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A B S T R A C T   

Accurate understanding of the variability in foliar physiological traits across landscapes is critical to improve 
parameterization and evaluation of terrestrial biosphere models (TBMs) that seek to represent the response of 
terrestrial ecosystems to a changing climate. Numerous studies suggest imaging spectroscopy can characterize 
foliar biochemical and morphological traits at the canopy scale, but there is only limited evidence for retrieving 
canopy photosynthetic capacity (e.g., maximum carboxylation rate, Vc,max and maximum electron transport rate, 
Jmax). Moreover, the effect of canopy structure within forest communities on scaling up spectra-trait relationships 
from leaf to canopy level is not well known. To advance the spectra-trait approach and enable the estimation of 
key traits using remote sensing, we collected imaging spectroscopy data from an Unoccupied Aerial System 
(UAS) platform over two forest sites in China (a subtropical forest in Mt. Dinghu and a tropical rainforest in 
Xishuangbanna). At these sites, we also collected ground measurements of leaf spectra and traits, including 
biochemical (leaf nitrogen, phosphorus, chlorophyll, and water content), morphological (leaf mass per area, 
LMA) and physiological (Vc,max25 and Jmax25) traits (n = 135 tree-crowns from 42 species across two sites). Using 
a partial least-squares regression (PLSR) approach, we built and tested spectra-trait models with repeated cross- 
validation. The spectral models developed with leaf spectra were directly transferred to canopy spectra to 
evaluate the effect of canopy structure. We further applied canopy spectral models to map these traits at indi-
vidual tree-crown scale. The results demonstrate that (1) UAS-based canopy spectra can be used to estimate Vc, 

max (R2 = 0.55, nRMSE = 11.79%), Jmax (R2 = 0.54, nRMSE = 12.34%), and five additional foliar traits (R2 =

0.38–0.60, nRMSE = 10.11–13.56%) at the tree-crown scale with demonstrated generalizability across two sites; 
(2) canopy structure strongly affects the spectra-trait relationships from leaf to canopy level, but the effects vary 
considerably across foliar traits and cannot be well captured by the 4SAIL canopy radiative transfer model. UAS- 
based imaging spectroscopy maps large variability in all foliar traits (including physiological traits) with spatially 
explicit information, reproducing the field-observed inter- and intra-specific variations. These results 
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demonstrate the capability of using UAS-based imaging spectroscopy for characterizing the variability of foliar 
physiological traits at individual tree-crown scale over forest landscapes and highlight the similar generaliz-
ability but different biophysical mechanisms underlying spectra-trait relationships at leaf and canopy levels.   

1. Introduction 

Projecting the fate of terrestrial ecosystems under climate change 
requires an accurate representation of carbon dioxide assimilation in 
terrestrial biosphere models (TBMs). Photosynthesis is the largest car-
bon flux between the biosphere and atmosphere (Ryu et al., 2019; 
Mengoli et al., 2022), and is the gatekeeper process for an uncertain 
terrestrial carbon sink thus playing a major role in regulating the at-
mospheric CO2 level and determining the rate of global climate change 
(Bonan and Doney, 2018; Rogers et al., 2017; Walker et al., 2021). Ac-
curate model projection of photosynthesis and many other key model 
outputs, is highly dependent upon parameterization associated with 
foliar photosynthetic capacity, i.e., the maximum carboxylation rate of 
the enzyme Rubisco and the maximum rate of electron transport stan-
dardized to a reference temperature of 25 ◦C (Vc,max25 and Jmax25, 
respectively; Farquhar et al., 1980; Rogers et al., 2017; Ricciuto et al., 
2018). These physiological traits are represented in TBMs with just 5–15 
values that typically are not modified by the many biotic and abiotic 
processes that result in diverse and dynamic traits in nature (e.g., Kattge 
et al., 2009; Walker et al., 2014; Ali et al., 2015; Smith and Dukes, 2018; 
Wu et al., 2019; Yan et al., 2021). Advancing the ability to measure these 
key traits across scales from individual organisms to forest ecosystems 
thus represent an essential research need, which would help to improve 
the understanding and modelling of terrestrial carbon cycling and the 
response of the terrestrial biosphere to global environmental changes 
(Rogers et al., 2017; Bonan and Doney, 2018). 

Leaf-level gas exchange is the most widely-used approach for 
deriving Vc,max25 and Jmax25. This method fits field-measured photo-
synthetic CO2 response curves to a biochemical photosynthesis model 
(Farquhar et al., 1980; Bernacchi et al., 2013), and has been used as the 
primary method for estimating Vc,max25 and Jmax25. However, it is very 
slow, and often takes over 45 min for each single measurement (Ber-
nacchi et al., 2003; Long, 2003). In recent years, a few faster methods of 
estimating Vc,max25 and Jmax25 have been proposed, such as the one point 
method (De Kauwe et al., 2016; Burnett et al., 2019) and the rapid A–Ci 
response method (Stinziano et al., 2017). However, these gas exchange 
measurements remain challenging in natural ecosystems and remote 
regions, such as subtropical and tropical forests where high species 
richness and tall trees would co-occur over large landscapes (Albert 
et al., 2018; Lamour et al., 2021; Yan et al., 2021). Canopy access pre-
sents another critical challenge in these ecosystems where canopy cranes 
or tree climbing strategies are needed but may be prohibitively expen-
sive or time-consuming. The difficulties associated with sampling and 
measuring Vc,max25 and Jmax25, together with the high degree of plant 
functional diversity in terrestrial ecosystems, make the spatial coverage 
of these two physiological traits woefully inadequate (Jetz et al., 2016; 
Kattge et al., 2020). Therefore, an alternative and rapid estimation 
method of Vc,max25 and Jmax25 is required, especially when considering 
tall trees in natural forest ecosystems and remote regions, including 
subtropical and tropical forests. 

Recent advances in vegetation spectroscopy offer a promising alter-
native for efficient characterization of foliar traits from leaf to canopy 
levels. The approach relies upon the tight connection of leaf or canopy 
reflectance spectra to morphological, biochemical and physiological 
properties (Curran, 1989; Elvidge, 1990; Kokaly et al., 2009; Ollinger, 
2011; Serbin and Townsend, 2020). Leaf spectroscopy has been used to 
infer a broad suite of leaf traits, including leaf morphological (e.g., leaf 
mass per area (LMA)), biochemical (e.g., water, chlorophyll, nitrogen, 
and phosphorous) and physiological traits (e.g., Vc,max25 and Jmax25) 
with demonstrated high accuracy (Asner and Martin, 2008; Doughty 

et al., 2017; Féret et al., 2019; Serbin et al., 2014; Yan et al., 2021). 
Indeed leaf-level spectra-trait relationships have been shown to have a 
broader-scale generalizability, and a single spectral model for each trait 
can be developed and used across a wide spatial and temporal extent 
(Chen et al., 2022; Lamour et al., 2021; Martin et al., 2008; Nakaji et al., 
2019; Serbin et al., 2019; Wu et al., 2019). Consistent with leaf-level 
studies is the demonstrated high accuracy and broad-scale generaliz-
ability of the use of the spectra-trait approach to characterizing various 
foliar morphological and biochemical traits via imaging spectroscopy 
(Asner et al., 2015; Asner and Martin, 2008; Serbin et al., 2015; 
Thomson et al., 2021; Townsend et al., 2003; Wang et al., 2020; Wess-
man et al., 1988; Zhao et al., 2018). However, the ability of scaling from 
leaf to canopy levels with confidence has rarely been evaluated for 
photosynthetic traits like Vc,max, with a few exceptions (e.g., Serbin 
et al., 2015; Croft et al., 2017; Fu et al., 2020; Meacham-Hensold et al., 
2020) but these examples are commonly managed ecosystems with 
homogeneous canopy structure or based on additional trait-trait as-
sumptions (e.g., chlorophyll-Vc,max relationships as used in Croft et al., 
2017). 

