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ABSTRACT: Microplastics and nanoplastics (MNPs) contami-
nation is an emerging environmental and public health concern,
and these particles have been reported both in aquatic and
terrestrial ecosystems. Recent studies have expanded our under-
standing of the adverse effects of MNPs pollution on human,
terrestrial, and aquatic animals, insects, and plants. In this
perspective, we describe the adverse effects of MNPs particles on
pollinator and plant health and discuss the mechanisms by which
MNPs disrupt the pollination process. We discuss the evidence and
integrate transcriptome studies to investigate the negative effects of
MNPs on the molecular biology of pollination, which may cause
delay or inhibit the pollination services. We conclude by addressing
challenges to plant−pollinator health from MNPs pollution and argue that such harmful effects disrupt the communication between
plant and pollinator for a successful pollination process.
KEYWORDS: Micro and nanoplastics, Pollination, Pollinators, Pollination biology

■ INTRODUCTION
Pollination is essential for the sexual reproduction of all seed
plants and provides benefits to the human population, which
involves the transfer of pollen grains from the stamen (male
reproductive organ) to the stigma (female reproductive organ).
Self-pollination or autogamy, geitonogamy, and cross pollina-
tion are the major different types of pollination.1 Cross
pollination is accomplished naturally through insects (en-
tomophily) and winds (anemophily) but can also be
performed by hand to produce offspring with desired
characters, such as pest resistance or color.2

Anemophily or wind pollination contributes to at least 10%
of angiosperm plant pollination and has evolved 65 times from
animal pollinated ancestors, providing reproductive assurance
when insect pollinators are scarce.3−5 For the initiation and
success of wind pollination, plant must release and disperse
pollen in airflows and catch airborne pollen;6 therefore,
anemophily plants possess and adopt several traits like
unscented flowers, small or absent petals, greenish or whitish
floral color, feathery styles, and few or one ovule per flower.3

Several factors contribute to the process of pollen release in
wind pollination angiosperms such as structure and diversity of
stamen,7−9 environmental and meteorological drivers such as
solar radiation, relative humidity, temperature, and wind
speed,10−12 and biomechanics of pollen release such as
aerodynamics and mechanical and recessive forces.6,13−17

The molecular mechanism of wind pollination has been
reviewed recently by Fattorini and Glover.1

Insect pollination or entomophily refers to the transfer of
pollen grains from anthers to stigmas by insects and is crucial
for almost all terrestrial plant reproduction and vital for the
sustainability and conservation of global flora and fauna. A
total of 87.5% of all wild plants depends on insect
pollination,18 of which 20% pollinate from bees.19 Moths,
butterflies, birds, stingless bees, honeybees, and bats are the
pollinators in the tropics, whereas honeybees, bumblebees,
solitary bees, wasps, and hoverflies provide pollination services
in temperate regions.20 It is estimated that there are 100,000 or
more species present in the tropics and also around 220,000
species present in pollinator taxonomic groups of flowering
plants.21 Globally, 1500 crops need insect pollination,20,22 and
from 3% to 8% of the world crop production is dependent on
insect pollination.23

In recent years, the decline in pollinator abundance and
distribution received global attention,18,24−26, as different
regions in the world reported reductions in different species
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of pollinators,27−31 which pose major risks to food production
and security, ecosystem biodiversity, and plant health.32

Studies reported several factors such as change in agricultural
landscape,33,34 pathogens and parasites,35,36 climate
change,37,38 indiscriminate use of synthetic and broad-
spectrum pesticides,39−41 introduction of invasive species,42,43

air pollution,44,45 unfavorable environmental and meteoro-
logical conditions,46 pests,36 fragmentation, and habitat
destruction21 for the decline of the worldwide pollinator
population.
Plastic pollution accumulation in soil, water, and in other

areas of the environment is considered “poorly reversible” and
poses a major threat to human health, biodiversity, and
terrestrial and aquatic ecosystems.47 A total of 79% of all
generated plastic waste is accumulated in the natural
environment, and it will exceed 12,000 Mt by 2050.48 The
commonly used plastics are synthesized from fossil hydro-
carbon derivatives such as ethylene and propylene, which are
not biodegradable and hence accumulate in landfills or the
natural environment.48,49 Plastic debris deteriorates and turns
into fragments, spheres, and fibers which are called micro-
plastics (MPs 1−5000 um) and nanoplastics (NPs < 1um),50

and the presence and pollution of micro and nanoplastics
(MNPs) are reported in almost all niches of the ecosystem. A
vast number of studies documented the presence of MPs in the
environment; but due to technical limitations, the detection of
NPs in the environment remains largely unknown. Studies
suggested that MNPs pollution in ecosystems negatively affects
the survival and health of animals and plants and disrupts the
communication mechanism between plants and insects,
especially pollinators. This perspective targets recent advances
to synthesize current approaches to measure the effects of
MNPs on pollinators and plant health, to understand the
MNPs uptake mechanisms by plants and insects, and to
identify direct or indirect effects of MNPs on pollination
biology.

