intraspecific and interspecific Kimura 2‐parameter (K2P) distances among Caragana samples for
the four candidate loci and their combinations. A, ITS. B, trnH‐psbA. C, matK. D, rbcL. E, ITS+ trnH‐psbA. F, ITS+matK. G,
ITS+ rbcL. H, trnH‐psbA+matK+ rbcL. I, ITS+ trnH‐psbA+matK+ rbcL.

6 Rather et al.
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DNA regions (Kress et al., 2005; Chase et al., 2007; Liu
et al., 2011; Zhang et al., 2012). In several taxonomy‐based
barcoding studies, this marker was utilized to identify taxa
at the species rank, even in complex taxa, such as Ficus (Li
et al., 2012), Lysimachia (Zhang et al., 2012), and Viburnum
(Clement & Donoghue, 2012).

In the context of Caragana, ITS outperformed all four
other barcoding regions considering the discrimination of
species. Markedly, this region was also able to differ-
entiate even taxonomically confusing species such as
C. opulens, C. licentiana, and C. kansuensis. These results
are consistent with the previous arguments considering
ITS as in‐disposable to the identification of plants used in
traditional medicines due to the high level of variations
and efficiency in identifying closely related species (CBOL
Plant Working Group, 2009; Yao et al., 2010; Schoch
et al., 2012; Yan et al., 2015; Liu et al., 2016; Wu et al., 2017;
Ünsal et al., 2019; Gogoi et al., 2020). Because of low cost
and high efficiency, ITS is recommended for the identi-
fication of Caragana species.

The chloroplast trnH‐psbA spacer region displayed high
variability. Previous studies demonstrated that trnH‐psbA
had a higher discriminating ability compared to matK+ rbcL
marker in angiosperm genera such as Berberis (Roy
et al., 2010) and Alnus (Ren et al., 2010). The trnH‐psbA
region as a barcode is also realized to be a good candidate
for large‐scale DNA barcoding of some grasses and forage
legumes. However, some issues affect its utilization for
instance, extensive length variation in the trnH‐psbA
sequence resulted in alignment ambiguities. Moreover,
inversions were found to occur in this region with the
consequence of erroneous phylogenetic inferences due to
sequence variation overestimation amongst closely related
species and distantly placed taxa (Whitlock et al., 2010).
Additionally, psbA mononucleotide (poly A/T) motifs in
bidirectional reads have been identified to possess a
negative effect on the ability to obtain full‐sized sequences
(Hollingsworth et al., 2009; Zhang et al., 2012). In the
present case, the region provided satisfactory results,
having a better discrimination power when used with ITS.
Additionally, it has exhibited a high rate of amplification and
sequencing success (Fig. 4; Table 3). This favorable outcome
can be attributed to the application of standard DNA
barcodes with standard barcoding PCR and cycle sequencing
programs with modifications, which optimized the amplifi-
cation and sequencing process. By employing these primers,
we achieved the highest possible percentage of amplifica-
tion and sequencing success, effectively mitigating any
potential impact of psbA mononucleotide motifs. Our
findings in this regard are consistent with recent studies
conducted by Jiang et al. (2020) and Jin et al. (2023).

The matK and rbcL DNA barcodes employed in the study
had previously been suggested as core regions for plant
barcoding (Kress et al., 2005; CBOL Plant Working
Group, 2009; Chen et al., 2010; Hollingsworth et al., 2011).
However, they exhibited poor amplification, sequencing and
species‐level resolution in this study. Shifting the focus from
universal toward Caragana‐specific DNA barcodes, all plastid
markers used in the present work were not recommended
as DNA barcodes. The low resolving power of plastid
markers at the species level had been reported for severalTa
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angiosperm genera, such as Berberis (15.4%–23.1%), Paphio-
pedilum (25.74%), Lysimachia (47.1%–60.82%), Viburnum (53%),
Curcuma (21.66%), and Quercus (0%) (Roy et al., 2010; Piredda
et al., 2011; Clement & Donoghue, 2012; Zhang et al., 2012;
Kim et al., 2014; Chen et al., 2015; Guo et al., 2015; Li
et al., 2016; Liu et al., 2017). In our study, species
identification efficiency was less with the rbcL and matK
regions when compared with other examined regions
(Figs. S2, S3; Tables 2, 3). However, levels of species
resolution were higher in matK when compared with rbcL,
which is consistent with the previous studies (Kress
et al., 2009). Conversely, in some recent works, rbcL and
matK showed low interspecific variations even in closely
related species and, therefore, treated as an incongruous
barcode marker (Kress et al., 2005; Steven & Subramanyam,
2009; Parveen et al., 2012, 2017; Singh et al., 2012; Kim
et al., 2014; Rajaram et al., 2019; Worthy et al., 2022). In the
present study too, these regions had a low number of
variation sites, parsimony‐informative sites, and species
discrimination power, however, the discrimination rate
slightly increased when both matK and rbcL were combined
with ITS (Figs. S4, S5; Tables 1, 3). Overall, our results
confirmed the expectation that rbcL and matK were not
variable enough to assess interspecific variations in later
derived angiosperm genera such as Caragana (Lahaye
et al., 2008; Parveen et al., 2012; Singh et al., 2012).
An individual DNA barcode region lacks genetic variation