Theoretically, canopy spectral variability is directly connected to leaf 
spectra and canopy structure, such as leaf area index and leaf angle 
distribution (Asner, 1998; Ollinger, 2011; Stovall et al., 2021). There-
fore, despite mounting evidence showing the effectiveness of using im-
aging spectroscopy for characterizing foliar morphological and 
biochemical traits at the canopy level (e.g., Wessman et al., 1988; Asner 
et al., 2015; Singh et al., 2015; Wang et al., 2020), divergent agreements 
remain with the mechanisms underlying how canopy structure shapes 
canopy-level spectra-trait relationships. The spectral signal is different 
at the leaf and canopy level, but some traits may leave distinguishable 
fingerprints at both levels. For example, many earlier studies analyzed 
spectra-trait relationships at both leaf and canopy levels, and identified 
many shared and common spectral domains for trait prediction across 
the two levels (Baret et al., 1994; Kupiec and Curran, 1995; Dawson 
et al., 1999; Serrano et al., 2002). However, there remain studies 
demonstrating that canopy structure significantly contributes to canopy 
reflectance spectra and dominates canopy level spectra-trait relation-
ships (Asner and Martin, 2008; Knyazikhin et al., 2013; le Maire et al., 
2008). Fundamentally, there are two factors influencing whether the 
fingerprints of traits are conserved across leaf and canopy levels. Firstly, 
it depends on the trait, as different foliar morphological and biochemical 
properties are expressed differently across spectra (Kokaly et al., 2009; 
Ustin et al., 2009). Secondly, it depends on the spectral region since 
different spectral regions are affected differently by canopy structure 
and multiple scattering (Asner, 1998; Verrelst et al., 2015; Wang et al., 
2017). However, it is still lacking a comprehensive assessment of how 
canopy structure influences the relationship between spectra and traits, 
particularly in the case of photosynthetic traits. 

The goal of this study was to explore the capability, across-site 
generalizability, and effects of canopy structure on the cross-level 
(from leaf to canopy) spectra-traits relationship for characterizing 
foliar photosynthetic capacity in natural forest landscapes using the 
imaging spectroscopy approach. Towards this goal, we collected imag-
ing spectroscopy data from an Unoccupied Aerial System (UAS) platform 
over two forest sites in China, in which we also collected paired ground 
measurements of leaf spectra and traits. With these data, we addressed 
the following two questions: (1) Can UAS-based imaging spectroscopy 
be used to estimate the variability in Vc,max25 and Jmax25 at tree-crown 
scale across different forest sites? (2) To what extent does canopy 
structure alter the cross-level spectra-trait relationship? Furthermore, 
can the commonly used canopy radiative transfer model PROSAIL 
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capture the effects of canopy structure? Afterwards, we built a workflow 
for applying canopy spectral models to UAS hyperspectral imagery for 
mapping foliar trait at individual tree-crown scale. 

2. Materials and methods 

2.1. Study sites 

This study was conducted at two sites in Southern China, approxi-
mately 1200 km apart, including a subtropical forest at Mountain 
Dinghu (DH; 23o10’N, 112o32’E) and a tropical rainforest at Xish-
uangbanna (XSBN; 21o47’ N, 101o03’ E) (Fig. 1). These sites were 
selected because they each contained a canopy crane, operated by the 
Chinese Academy of Sciences, which provided access to the upper tree 
canopy over a 1-ha area around the tower footprint. The mean annual 
temperature (MAT) and precipitation (MAP) were reasonably similar 
between the two sites, with a MAT and MAP of 20.9 ◦C and 1927 mm 
yr− 1, respectively, at DH and 21.8 ◦C and 1493 mm yr− 1 at XSBN (Shen 
et al., 2018; Ye et al., 2008). Both sites had similar laterite soil (Cao 
et al., 2006; Gui et al., 2019). The abundant canopy tree species repre-
sentative of each site includes Machilus breviflora, Castanopsis chinensis, 
Pinus massoniana, Schima superba and other interspersed evergreen 
broad-leaved species at DH (Gui et al., 2019; Ye et al., 2008); and 
Semecarpus reticulate, Sloanea tomentosa, Pometia tomentosa, Canarium 
album, Parashorea chinensis, and other interspersed evergreen broad- 
leaves species at XSBN (Cao et al., 2006; Shen et al., 2018). 

2.2. Materials 

Across the two sites, intensive field campaigns were conducted in 
2021 during the early growing season (April 2– April 16 at XSBN and 
April 22–May 5 at DH). For each selected canopy tree, only the upper 
canopy, sunlit foliage was sampled for measurements of leaf gas ex-
change, foliar reflectance and five other functional traits (i.e., leaf mass 
per area-LMA, leaf water content-LWC, area-based leaf nitrogen content- 
Narea, area-based leaf phosphorus content-Parea, and leaf chlorophyll 

content-Chl). We sampled these traits because they are of interest to the 
broader plant ecology community and are also important parameters in 
current ecosystem models (Bonan and Doney, 2018; Ricciuto et al., 
2018; Wright et al., 2004). For each individual tree, the measurements 
of all sampled mature-green foliage were averaged to represent the traits 
of that individual (i.e., the canopy-level traits). For each tree we recor-
ded the crown shape and coordinates with a differential GPS receiver 
(i90 IMU-RTK GNSS; Shanghai Huace Navigation Technology Ltd., 
Shanghai, China). 

2.2.1. Field measurements of leaf gas exchange, spectra, and morphological 
and biochemical traits 

Leaf gas exchange was measured using four portable gas exchange 
systems (LI-6400-02B LED light source and Li-6800-02 small LED light 
source; Li-COR Inc., Lincoln, NE, USA). The percentage use of LiCOR- 
6400 and 6800 was 66.4% (n = 285 leaves) and 33.6% (n = 144 
leaves) in our data records, respectively. The detailed protocol of leaf 
gas exchange measurements and associated retrieval of Vc,max25 and 
Jmax25 is shown in Method S1, and summarized here. Following best 
practices, branches were harvested before dawn and cut under water to 
avoid inducing xylem embolism (Wu et al., 2019). Representative leaves 
(according to the colour, size and rigidity of the leaves; Chavana-Bryant 
et al., 2017; Wu et al., 2019) were then selected to measure the response 
of net CO2 assimilation rate (A) to intracellular CO2 concentration (Ci) 
(commonly known as an A-Ci curve, Bernacchi et al., 2013, e.g., Fig. S1), 
closely following the protocol of Yan et al. (2021). For each tree, we 
sampled two branches, and selected two to four leaves per branch to 
measure the A-Ci response. 

Immediately after gas exchange measurements, we collected leaf 
reflectance spectra with a field-portable spectroradiometer, a Spectra 
Vista Corporation (SVC) HR-1024i together with their Leaf-Clip 
Reflectance-Probe (LC-RP-Pro) fore-optic (SVC, Poughkeepsie, NY, 
USA). The spectroradiometer has a full spectral range of 350–2500 nm, 
the full-width half maximum (FWHM) ≤3.3 nm at 700 nm, ≤9.5 nm at 
1500 nm, and ≤ 6.5 nm at 2100 nm, and a final sampling internal of 1 
nm through the linear interpolation (Ely et al., 2019; Yan et al., 2021). 

Fig. 1. Sampling sites across the two forest types in 
China. (a) Location of the two canopy crane sites in 
China, including a subtropical forest in Mountain 
Dinghu (DH) and a tropical rainforest in Xishuang-
banna (XSBN). The background shows a map of 
vegetation types reclassified from the MODIS Land 
Cover Climate Modelling Grid Product (MCD12C1) in 
2020. (b-c) At each site, the Chinese Academy of 
Sciences (CAS) maintains a canopy crane facility 
enabling access to a 1-ha area of each forest, with the 
crane tower height of 60 m in DH and 81 m in XSBN.   
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Following the protocol of Yan et al. (2021), an internal tungsten halogen 
lamp in the leaf reflectance probe was used to illuminate the leaf sam-
ples upon a black background, accompanied by a 99% reflective Spec-
tralon white panel (Labsphere Inc., North Dutton, NH, USA) for the 
reference standard. To avoid the influence of excessive heat loads on the 
measured leaf reflectance spectra, we set the integral scanning time for 
each spectrum to 1 s with the automatic integration optimization of the 
SVC spectroradiometer (Serbin et al., 2019; Yan et al., 2021). Mean-
while, the Vendor-provided SVC instrument software was used to cor-
rect discontinuities in reflectance spectra within the detector overlap 
regions (Yan et al., 2021). For each leaf, 3–6 different parts of the leaf 
adaxial surface depending on leaf size were chosen to measure the 
reflectance spectra with one spectrum per part, and then the averaged 
spectra were calculated to denote the spectral properties of that leaf. 
Some example demonstrations for the measured leaf reflectance spectra 
were provided in Fig. S2. 