■ EFFECTS OF MNPS ON POLLINATORS
Pollinator health should be assessed across species by
characterizing individuals, colonies, and populations to
effectively observe the vulnerability, adaptability, and resilience
of different pollinator species to their environmental context.
Hence, the term “pollinator health” is defined as the state that
permits the individuals even in the presence of pathogens to
live longer and reproduce more.51 Several individual level
aspects such as body size, growth, reproduction with
adoptability, and resilience to environmental conditions are
aspects of pollinator health considered at a population level.51

Here, we highlight the effects of MNPs on individual and
population healths of several insect species, with special
reference to pollinators such as honeybee health, and how they
affect the pollination process and ecosystem services. The
effects of MNPs on pollinators and the interactions between
plants and pollinators are summarized in Figure 1.

■ EFFECTS OF MNPS ON BODY SIZE AND GROWTH
OF INSECTS

Body size is one of the most striking and key features of all
organisms, and several factors positively or negatively affect the
body size such as feeding, resource acquisition, and nutritional
availability.52,53 In insects, larval feeding and growth are
critically regulated by juvenile hormones along with the
prothoracicotropic hormone (PTTH) and Ecdysteroids
activity. During the last larval instar, PTTH stimulates the
secretion of Ecdysteroids, by which insects stop feeding, and
usually the last larval instar mass determines adult size, as many
adult insects do not feed.54−56 The adult body size in many
insects such as Drosophila is dependent on the activity of
insulin and insulin-like growth factor signaling, which influence
both adult body size and growth rate.54,57,58

Exposure or feeding of MNPs negatively regulates the body
size and growth of several insect species. Fragments and fibers
of MNPs at the rate of 52% and 38%, respectively, are
observed in honeybees collected from urban and suburban

Figure 1. Overview of MNPs on pollination biology and plant−pollinator interactions. Plant exposure to MNPs shows growth retardation and
morphological abnormalities in different tissues. Molecular profile of plant exposed to MNPs stresses which disrupt plant secondary metabolites
and plant hormones that play key roles in pollination and pollinator attraction. Key genes and enzymes responsible for maintaining floral features
such as pigmentation, floral signals, and producing or emiting volatile organic compounds (VOCs) are disrupted with MNPs exposure. MNPs
negatively affect pollinator body size and disrupt the pollination process by altering pollinator behavior, memory, and metabolism.
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areas.59 The oral exposure of polystyrene MPs significantly
reduced the body weight and growth of honeybees, and the
exposure of 100 nm polystyrene particles leads to 91.67%
reduction in growth and whole-body weight of honeybees
compared with a normal control.60 In another study, it is
reported that MNPs negatively impact the body size (body
length and head capsule) of Chironomus tepper.61 Insects and
other invertebrates exhibit varying degrees and diverse
responses to different sizes and concentrations of MNPs.62,63

This growing body of evidence suggests that oral delivery of
MNPs to organisms causes adverse effects on individual health
by blocking digestive tracts, inhibiting or altering feeding
behavior, which causes reduction in growth, whole body
weight, and size.64,65

■ EFFECTS OF MNPS ON GUT MICROBIOTA OF
INSECTS

Bacteria in the guts of insects, animals, and humans offer a
variety of useful services to the host body, including the
provision of nutrients, control of development and physiology,
digestion of lipids and proteins, detoxification and modification
of plant secondary compounds, defense against predators,
parasites, and pathogens, immunity to unfavorable conditions,
and communication between and within species,66−69 and for
these and several other beneficial functions, the host insects
rely on gut microbiota.70 The gut microbiota of insects affect
the interaction of insects with crop plants, such as crop pests
and pollinators.66 The gut microbiota of pollinators or
herbivores impact the behavior and physiology of the host
insect, and these bacteria are critical for pollinator foraging
behavior and herbivory of pests.71,72