to be a useful DNA barcode. Thus, combinations of multiple
loci are deemed necessary to improve the species resolution
ability. The concatenated barcodes have been known to
exhibit higher species discrimination than single‐locus
barcodes (CBOL Plant Working Group, 2009; Li
et al., 2011a, 2015; Yan et al., 2015). In this study, ITS+ trnH‐
psbA showed the best discriminatory performance among
the four tested loci combinations (Fig. 4; Tables 2, 3). The
species identification rates utilizing the three cpDNA frag-
ments were significantly lower (Fig. S6; Tables 2, 3). In
conclusion, the study revealed that a combination of
ITS+ trnH‐psbA DNA regions might be used as an effective
plant DNA barcode.

4.3 DNA barcoding implications for the current taxonomy of
Caragana
Few closely related species in Caragana are known to have
overlapping morphological traits, which posed difficulty in

their identification using the alpha taxonomic approach. One
such case is the C. opulens species complex, which consists of
three species, namely C. opulens, C. kansuensis, and C.
licentiana (Rather et al., 2021). Although, diagnostic charac-
teristics have been found to be inconsistent and labile, the
three species have been differentiated by ovary/fruit
pubescence, leaf shape, bract shape, and leaf pubescence
(Moore et al., 2010). Further, the herbarium specimens of
these species housed in major herbaria in China have been
differently identified (Zhao, 1993). Extensive investigation of
literature and comparison of specimens have revealed that
these species have overlapping geographical distribution.
Further, our barcoding and phylogenetic analysis revealed
that these three species belong to a single and well‐
supported clade (Figs. 3, 4). Based on these pieces of two
evidence, we hypothesize that these species are likely to be
morphotypes of a single species, and need to be merged into
a single taxon, C. opulens.
Misidentification, problems in cryptic species and dis-

covery of new taxa have often been evaluated through
barcoding (Burns et al., 2008; Liu et al., 2011; Saitoh
et al., 2015). In our study, C. opulens Boufford 40 782 was
probably misidentified by earlier researchers, not with-
holding geographical divergences. After extensive examina-
tion of the specimens, it has been found that it is Caragana
sinica which is also supported by our study. It does not form
a group with C. opulens, rather it is a part of the C. sinica
clade in the phylogenies (Figs. 3, 4, S1–S7).
For any taxa, its robust taxonomic reconstruction relies on

ecological, reproductive, molecular and morphological char-
acterization along with geographical data. Nevertheless,
delimitation is often difficult in genera having closely related
species. In our study, despite the high success rate in
Caragana spp., DNA barcoding had difficulty discriminating
closely related species. For example, the three species (C.
sukiensis, C. conferta, and C. brevispina) of the C. sukiensis
species complex are morphologically similar, showing minute
variations in diagnostic floral traits. The barcoding markers
failed to differentiate the species in this complex either in the
single or combined marker‐based tree (Figs. 3, 4, S1–S7).
Possible reasons for barcoding failure for closely related
species are commonly associated with a slow molecular
evolution rate, coupled with hybridization and introgression
events, paralogy and incomplete sorting of ancestral poly-
morphisms (Funk & Omland, 2003; Hollingsworth et al., 2011;

Table 3 Identification success rates obtained using maximum likelihood tree and local BLAST analysis methods for each
candidate barcode and their combinations