Immediately following spectral measurements, the leaves were 
measured for five biochemical and morphological traits, Chl, LWC, LMA, 
Narea and Parea, following standard protocols. Leaf Chl content was 
measured by a portable optical chlorophyll meter (SPAD-502 Plus; 
Konika-Minolta, Inc., Tokyo, Japan) and denoted as SPAD-based leaf Chl 
content (ChlSPAD), as the ChlSPAD value has been demonstrated as a good 
approximate of leaf Chl content in both crops and woody plants previ-
ously (Coste et al., 2010; Silva-Perez et al., 2018; Uddling et al., 2007). 
After the Chl measurement, we determined leaf fresh mass using a 
precision balance (precision at 0.001 g; Meilen; Meifu Electronics Co. 
Ltd., Shenzhen, China), and then scanned each leaf with a digital scan-
ner (CanoScan LiDE300; Canon, Tokyo, Japan) to derive leaf area using 
the ImageJ software (version 1.53) following Guo et al. (2022). Scanned 
leaves were oven-dried to constant mass at 65 ◦C. We then determined 
the LWC (g g− 1) from the difference between leaf fresh mass and leaf dry 
mass divided by leaf fresh mass. The LMA (g m− 2) was calculated using 
leaf dry mass divided by leaf area. To measure leaf N and P concentra-
tions, dried leaves were ground with a ball mill (NM200, Retsch, Haan, 
Germany). Mass-based leaf N concentration was then determined with 
an elemental analyser (Elementar vario EL III, Elementar, Hanau, Ger-
many; Jones, 2001) through the Dumas combustion method, and mass- 
based leaf P concentration was determined by inductively coupled 
plasma optical emission spectroscopy (Thermo 6300; Thermo Scientific, 
West Palm Beach, FL) after HNO3–HF–HClO4 digestion (Jones, 2001). 
Narea (g m− 2) and Parea (g m− 2) were then calculated using mass-based 
leaf N (mg g− 1) and P (mg g− 1) concentrations multiplied by LMA. We 
use area-based measurements because the canopy-scale radiative 
transfer processes depend on area-based biochemical components 
(Kattenborn et al., 2019) and biochemical traits are usually expressed on 
an area basis in terrestrial biosphere modelling studies, in line with the 
main function of leaves for light interception (Osnas et al., 2013; Walker 
et al., 2014). 

2.2.2. UAS-based hyperspectral, LiDAR and RGB imagery, and data 
processing 

The hyperspectral imagery was collected using a hyperspectral 
snapshot imager (ULTRIS X20 Plus; Cubert GmbH, Ulm, Baden-Würt-
temberg, Germany). This sensor captures hyperspectral imagery with a 
field of view of 35◦, providing 164 spectral bands over a wavelength 
range of 350–1000 nm with a spectral resolution of 4 nm, while the 
noisy segments at wavelengths below 502 nm and beyond 870 nm were 
later removed during data processing. As a result, 93 spectral bands 
covering 502–870 nm remained and were used in the later spectral 
analysis. The imager was installed on an UAS (DJI Matrice 300 RTK, DJI, 
Shenzhen, China), and used to capture the imagery of two forest sites 
during the same period as the field campaigns. Imagery was acquired on 
April 8, 2021 at XSBN and April 29, 2021 at DH. The UAS operations 
were carried out under clear sky conditions at around local solar noon. 
Each UAS flight lasted <30 min, and thus the solar angle change effect 
on canopy reflectance measurements would be small (Fig. S3). The 

flights were conducted at an altitude ~100 m above the upper canopy 
and with a 70% overlap and 75% sidelap between adjacent images for 
front and side, respectively. Before each mission, the hyperspectral 
imager was calibrated using a white calibration panel to convert the 
digital number to reflectance value for collected images. Each flight 
mission data was processed using the Agisoft PhotoScan software (Agi-
soft, St. Petersburg, Russia) to generate mosaicked hyperspectral image 
covering the entire forest landscape, with an area of ~250 × 250 m2 at a 
spatial resolution of ~0.16 m for each study site. 

We processed the hyperspectral imagery as follows: First, we 
generated a Normalized Difference Vegetation Index (NDVI) mask using 
two bands of 672 and 864 nm, and then used a NDVI threshold of 0.7 to 
filter all the non-vegetation pixels, following Martin et al. (2018). Sec-
ond, we generated the shadow mask using a site specific supervised 
maximum likelihood classifier (Richards, 2013) in ENVI (version 5.3, 
Exelis Visual Information Solutions, Boulder, CO, USA; Fig. S4), by 
which we filtered those shadow-contaminated pixels caused by gaps, 
self-shading or the adjacent taller canopies. Third, we followed Mea-
cham-Hensold et al. (2020) and smoothed the canopy spectra on an 
image pixel basis using the Savitzky-Golay filter (Savitzky and Golay, 
1964) for removing the high frequency noise with a second-order 
polynomial and a moving window of 15 spectral bands. Fourth, we 
performed brightness normalization on a pixel basis by dividing the 
entire spectral vector with its root sum of squares (Feilhauer et al., 
2010). Notably, the brightness normalization method was used here 
because it reduced the impacts of sun angle and shadow on canopy 
spectra (Singh et al., 2015; Martin et al., 2018), reducing the variation of 
intra-crown spectra by ~56% (Fig. S5b and e) while increasing the ratio 
of the inter-crown to intra-crown spectral variation by ~35% (Fig. S5c 
and f). 

During the same field campaigns, we also collected UAS-based 
LiDAR data with a LiAir V LiDAR system (GreenValley International, 
Berkeley, CA, USA) mounted on the same UAS as the hyperspectral 
imagery collected. With this LiDAR data, we derived leaf area index 
(LAI) using a 3-D voxelization method (Vincent et al., 2017). LAI is in-
tegrated from plant area density, which is dependent on the directional 
gap probability. The directional gap probability in the 3-D voxelization 
method is expressed as a function of the optical path length of a laser 
pulse through a voxel and the local extinction coefficient. For details 
regarding how we retrieved LAI from UAS-LiDAR refer to Method S2. 
Notably, the LiDAR-derived plant area index (PAI) includes both leaves 
and branches/woody materials, thus, in our retrieval of LAI, we followed 
Zou et al. (2009) and used a wood-total area ratio of 20% to account for 
the branch/woody material effect. Along with UAS-based hyperspectral 
and LiDAR measurements, we also conducted UAS surveys using a DJI 
Phantom 4 Advanced quadcopter (SZ DJI Technology Co., Ltd., Shenz-
hen, China) with a built-in 20MP RGB camera, to capture high- 
resolution RGB imagery and developed detailed RGB orthomosaics 
covering the entire forest landscape, with an area of ~250 × 250 m2 at a 
spatial resolution of ~0.01 m. We cross-georeferenced the RGB, 
hyperspectral and LiDAR products of each site, and manually segmented 
the crown boundary polygons based on the georeferenced orthomosaic 
RGB images together with the in-situ field record of each canopy tree- 
crown/species. Finally, by integrating the tree-crown masks with pre- 
processed and quality-controlled hyperspectral imagery as described 
above, we further derived the crown-specific canopy spectra by 
extracting and averaging the canopy spectra of all the pixels within each 
crown boundary polygon. Some example demonstrations of the canopy 
spectra are provided in Fig. S6. Similarly, when integrating LiDAR- 
derived LAI with each individual tree-crown mask, we were able to 
derive the LAI metric for each individual tree crown. 
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2.3. Data analysis 

2.3.1. Developing spectral models of foliar physiological, biochemical and 
morphological traits 

In this study, we used partial least-squares regression (PLSR) (Wold 
et al., 2001) to infer foliar traits from leaf or canopy spectra within and 
across forest sites using the Python library ‘scikit-learn’ (Pedregosa 
et al., 2011). The PLSR method utilizes a dimensionality reduction 
transformation like principal component analysis (PCA) but takes the 
covariance between the response variable and the predictor variables 
into account, while having the advantage of direct interpretation of 
linear regression. Given this, PLSR is widely adopted in chemometric 
and spectroscopic analyses (Burnett et al., 2021). 