The gut microbiota of pollinators such as honeybees and
bumblebees are dominated by eight bacterial species,73 which
protect the host body against parasites and show tolerance to
xenobiotics.66,74 The disruption of gut microbiota of
pollinators by insecticides or herbicides causes susceptibility
to chemicals which affects bee health and their effectiveness as
pollinators.75 The effects of MNPs pollution on the gut
microbiota of pollinator insects and other animals have been
undertaken that cause inflammation, susceptibility to chem-
icals, induce and initiate intestinal injury, and disrupt gut
microbial distribution.76−79 A laboratory study by Wang et al.80

showed that exposure of honeybees to polystyrene MPs caused
significant decrease in diversity of honeybee gut microbiota,
with alterations in the expression of detoxification, antiox-
idants, and immune-related genes in guts. Dosage-dependent
effects of MPs have been observed as the highest concentration
of MPs altering the highest number of gut microbial taxa or
vice versa. Here, 50 mg/L of MPs significantly decreased alpha
diversity indices (richness and distribution) and reduced the
optimal function of bee gut microbiome. Proteobacteria,
Commensalibacter, Alpha proteobacteria, Acetobacteraceae, and
Klebsiella were altered at high doses while Firmicutes Bacilli,
Lactobacillus, and its subtaxa were altered at low doses (25 mg/
L) of MPs. MPs increased the abundance of Lactobacillus and
Gilliamella species with opportunistic colonizers such as
Bombella, Klebsiella, and Serratia species.80 MPs do not cause
direct toxicity to pollinators as the mortality rates among MP-
fed pollinators were not higher compared with the control;
however, the alterations in composition and diversity of gut
microbiota show the negative effects on physiology and
sublethal effects on pollinators. When bees were exposed to
MPs accompanied by antibiotics, the lethality of MPs increased

dramatically and depleted the gut microbiota of bees. MNPs
are able to carry different chemicals, pesticides, and other
xenobiotics, which increase the pollution of MNPs and
lethality on pollinators health.81 Due to this, the chemical
effects of MPs could be far higher than the physical effects.
MNPs bioaccumulate in the guts of pollinators, as observed via
fluorescence microscopy, and interact with gut bacteria,
leading to a significant alteration in diversity and composition
of predominant groups of bacteria such as Proteobacteria,
Firmicutes, and Actinobacteria. These bacteria are vital for
various processes such as metabolism, nectar processing, and
immunomodulation and protect the pollinators against xeno-
biotics and abiotic stresses.82 MNPs accumulation in gut
tissues and interactions with molecules, biological membranes,
and organelles cause immunity suppression, oxidative stress,
change in membrane permeability, and inflammation which
may lead to alteration in gut microbial community structure
and diversity. In another study, the oral feeding of 100 nm of
polystyrene MNPs to honeybees induced intestinal dysplasia,
and the MNPs accumulated in rectum, where bee gut
symbionts colonized.60 MNPs exposure caused loss in body
weight and adhered to the germination pore of pollens. The
deprivation of pollinators from gut microbiome caused loss in
body weight.83 Similar to other studies, the MNPs deplete the
expression of several genes related to detoxification, immunity,
and metabolism. The effects of MNPs have also been seen on
the health and metabolic disorders of flies and mosquitoes,
which caused changes in gut microbiota, reduced energy
storage and metabolism such as triglyceride level, affected
female reproduction, and decreased fatty acid metabolism.84−86

MNPs both at micro and nanoscale impact the health of
pollinators by disrupting the gut microbiota of bees and other
insect species. The ability of MNPs to carry secondary
substances and the raw material used for the synthesis of
plastics increases the harm to pollinator gut microbiota
environments. Continuous exposure to MNPs pollution at a
low level can causes susceptibility of gut microbiota, alteration
of several important genes associated with vital processes like
detoxification, and immunity harm of pollinator health and
impacts the effectiveness in different ecosystems.