S. No. Single barcode locus and its combinations ML tree method Similarity‐based method (BLAST)

1 ITS 91.04% (61/67) 91.04% (61/67)
2 trnH‐psbA 65.67% (44/67) 65.67% (44/67)
3 matK 38.46% (15/39) 38.46% (15/39)
4 rbcL 19.29% (11/57) 19.29% (11/57)
5 ITS+ trnH‐psbA 95.52% (64/67) 95.52% (64/67)
7 ITS+matK 77.61% (52/67) 77.61% (52/67)
6 ITS+ rbcL 68.65% (46/67) 68.65% (46/67)
8 trnH‐psbA+matK+ rbcL 53.73% (36/67) 53.73% (36/67)
9 ITS+ trnH‐psbA+matK+ rbcL 74.62% (50/67) 74.62% (50/67)
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J. Syst. Evol. 00 (0): 1–14, 2023 www.jse.ac.cn

 17596831, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jse.13009 by X

ishuangbanna T
ropical B

otanical G
arden, W

iley O
nline L

ibrary on [12/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Fig. 3. Maximum likelihood phylogeny based on the ITS sequences in Caragana. Numbers on branches represent bootstrap
values. Successfully identified species have bootstrap values of 60% or higher. Samples shown in red indicate misidentified and
unresolved samples.

9DNA barcoding of legume genera Caragana
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León‐Romero et al., 2012). Additional molecular exploration,
such as through single nucleotide polymorphism (SNP) and
Satellite markers (SSR) may be required to develop DNA
barcodes for assisting species identification in such cases (Liu
et al., 2008; Zeng et al., 2012). The data generated provides
useful insights into the DNA barcoding progress within the
genus and facilitates the identification of economically
important species for proper utilization and conservation
purposes.

4.4 Conclusions
The present study reports a comparative analysis focusing on
four potential barcoding DNA regions with the aim to identify
accession of the legume genus Caragana. The nuclear ITS
region is found to be the most accurate and efficient barcode
for distinguishing Caragana accessions/species. This marker
has the highest discriminatory rate and can differentiate
between Caragana species when employed individually or in
combinations with trnH‐psbA. The previously recommended
universal plant barcode rbcL+matK marker are ineffective as
identifiers for Caragana species. By diverging from universal
toward genera‐specific barcodes, we recommend the ITS
alone or the concatenation of two regions (trnH‐psbA+ ITS)
as plant barcodes in Caragana.
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Supplementary Material
The following supplementary material is available online for
this article at http://onlinelibrary.wiley.com/doi/10.1111/jse.
13009/suppinfo:
Fig. S1. Maximum likelihood tree based on the trnH‐psbA
sequences in Caragana. Numbers on branches represent
bootstrap values. Successfully identified species have boot-
strap values of 60% or higher.
Fig. S2. Maximum likelihood tree based on the matK
sequences in Caragana. Numbers on branches represent
bootstrap values. Successfully identified species have boot-
strap values of 60% or higher.

Fig. S3. Maximum likelihood tree based on the rbcL
sequences in Caragana. Numbers on branches represent
bootstrap values. Successfully identified species have boot-
strap values of 60% or higher.
Fig. S4. Maximum likelihood tree based on the ITS+matK
sequences in Caragana. Numbers on branches represent
bootstrap values. Successfully identified species have boot-
strap values of 60% or higher.
Fig. S5. Maximum likelihood tree based on the ITS+ rbcL
sequences in Caragana. Numbers on branches represent
bootstrap values. Successfully identified species have boot-
strap values of 60% or higher.
Fig. S6. Maximum likelihood tree based on the trnH‐
psbA+matK+ rbcL sequences in Caragana. Numbers on
branches represent bootstrap values. Successfully identified
species have bootstrap values of 60% or higher.
Fig. S7. Maximum likelihood tree based on the ITS + trnH‐
psbA +matK + rbcL sequences in Caragana. Numbers on
branches represent bootstrap values. Successfully identi-
fied species have bootstrap values of 60% or higher.
Table S1. Plant material used for molecular analysis of the
genus Caragana. Original information with voucher information
and GenBank accession numbers for all the samples of
Caragana used in this study. All specimens have been deposited
in the Northwest A & F University Herbarium (WUK).
Table S2. Details of primers used for amplification and
subsequent sequencing in the present study.
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