Specifically, we followed the same approach as Dechant et al. (2017) 
and Yan et al. (2021) for our spectra-trait modelling, in which we in-
tegrated the PLSR analysis with the repeated double cross-validation 
(rdCV) method (Filzmoser et al., 2009). The rdCV first divided the 
whole dataset into calibration and independent validation subsets 
repeatedly with a cross-validation procedure, and then further divided 
the calibration subset into training and testing components with a sec-
ond cross-validation procedure. This rdCV method can ensure that the 
actual model performance is evaluated on the independent validation 
subsets with many random splits and reduces the odds of randomly good 
or bad results. In our rdCV, we used 100 repeats, by which we generated 
an ensemble (n = 100) of PLSR models for each foliar trait. Detailed 
steps of rdCV are described in Method S3. 

Foliar samples at two sites resulted in a total of 135 individual tree- 
crowns from 42 tree species, of which 124 had leaf gas exchange mea-
surements (all samples had Vc,max25 but only 121 had enough data for 
curve fitting retrieval of Jmax25). Notably, we assessed the potential 
uncertainty introduced by the mixed use of the two LiCOR types (LiCOR- 
6400 and 6800) and the results (Fig. S7) demonstrated that differences 
between instruments were minor at the species level. Therefore, we kept 
all the physiological measurements (regardless of LiCOR types) in the 
final analysis. Before spectral modelling, we followed Wang et al. (2020) 
and conducted rdCV PLSR to calculate the mean absolute error between 
measured and predicted values. We then identified and removed outliers 
for the 5% of data with the highest errors. As a result, we had 128 ob-
servations for LMA, LWC, Chl, Narea and Parea, 118 observations for Vc, 

max25 and 115 observations for Jmax25 (Table 1). 

2.3.2. Exploring the canopy-level spectra-trait relationships under two 
modelling scenarios for the cross-site generalizability test 

To explore whether the canopy-level spectra-trait relationships are 

generalizable across two sites, we performed the PLSR modelling under 
the following two scenarios. First, ‘All-site’ canopy spectral models of 
foliar traits were developed and evaluated using the PLSR analysis (same 
as Section 2.3.1) with all the data from the two forest sites. Second, ‘Site- 
specific’ canopy spectral models of foliar traits were developed and 
evaluated using the data from each of the two forest sites. The cross- 
comparisons of these two scenarios would help to understand whether 
a general spectral model could be developed and used for inferring each 
foliar trait from canopy spectra across the two sites. 

2.3.3. Assessing the canopy structure effect on spectra-trait relationships 
from leaf to canopy level 

We had two sub-aims here: 1) to explore to what extent canopy 
structure impacts the spectra-trait relationships from the leaf to canopy 
scale, and if so, to what extent the impacts are similar or vary across the 
foliar traits, and 2) investigate whether the impacts of canopy structure 
on spectra-trait relationships can be captured by a commonly-used 
canopy radiative transfer model of 4SAIL (Verhoef et al., 2007). 4SAIL 
is based on the turbid medium assumption and is considered suitably 
applicable for mostly closed-canopy forest ecosystems like the two forest 
sites as examined in this study (le Maire et al., 2008). We used the 
PROSAIL model which is a combination of the PROSPECT leaf optical 
properties model (version PROSPECT-D; Féret et al., 2017) and the 
4SAIL canopy bidirectional reflectance model to simulate canopy 
reflectance and approximate the influence of canopy structure on model 
performance. Here, we combined our field measurements of leaf 
reflectance with the PROSPECT model to simulate both leaf reflectance 
and transmittance spectra (Shiklomanov et al., 2016; Wu et al., 2018). 

For sub-aim 1, the spectra-trait models developed with leaf spectra 
were directly transferred to the UAS-observed canopy spectra to eval-
uate the effect of canopy structure. The effect of canopy structure was 
smaller for traits if their leaf models display higher predictive accuracies 
when transferred to the canopy level, and vice versa. For sub-aim 2, we 
used PROSAIL to simulate canopy spectra, and then assessed the accu-
racy for foliar trait predictions when applying the spectra-trait models 
based on the simulated canopy spectra to the UAS-observed canopy 
spectra. High model accuracy indicates that PROSAIL captures critical 
canopy structural effects. The accuracy of model transferability was 
assessed using the correlation coefficient (r) between predicted vs. 
observed canopy foliar traits since there would have bias between leaf 
and canopy spectra, with the results from ‘All-site’ UAS-based canopy 
spectral models as the benchmark. We used the variable importance in 
projection (VIP) and spectral regression coefficients of PLSR to indicate 
the relative spectral contribution of each spectral model. 

Specifically, three scenarios of spectra-trait models were trained and 
applied to the UAS-observed canopy spectra: 1) ‘Leaf’ model, in which 
field-measured leaf spectra and associated foliar traits were used to 
develop the spectra-trait models; 2) ‘PROSAIL-fixed-LAI’ model, in 
which we integrated field measurements of leaf spectra with PROSAIL to 
simulate canopy spectra with a fixed LAI scheme (assuming that all tree 
canopies from the same forest have the same LAI value), and then 
developed the canopy spectra-trait models based on the simulated 
canopy spectra and field-measured foliar traits; 3) ‘PROSAIL-dynamic- 
LAI’ model, which is overall similar as ‘PROSAIL-fixed-LAI’ model, and 
the only difference is using the tree-crown specific LAI. Notably, because 
we do not have the ground observation of LAI, besides LiDAR-derived 
LAI as Section 2.2.2 above, we retrieved another version of LAI 
directly from the UAS hyperspectral data using look-up-table (LUT) 
approach following Sinha et al. (2020); both versions of LAI are pre-
sented in the current study, with comparable modelling results and 
illustrated with details in later sections. 

All these spectral models were trained using data from both sites, and 
the same PLSR modelling approach was used. To further minimize the 
effect associated with the use of different latent variables (i.e., a key 
parameter for PLSR modelling) across different modelling scenarios, for 
each foliar trait, we reported the results using the same number of latent 

Table 1 
Summary of the data distribution for seven field-measured foliar traits at the 
tree-crown scale used in the spectral modelling of this study. These seven traits 
include leaf maximum carboxylation rate of RuBisCO standardized to 25 ◦C (Vc, 

max25), leaf maximum rate of electron transport standardized to 25 ◦C (Jmax25), 
leaf mass per area (LMA), leaf water content (LWC), SPAD-based leaf chlorophyll 
content (Chl), area-based leaf nitrogen content (Narea), and area-based leaf 
phosphorus content (Parea). Six metrics were used to describe the data distri-
bution of each foliar trait, including number of tree-crowns (n), minimum, 
maximum, mean, standard deviation (SD) and coefficient of variation (CV).     

Field measurements 

Trait Unit n Min Max Mean SD CV 

Vc, 

max25 

μmol CO2 m− 2 

s− 1 
118 5.26 77.23 36.83 12.63 0.34 

Jmax25 μmol CO2 m− 2 

s− 1 
115 13.12 149.07 74.68 24.79 0.33 

LMA g m− 2 128 41.72 182.54 109.42 23.78 0.22 
LWC % 128 0.36 0.70 0.52 0.06 0.11 
Chl unitless 128 29.35 79.70 47.01 9.26 0.20 
Narea g m− 2 128 1.01 3.62 1.76 0.42 0.24 
Parea g m− 2 128 0.04 0.23 0.10 0.04 0.37  
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variables as the “All-site” canopy spectral model (Section 2.3.1) in the 
main text. Meanwhile, we also tested the modelling results using 
scenario-specific optimal latent variable for each foliar trait, and found 
that the model transferability would be even worse most likely due to 
the overfitting. 

For all three modelling scenarios, we resampled the field-measured 
leaf spectra and PROSAIL-simulated canopy spectra (1 nm resolution, 
400-2500 nm) into the same spectral resolution and the same spectral 
range as UAS canopy spectra (4 nm resolution, 93 bands, 502-870 nm). 
We used a Gaussian resampling approach with the sensor provided 
FWHM. Further, the leaf spectra or PROSAIL-simulated canopy spectra 
were brightness-normalized following the same method as used for UAS 
canopy spectra. 

The parameterization used in PROSAIL is described in Table 2. More 
details about PROSAIL and associated two modelling scenarios of 
‘PROSAIL-fixed-LAI’ and ‘PROSAIL-dynamic-LAI’ are shown in Method 
S4. 

2.3.4. Mapping foliar traits using UAS-based imaging spectroscopy 
To visualize and qualitatively analyze the trait variability across 

intra- and inter-specific levels, we mapped foliar traits at the tree-crown 
scale, including four steps. First, we used the ensemble ‘All-site’ UAS 
canopy spectral models (n = 100) to derive the per-pixel ensemble 
predictions. After these ensemble predictions, we then calculated the 
mean and standard deviation of predictions on a pixel and trait basis and 
repeated the procedure until all image pixels and all traits were 

calculated, by which we derived the maps of each foliar trait. Second, 
with the above trait maps, we followed Verrelst et al. (2016) to derive 
the prediction uncertainty (measured by coefficient of variation) on an 
image pixel and trait basis, and only kept those pixels with prediction 
uncertainty <25%. In addition, we also followed Wang et al. (2020) to 
filter those pixels with the predicted foliar trait value outside ±25% of 
the range of field-measured value, which were considered as unrealistic 
predictions. Third, we overlaid the retained image pixels with the 
manually created tree-crown masks (Section 2.2.2) and calculated the 
medians of the predicted trait values for all the retained pixels within 
each tree crown boundary to indicate foliar traits of each individual tree 
crown. Fourth, to visualize tree-crowns in a three-dimensional trait 
space, we created a R-G-B composite image using the rescaled, predicted 
tree-crown-scale trait values of LMA (for red band), Vc,max25 (for green 
band) and Narea (for blue band), with each band having the range of 0–1, 
corresponding to their respective trait values of minimum and 
maximum. These three foliar traits represent the morphological, physi-
ological and biochemical dimension of functional traits, and are loosely 
correlated with each other (Fig. S9). 

We further analyzed foliar trait variation within the UAS maps and 
compared the results with direct field measurements. We followed the 
method proposed by Guillén-Escribà et al. (2021) and adopted an 
analysis of variance (ANOVA)-based general linear modelling, by which 
we divided the field-/UAS-derived trait variability into interspecific and 
intraspecific components. Specifically, we fitted the species term and 
used the percentage sum of square explained by the species term to 
partition the total variance among individual tree-crowns into inter-
specific (species term) and intraspecific components (residual). The re-
sidual intraspecific variance could be attributed to many biotic and 
abiotic factors, such as ontogeny, genetic variation, and micro- 
environments. For this, we used the ‘anova_lm’ function in python 
package ‘statsmodels’ version 0.13 (Seabold and Perktold, 2010). 

3. Results 

3.1. Tree-crown scale foliar physiological traits from UAS-based imaging 
spectroscopy 

We developed spectral models to infer the leaf physiological, 
morphological and biochemical traits (Table 1) from UAS-based imaging 
spectroscopy. We found that a single canopy spectral model covering all 
tree-crowns across the two forest sites (i.e., ‘All-site’ model) was able to 
capture the variation in key photosynthetic traits (Vc,max25; R2 = 0.55, 
RMSE = 8.48 μmol CO2 m− 2 s− 1, nRMSE = 11.79%; Jmax25, R2 = 0.54, 
RMSE = 16.78 μmol CO2 m− 2 s− 1, nRMSE = 12.34%; Fig. 2 and 
Table S2). Similarly, the five other foliar traits were characterized with 
good accuracy (Fig. 2c-2g; Table S2), with LMA (R2 = 0.50, RMSE =
16.78 g m− 2, nRMSE = 11.84%), LWC (R2 = 0.38, RMSE = 0.05%, 
nRMSE = 13.48%), Chl (R2 = 0.57, RMSE = 6.03, nRMSE = 11.97%), 
Narea (R2 = 0.60, RMSE = 0.26 g m− 2, nRMSE = 10.11%), and Parea (R2 

= 0.59, RMSE = 0.02 g m− 2, nRMSE = 13.56%), showing robust model 
estimates. 

Next, we investigated how the predictive accuracy of the canopy- 
scale ‘Site-specific’ models compared to the to the ‘All-site’ models. 
We found that the ‘Site-specific’ models of foliar physiological traits had 
slightly lower predictive accuracy than the ‘All-site’ models when 
pooling all the two sites’ data together (R2 = 0.49 vs 0.55 for Vc,max25; 
R2 = 0.40 vs 0.54 for Jmax25; Fig. 3a and b; Table S2). We e also found 
that compared to the ‘Site-specific’ models, the ‘All-site’ models yielded 
much lower prediction uncertainties as indicated by the smaller hori-
zontal error bars (Fig. S10 vs. Fig. S11). Furthermore, we found the 
similar contrasts (in terms of the accuracy difference and prediction 
uncertainties) for the other five foliar morphological and biochemical 
traits (Figs. 3c-g, S10 and S11; Table S2). 

Table 2 
Parameters and associated descriptions used in the Scattering by Arbitrarily 
Inclined Leaves (SAIL) model.  

Parameter Unit PROSAIL-fixed-LAI PROSAIL-dynamic- 
LAI 

Varied parameters    
Leaf area index m2 m− 2 Site-specific LiDAR-LAI or 

hyperspectra-LAI1 
LiDAR-LAI or 
hyperspectra-LAI2 

Leaf angle 
distribution 

unitless Six types3 Six types3 

Fixed parameters    
Leaf reflectance unitless Inversed leaf reflectance4 Inversed leaf 

reflectance4 

Leaf 
transmittance 

unitless Inversed leaf 
transmittance5 

Inversed leaf 
transmittance5 

Solar zenith 
angle6 

◦ 10 for DH and 15 for 
XSBN 

10 for DH and 15 for 
XSBN 

Observer zenith 
angle 

◦ 0 0 

Relative azimuth 
angle 

◦ 0 0 

Hot spot factor7 unitless 0.004 ± 0.003 0.004 ± 0.003 
Soil factor unitless 0.25 0.25 
Diffuse radiation 

fraction 
unitless From Eq.8 From Eq.8 

1 denotes the leaf area index (LAI) that was set up as the mean value of LiDAR- 
derived LAI or hyperspectra-derived LAI for each site. 2 denotes the LAI that was 
set up using the LAI value specific to each individual tree-crown based on either 
LiDAR-derived or hyperspectra-derived LAI. 3 denotes that the SAIL model was 
run for each of the six types of leaf angle distributions: Planophile, Erectophile, 
Plagiophile, Extremophile, Spherical, and Uniform. 4 denotes the directional- 
hemispherical leaf reflectance inversed from PROCOSINE model using field- 
measured reflectance spectra as input. PROCOSINE combines close-range 
spectral imaging of leaves model (COSINE) (Jay et al., 2016) with PROSPECT 
model. 5 denotes the PROCOSINE-inversed directional-hemispherical leaf 
transmittance using field-measured reflectance spectra as input. 6 the solar 
zenith angle was set up as that at the UAS flight time. 7 the hot spot factor was set 
for each individual crown and was estimated as the ratio of leaf width to tree 
height, which resulted in a range of 0.004 ± 0.003 (mean ± std). 8 the equation 
for calculating the diffuse radiation fraction (SKYL): SKYL = 0.847 − 1.61× cos 
θs + 1.04× cos2θs, where θs indicates the solar zenith angle.  
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3.2. Transferability of spectra-trait relationships from leaf to canopy level 

We found evidence of poor transferability of ‘Leaf’ models to the 
canopy scale compared with the ‘All-site’ model based on UAS spectra 
(Figs. 4 and S13; Table S3). The closest agreement was found for LMA (r 
= 0.50 for ‘Leaf’ model vs r = 0.71 for UAS canopy model), followed by 
Chl (r = 0.45 vs 0.76), Parea (r = 0.39 vs 0.76) and Vc,max25 (r = 0.37 vs 
0.74) with moderate agreement, and Narea (r = 0.19 vs 0.77), Jmax25 (r =
0.08 vs 0.73) and LWC (r = 0.07 vs 0.62) with low agreement. Moreover, 
the actual fits shown in Fig. S13 departed significantly from the 1:1 line, 
further demonstrating the far worse fits than the r values reported. 

We also found that the ‘PROSAIL-fixed-LAI’ and ‘PROSAIL-dynamic- 

LAI’ models achieved very comparable results and generated overall 
similar patterns as the ‘Leaf’ models (Figs. 4, S14 and S15; Table S3), 
with much higher agreement in LMA (r = 0.57 for ‘PROSAIL-fixed-LAI’ 
model vs r = 0.71 for UAS canopy model) and Narea (r = 0.54 vs 0.77), 
followed by the moderate agreements in Parea (r = 0.51 vs 0.76), Chl (r =
0.50 vs 0.76), Vc,max25 (r = 0.41 vs 0.74) and Jmax25 (r = 0.26 vs 0.73), 
and the low agreement in LWC (r = 0.11 vs 0.62). We also observed 
slight improvements in model agreement for the ‘PROSAIL-fixed-LAI’ 
and ‘PROSAIL-dynamic-LAI’ models relative to the ‘Leaf’ models, with 
the absolute r increase ranging from 0.04 in LWC to 0.35 in Narea. 
Nevertheless, the actual fits shown in Fig. S14 and S15 again departed 
significantly from the 1:1 line, implying the low model transferability 

Fig. 2. Accuracy assessments for the ‘All-site’ canopy spectral models of foliar physiological, morphological, and biochemical traits, including (a) maximum 
carboxylation rate of RuBisCO standardized to 25 ◦C (Vc,max25), (b) maximum rate of electron transport standardized to 25 ◦C (Jmax25), (c) leaf mass per area (LMA), 
(d) leaf water content (LWC), (e) SPAD-based leaf chlorophyll content (Chl), (f) area-based leaf nitrogen content (Narea), and (g) area-based leaf phosphorus content 
(Parea). The ‘All-site’ canopy spectral models were trained and evaluated using the data from all the two forest sites through the repeated double cross-validation 
method. Error bars indicate ±1 standard deviation for each predicted value derived from the ensemble partial least-squares regression (PLSR) models. The grey 
dashed line represents the 1:1 line, and the black line shows the fitted line of ordinary least-squares regression for all samples from the two forest sites. Two different 
colored circles indicate each of the two forest sites, with Mountain Dinghu (DH) in blue and Xishuangbanna (XSBN) in yellow. Abbreviations: R2, the coefficient of 
determination; RMSE, root mean square error; nRMSE, normalized root mean square error; Bias, the residual bias. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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when using the PROSAIL process modelling approach. 
We explored the potential drivers of the mismatch of leaf-to-canopy 

spectral model transferability by analyzing the model specific sensitive 
spectral regions for trait predictions (Fig. 5). Using Vc,max25 as an 
example, the VIP figure of the ‘All-site’ UAS-based canopy spectral 
model identified several important spectral domains for Vc,max25, 
including significant and dominant contribution (indicated by VIP >
1.0) from 690 to 766 nm, 774–786 nm, and 854–870 nm. For the ‘Leaf’ 
model, the VIP figure identified significant but dominant contribution 
from 502 to 510 nm, 638–734 nm, and 854–870 nm. While for the 
‘PROSAIL-fixed-LAI’ and ‘PROSAIL-dynamic-LAI’ models, the VIP fig-
ures were nearly identical, with both identifying significant but domi-
nant contribution from 522 to 560 nm, 678–754 nm, and 862–870 nm. 
In other words, certain sensitive spectral regions (e.g., 690–734 nm and 
862–870 nm) are shared by all modelling scenarios, but each scenario 
also has specific sensitive spectral regions. Similarly, similarities and 
differences in the sensitive spectral regions across modelling scenarios 

were also observed for Jmax25 and the other five foliar traits (Fig. 5). 

3.3. Mapping foliar traits using UAS-based imaging spectroscopy 

Our results showed that UAS-imaging-derived foliar traits display 
large inter-crown variability, consistently at both sites (Figs. 6 and 7). Vc, 

max25 varied from 10 to 57 μmol CO2 m− 2 s− 1 and Jmax25 varied from 26 
to 103 μmol CO2 m− 2 s− 1 at DH, and Vc,max25 varied from 13 to 60 μmol 
CO2 m− 2 s− 1 and Jmax25 varied from 38 to 112 μmol CO2 m− 2 s− 1 at 
XSBN. When overlapping these physiological trait maps with manually 
created tree-crown masks (Figs. 6j, 7j), we found that there were two 
primary sources of variation responsible for these observed inter-crown 
trait patterns (Table S4). At DH, at the intraspecies level, for example, 
Castanea henryi has a range of 20–57 μmol CO2 m− 2 s− 1 in Vc,max25, and 
of 50–103 μmol CO2 m− 2 s− 1 in Jmax25; and Schima superba has a range of 
13–44 μmol CO2 m− 2 s− 1 in Vc,max25, and of 38–92 μmol CO2 m− 2 s− 1 in 
Jmax25; at the interspecies level, Cinnamomum camphora has the largest 

Fig. 3. Cross-comparison of the canopy spectral model performances of foliar physiological, morphological, and biochemical traits under the ‘All-site’ and ‘Site- 
specific’ scenarios. The ‘All-site’ spectral models (in blue) were trained and evaluated using the data from all the two forest sites through the repeated double cross- 
validation (rdCV) method. The ‘Site-specific’ models (in red) were trained and evaluated using the data from each forest site through the rdCV method. Bars indicate 
the values of coefficient of determination (R2); Scatter plots for these spectral models under the two scenarios are provided inS10 and S11. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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species-level mean Vc,max25 of 41 μmol CO2 m− 2 s− 1 and Jmax25 of 70 
μmol CO2 m− 2 s− 1, and Caryota ochlandra has the lowest species-level 
mean Vc,max25 of 15 μmol CO2 m− 2 s− 1 and Jmax25 of 39 μmol CO2 
m− 2 s− 1. Similar inter-crown variations at the intraspecific and inter-
specific levels were also observed at XSBN (Table S4). Similar large 
crown-to-crown trait variability across both intraspecific and interspe-
cific levels were observed for the other five morphological and 
biochemical traits (Fig. 6d-h in DH and Fig. 7d-h in XSBN). 

We also visually analyzed the crown-to-crown variability from the 
multi-traits’ perspective, using the three-trait-composite maps of DH 
and XSBN (Figs. 6i, 7i), with LMA for red band, Vc,max25 for green band, 
and Narea for blue band. We found that there was overall very high 
correspondence between the species map and the composite image for 
each of the two sites, with the tree-crowns of the same species tending to 
have similar R-G-B colour space in the composite trait map. These ob-
servations again demonstrate that species identity importantly affects 
the crown-scale trait variations. In addition, within each species, we also 
observed low-to-moderate R-G-B colour variations in the composite trait 
map, demonstrating that intraspecific variation is another source of 
factors influencing inter-crown trait variations. 

An additional analysis was also performed to quantitatively partition 
the field-observed crown-scale trait variability into interspecific and 
intraspecific components. Our results show that the interspecific 
component dominates the explanations (Fig. 8; Tables S5 and S6). 
Specifically, at DH, Parea is best explained by interspecific variation 
(91.9%), followed by Chl (85.5%), Narea (84.1%), LWC (77.1%), LMA 
(76.7%), Jmax25 (53.6%) and Vc,max25 (53.0%); at XSBN, LWC is best 
explained by interspecific variation (89.5%), followed by Chl (87%), Vc, 

max25 (82.5%), Jmax25 (76.6%), LMA (65.3%), Parea (60.2%) and Narea 

(55.0%). In addition, we also found that the source of the trait variability 
predicted from the UAS-based imaging spectroscopy very well resem-
bled the patterns as revealed by the direct field measurements (Fig. 8; 
Tables S5 and S6). 

4. Discussion 

4.1. Inferring foliar physiological traits from UAS-based imaging 
spectroscopy 

Our results demonstrated, for-the-first-time, that in natural forest 
tree canopies a UAS-based imaging spectroscopy approach can charac-
terize the inherent variations in foliar physiological traits of Vc,max25 and 
Jmax25 of subtropical and tropical forests (Fig. 2). This finding comple-
ments previous studies from agricultural systems that used piloted 
airborne imaging spectroscopy (Serbin et al., 2015) and ground mobile 
system (Fu et al., 2020; Meacham-Hensold et al., 2020), that also 
showed the capability to infer crop canopy physiological traits remotely. 
Compared with those previous examples from agricultural ecosystems, 
our results show a lower model performance (R2), but given the simpler 
canopy structure of agricultural systems and quite comparable nRMSE, 
this suggests the approach is robust. The lower R2 of this study is likely 
due to more complex canopy structure and narrower ranges of foliar 
physiological traits in our natural forests than those in agricultural 
ecosystems (Fu et al., 2020; Kumagai et al., 2021; Meacham-Hensold 
et al., 2020; Silva-Perez et al., 2018). For example, Vc,max in Meacham- 
Hensold et al. (2020) had a range of 13.4 μmol m− 2 s− 1 to 359.3 μmol 
m− 2 s− 1, ~5 times larger than ours. Another reason could be that much 
narrower spectral range (502–870 nm) was used in our imaging system 
relative to the wider spectral range (414–2447 nm) used in Serbin et al. 
(2015) and that (400–900 nm) in Fu et al. (2020). 

We also found that a single ‘All-site’ spectral model could be devel-
oped for each foliar trait, and these models outperformed the ‘Site- 
specific’ models (Fig. 3 and Table S2). Although it is usually expected 
that ‘Site-specific’ spectral models will produce better or at least com-
parable results to ‘All-site’ spectral models (e.g., Yan et al., 2021), our 
study did not find this to be the case. This is likely due to the limited 
sample size and trait range on each site (n = 67 tree crowns for DH; n =
61 tree crowns for XSBN). Therefore, it is not surprising to see that the 
‘Site-specific’ spectral model generated higher model uncertainty as 
indicated by the larger horizontal error bars (Fig. S10 vs. Fig. S11) and 
predicted less accurately compared to the ‘All-site’ spectral model when 
more abundant samples were used for model training. Additionally, the 
wider trait range resulting from pooling data from both sites (e.g., Vc, 

max25 = 5.26–77.23 μmol CO2 m− 2 s− 1 for two sites vs. Vc,max25 =

5.26–64.66 μmol CO2 m− 2 s− 1 for DH and 7.81–77.23 μmol CO2 m− 2 s− 1 

for XSBN) could also be attributed to the much larger sample size, 
resulting in more stable and accurate spectral modelling (Asner et al., 
2011; Wu et al., 2019). 

Although the broader-scale generalizability between plant spectral 
properties and traits at the leaf level have been widely reported previ-
ously (e.g., Nakaji et al., 2019; Serbin et al., 2019; Wu et al., 2019; Yan 
et al., 2021), our work extends this to the canopy for foliar physiological 
traits. As with previous research, we also demonstrate the potential of 
using imaging spectroscopy as a general approach for cross-site char-
acterizations of foliar morphological and biochemical traits (Chlus and 
Townsend, 2022; Martin et al., 2008; Wang et al., 2020). Our findings, 
combined with those of previous studies, highlight the effectiveness of 
imaging spectroscopy in characterizing multiple foliar (e.g., morpho-
logical, biochemical, and physiological) trait variability across different 
scales. To improve understanding and accelerate progress towards 
robust methods that can work across a wider range of space, time and 
biological variation, we encourage additional data collection, open 
sharing of both spectral and trait data, and collaboration among those 
groups aiming to develop and apply these techniques. 

Fig. 4. Transferability of three spectral models to the UAS-observed canopy 
reflectance spectra for predicting foliar physiological, morphological, and 
biochemical traits, including the ‘Leaf’ spectral models, the ‘PROSAIL-fixed- 
LAI’ spectral models and the ‘PROSAIL-dynamic-LAI’ spectral models. The same 
UAS-based canopy spectral models as those in Fig. 2 are placed as the bench-
mark. The three models (i.e., ‘Leaf’, ‘PROSAIL-fixed-LAI’ and ‘PROSAIL-dy-
namic-LAI’ spectral models) were built based on field-measured leaf-scale 
reflectance spectra or PROSAIL simulated canopy reflectance spectra, and then 
applied to the UAS-observed canopy reflectance spectra for trait predictions. 
The mean of two ways of LAI parameterization (LiDAR-LAI or hyperspectra- 
LAI) for PROSAIL were displayed. Error bars indicate the range of PROSAIL 
modelling results respectively relying on LiDAR-LAI and hyperspectra-LAI as 
the model input. The PROSAIL model result with the ‘Spherical’ leaf angle 
distribution was displayed here; the PROSAIL model results with other leaf 
angle distributions were displayed in Fig. S16. Bars indicate the values of 
Pearson’s correlation coefficients for the relationships between observed and 
predicted trait values. 
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Fig. 5. Assessing the reflectance contributions to the spectral models of leaf physiological, morphological, and biochemical traits under the four scenarios using the 
partial least-squares regression (PLSR) approach, including the left panel (a-g) for the variable importance in projection (VIP), and the right panel (h-n) for PLSR 
regression coefficients. The four scenarios included the ‘All-site’ canopy spectral models as those in Fig. 2, the leaf spectral models, the ‘PROSAIL-fixed-LAI’ spectral 
models and the ‘PROSAIL-dynamic-LAI’ spectral models. The colored lines indicate the mean values of standardized PLSR regression coefficients and VIP spectrum, 
respectively. The mean of two ways of LAI parameterization (LiDAR-LAI or hyperspectra-LAI) were displayed for the ‘PROSAIL-fixed-LAI’ spectral models and the 
‘PROSAIL-dynamic-LAI’ spectral models. Shaded regions indicate the range of results of using two ways for LAI parameterization. On the left panel, the red dashed 
line represents VIP of 1, which was suggested as the threshold to identify the sensitive spectral regions for the spectral modelling (Wold et al., 2001). All the PLSR 
coefficients were standardized to a range of − 1 to 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Fig. 6. Maps of canopy tree-crown RGB image based on a UAS survey at the Mt. Dinghu site (a), spatial variations in the seven traits (b-h), RGB composited image (i) 
of Vc,max25 (red), Narea (green) and LMA (blue), and field-identified tree species distribution (j). These trait maps were derived from the “All-site” canopy spectral 
models of foliar traits. Different geometric polygons indicate manually identified canopy tree-crowns, with white borders representing the crown boundaries. The 
UAS-based hyperspectral image is used to derive the pixel-level leaf traits, and then the medians of the predicted trait values for all pixels within each tree crown 
boundary were displayed here. In panels (b-h), the black areas indicate pixels that are filtered with low NDVI values, shadows or high uncertainty in the trait 
prediction. In panel (j), the colors represent different tree species, with a total of 17 canopy tree species. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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Fig. 7. Maps of canopy tree-crown RGB image based on a UAS survey at the Xishuangbanna site (a), spatial variations in the seven traits (b-h), RGB composited 
image (i) of Vc,max25 (red), Narea (green) and LMA (blue), and field-identified tree species distribution (j). These trait maps were derived from the “All-site” canopy 
spectral models of foliar traits. Different geometric polygons indicate manually identified canopy tree-crowns, with white borders representing the crown boundaries. 
The UAS-based hyperspectral image is used to derive the pixel-level leaf traits, and then the medians of the predicted trait values for all pixels within each tree crown 
boundary were display here. In panels (b-h), the black areas indicate pixels that are filtered with low NDVI values, shadows or high uncertainty in the trait prediction. 
In panel (j), the colors represent different tree species, with a total of 37 canopy tree species. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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4.2. The effect of canopy structure on the spectra-trait relationships from 
leaf to canopy level 

Leaf optical properties have long been hypothesized as a key basis of 
canopy imaging spectroscopy (Baret et al., 1994). Our results demon-
strate that the transferability of spectra-trait relationships from leaf to 
canopy level varies considerably across foliar traits, with modest cross- 
level transferability in LMA and Chl, and low transferability in the 
physiological (i.e., Vc,max25 and Jmax25) and other biochemical traits (i.e., 
LWC, Narea and Parea) (Fig. 4). The underlying reason is largely because 
absorption processes dominate canopy reflectance in the visible part of 
the spectrum, while scattering processes dominate the NIR spectrum 
(Fig. S17; Asner, 1998; Kokaly et al., 2009; Ustin et al., 2009; Wu et al., 
2019). Since the two processes depend on both leaf optical properties 
and canopy structure, high visible light absorption means that the light 
only shows minor scattering and the leaf and canopy level reflectance 
differ primarily due to differences in shadowing. While in the NIR, the 
low absorptance and high transmittance of leaves propagate to canopy 
reflectance spectra though canopy structure, resulting in high scattering 
(Roberts et al., 2004). 

Because of these distinct contributions of leaf spectra and canopy 
structure to canopy spectra, it is thus not surprising to see the relatively 
higher cross-level spectral model transferability in LMA and Chl (Fig. 4), 
as these traits show higher dependence on the visible reflectance spectra 
(dominated by leaf spectra). Other traits (e.g., Vc,max25, Jmax25, LWC, and 
Narea) exhibit higher dependence on canopy NIR reflectance (Fig. 5), 
where leaf spectra have little contribution, thus resulting in the much 
lower cross-level transferability of these traits (Fig. 4). Interestingly, we 
found that ‘Leaf’ models had low model transferability for character-
izing canopy foliar Narea (r = 0.19 vs 0.77), but the ‘PROSAIL-dynamic- 
LAI’ models showed large improvement (r = 0.57 vs 0.77), likely 
because canopy structure dominates the canopy spectral model of foliar 
Narea as hypothesized by Knyazikhin et al. (2013). 

Since canopy structure is important in affecting the transferability of 
spectra-trait relationships from leaf to canopy level, we next investi-
gated whether the commonly used 4SAIL model could capture such 
canopy structural effects. Our results indicate that although PROSAIL 
can capture canopy structural effects to some extent for certain foliar 
traits, such as LMA and Chl, it may not consistently capture these effects 

for other traits, regardless of the LAI version used (e.g., LiDAR- vs. 
hyperspectra-derived LAI) (Fig. 4). The underlying reason could be 
largely associated with the canopy structural diversity among tree in-
dividuals in our studied sites (Yi et al., 2022), which includes the di-
versity covering multi-dimensional canopy structure attributes (e.g., 
LAI, surface rugosity, leaf angle distribution, vertical profile of leaf area, 
etc.). As a result, the simple canopy radiative transfer model of 4SAIL 
could not well capture such complex canopy structural effects, espe-
cially those structural variables beyond LAI. This interpretation is sup-
ported by studies that integrated terrestrial LiDAR-derived 3-D canopy 
structure with more sophisticated canopy radiative transfer models (e. 
g., FLiES (Kobayashi et al., 2012), DART (Gastellu-Etchegorry et al., 
2015) or others) and found large simulated canopy reflectance differ-
ences when compared with the 4SAIL results (Ferreira et al., 2018; 
Timmermans et al., 2008; Wu et al., 2018). In other words, although 
4SAIL might be efficient in capturing the LAI effect on canopy reflec-
tance spectra (Fig. 4), other dimensions of canopy structural attributes 
(e.g., leaf angle distribution, etc.) might be more important regulators of 
the spectra-trait relationships in the real-world forest tree canopies, but 
not yet effectively captured by the 4SAIL model. Therefore, it should be 
cautioned that the canopy reflectance is not just simply adding canopy 
structural signals (like LAI) with a few leaf reflectance measurements. 

Our results also generate at least two implications. First, the inte-
gration of the PROSPECT model with leaf spectra and other represen-
tations of canopy structure (e.g., LiDAR, ecosystem demography models, 
or others) has been suggested as a way to explore practical and broad- 
scale applicability of canopy spectra-trait models, by which various 
canopy level spectral measurements (from UAS, airplane, and satellites) 
can be assimilated for foliar trait predictions (Abdelbaki et al., 2021; 
Shiklomanov et al., 2021; Tagliabue et al., 2022; Verrelst et al., 2021). 
However, our work raises concern regarding this approach, as the 
complexity of the canopy structural effects would make the spectra-trait 
relationships less transferable from the leaf to canopy level, and difficult 
to be captured by process-based radiative transfer models. Second, since 
canopy structure importantly regulates canopy spectra-trait relation-
ships but is difficult to be captured by 4SAIL, our results further suggest 
that the broader-scale field campaigns of both canopy spectra and foliar 
physiological traits would be one of the most important alternatives for 
directly exploring the large-scale applicable imaging spectroscopy 

Fig. 8. Variance partitioning of foliar physiological, morphological, and biochemical traits at DH and XSBN sites. The total variability for each trait was partitioned 
into the interspecific and intraspecific components. The darker colour indicates the variance partitioning results from field-observed foliar traits, while lighter colour 
indicates the variance partitioning results from foliar traits predicted from UAS-based imaging spectroscopy. 
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approach for foliar physiological trait characterizations. 

4.3. Foliar trait mapping and implications underlying the inter-crown trait 
variability 

Our research provides at least two implications for plant functional 
ecology research. First, our study demonstrates that UAS-based imaging 
spectroscopy can improve the monitoring efficiency and spatial extent of 
foliar trait characterizations, especially when comparing with conven-
tional field-based monitoring methods. As illustrated in this study, the 
UAS imaging spectroscopy enables tree-crown-scale monitoring of foliar 
traits, maps foliar traits covering the forest landscapes with spatially 
explicit information, and offers a high-throughput means to character-
izing multi-dimensional foliar traits ranging from morphological, 
biochemical to physiological traits (Figs. 6 and 7). Meanwhile, com-
bined with the individual tree-crown boundaries obtained from the field 
investigation (or high-resolution aerial photograph), the UAS-based 
imaging spectroscopy also allows accurate mapping of traits at the in-
dividual tree-crown level with relevant species information. Individual 
trees are the basic unit for scaling plant functional traits from the or-
ganism to the ecosystem level (Violle et al., 2007), but it is challenging 
to do this from field plot-based or remote sensing image-pixel-based 
studies (Asner et al., 2015; Meacham-Hensold et al., 2020; Wang 
et al., 2020) where the contribution of individual trees is lost. Our 
proposed individual tree-crown level trait mapping offers a unique op-
portunity to examine the trait variability across intra- and inter-specific 
levels (Figs. 6, 7, and 8; Tables S6 and S7), as well as to understand how 
the fine-scale trait variability ultimately determines the ecosystem level 
trait value and diversity. 

Second, the imaging spectroscopy-derived tree-crown scale foliar 
traits contribute to an important dataset that could advance plant 
functional ecology studies. Relevant potential topics include but are not 
limited to interpreting the trait variability and trait-trait coordinated 
relationships across various ecological levels (e.g., from organisms to 
ecosystems), exploring the proximate (related with both micro- and 
macro- environmental conditions) and ultimate (related with funda-
mental eco-evolutionary principles) drivers of foliar trait variability, and 
assessing the roles of plant functional diversity in regulating many 
important ecosystem processes, functioning, and resilience/vulnera-
bility response to climate change (Durán et al., 2019; Feilhauer et al., 
2018; Schneider et al., 2017; Schweiger et al., 2018; Wang et al., 2022; 
Wieczynski et al., 2022; Zheng et al., 2021). Moreover, since Vc,max25 
and Jmax25 are arguably two of the most important parameters for 
modelling plant photosynthesis, their availability would offer a poten-
tial to simulate and map plant photosynthesis at the tree-crown scale. 
Such data can also help explore how these fine-scale physiological trait 
variability would affect the simulations of ecosystem-level physiological 
and sensitivity responses to current and future climate change (Ber-
nacchi et al., 2013; Jetz et al., 2016; Kattge et al., 2009; Rogers, 2014). 
The mapped plant photosynthetic capacity might be also useful to 
evaluate several satellite proxies of canopy photosynthesis, such as 
solar-induced fluorescence (SIF), near-infrared reflectance of vegetation 
(NIRV) and near-infrared reflectance of vegetation multiplied by 
incoming sunlight (NIRVP) (Zeng et al., 2022), and uncover the key 
biophysical mechanisms (related with physiological traits, canopy 
structure, and physiological response to various environmental 
stressors) underlying the spatiotemporal variability in these satellite 
photosynthetic proxies. 

5. Conclusion 

In this study, we used data from two forest sites in Southern China to 
demonstrate that UAS-based imaging spectroscopy can be an effective 
and cross-site generalizable method for characterizing tree-crown scale 
physiological (Vc,max25 and Jmax25), morphological and biochemical 
traits (i.e., LMA, LWC, Chl, Narea, and Parea) (Figs. 2 and 3). We also 

found that canopy structure altered spectra-trait relationships from leaf 
to canopy level, and such effects varied considerably across foliar traits 
and were not adequately captured by the 4SAIL canopy radiative 
transfer model (Fig. 4). Thirdly, UAS-based imaging spectroscopy can 
map spatially explicit variations in all foliar traits (including physio-
logical traits) shaped by both intra- and inter-specific components 
(Figs. 6, 7, and 8). These maps provide a critical dataset for assessing 
foliar trait variability across various levels, as well as understanding the 
theory underlying trait-trait coordination. These findings suggest that 
imaging spectroscopy has the capability to map foliar photosynthetic 
capacity at both fine and ecosystem scale, with potential to be extended 
to even larger spatial extents. 
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Onipchenko, V., Onoda, Y., Onstein, R.E., Ordonez, J.C., Osada, N., Ostonen, I., 
Ottaviani, G., Otto, S., Overbeck, G.E., Ozinga, W.A., Pahl, A.T., Paine, C.E.T., 
Pakeman, R.J., Papageorgiou, A.C., Parfionova, E., Pärtel, M., Patacca, M., Paula, S., 
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