■ SUSCEPTIBILITY TO VIRAL INFECTION OF BEES
MNPs have the ability to absorb pollutants and other
chemicals, which enhances the impacts of MNPs on host
health.87 Pollinators often have large foraging areas and
interact actively with air, water, soil, and plants, and pollutants
from these sources are transferred into host bodies. During
nectar collection, other substances such as honeydew, water,
and plant exudates come in contact, and if these products are
contaminated with pollutants and chemicals, pollinators would
suck these too.88 When bees were feed on microplastics
presented in a water and sucrose solution, they did not
distinguish nor showed feeding deterrence from the solution
having microplastics.89 Deng et al.90 collected honeybees at
different regions in China and showed that 66.7% of bee
samples presented different types of MNPs in gut, trachea, and
other tissues. In a laboratory experiment, when bees ingested
MPs, the particles accumulated in the midgut, damaging
intestinal tissue and entering the hemolymph, Malpighian
tubes, and trachea, significantly decreasing the survival rate of
the bees. The enzymes and genes related to immunity,
detoxification, lipid metabolism, and the respiratory system
were disrupted with MPs ingestion and accumulation. Bees
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ingested MPs along with Israeli acute paralysis virus (IAPV)
RNA (considered cause of bee colony decline), showing
susceptibility to the pathogen infestation.90 The mortality rate
of bees ingested with MPs + IAPV RNA was higher compared
to IAPV alone, while the expression profile of virus titer was
also higher, compared to the IAPV alone group. As discussed
in the above section, MNPs are able to carry xenobiotics which
make them more toxic for living organisms. MNPs are also
capable of translocating in between various tissues and cells,
breaking down the biological barriers and penetrating bio-
logical membranes.91,92 For example, if MNPs carry pesticides
or pathogens and enter into the guts of pollinators, the toxicity
of these xenobiotics increased, as MNPs alone can alter and
disrupt gut microbiota and cause inflammation to biological
membranes. Organisms infected with MNPs have compro-
mised immunity as MNPs accumulation caused disruption in
several detoxification and immunity related genes and caused
oxidative stress, and these organisms are unable to cope with
MNPs accumulation along with other pathogens.90 These
reports conclude that MNPs pollution pose a threat to
pollinator health and pollination ecosystems and may have
implications for human health through ingestion of bee
products.

■ IMPACTS OF MNPS ON POLLINATION BIOLOGY
Flowering plants developed and evolved various characteristics
in order to attract or influence the success of pollinators.1

These traits include but are not limited to different floral
features such as pigmentation, floral signals, floral pattering,
floral scents, and nectar secondary metabolites.1 The
adaptation of floral traits is vital for the attraction of
pollinators, which plants adopt through genetic mutation,
bring developmental change and enhanced fitness.93,94 These
adaptations by plant to influence pollinators have great impacts
on pollination biology.1,95

The communications between plants and pollinators are
reciprocally beneficial for each other, as pollinators enhance
plant reproductive success through pollen export and
collection, while nectar and pollen serve as nutrition for
pollinators, which are called floral rewards.96,97 The chemistry
of nectar is composed of sugars, amino acids, and volatile
organic compounds, which provide nutrition, heat source,
nesting materials, and mating, sleeping, and brooding sites for
pollinators.98,99 Plant hormones such as jasmonate in
coordination with auxin induce the secretion and synthesis
of nectar.100 Polystyrene MPs are reported to disturb the
regulatory network of phytohormones in different studied
plants.101 The auxin levels in leaves significantly decreased with
MPs treatment in barley. The MNPs in other crops such as
tomato, cucumber, and barley affect the phytohormones
profiles in leaves and roots.102 The effects of MNPs on the
hormonal level are different for different plants, as studies
showed that the biosynthesis of jasmonate in tomato is severely
affected, compared to auxins, ethylene, and gibberellins.102

Similarly, the exposure of plants to MNPs downregulates the
fatty acids and affects amino acid profiling, which may disrupt
the chemistry of nectar.102 The disruption of phytohormonal
and biochemical profiles of plants by MNPs may disrupt the
production and synthesis of nectar, which affect the biology of
pollination and may delay or inhibit interactions between
plants and pollinators.
The synergy between angiosperm plants and pollinators

depends on effective interactions,103,104 which involve different

signals such as visual, olfactory, thermal, and tactile stimuli, and
pollinators choose flowers through floral displays.105 Exper-
imental evidence suggests that plants attract and stimulate
more pollinators by emitting both olfactory and visual cues
compared to only olfactory or visual stimuli.106,107 However,
insect sense these stimuli through their cognitive behavior,
learning memory, innate preferences, and pre-existence
biases.1,99 Studies showed that MNPs possess adverse effects
on pollinators learning, memory, cognition, foraging, and
feeding behaviors,89 which may cause disruption in commu-
nication between plant and pollinator cues and affect
pollination biology.

■ MNPS EFFECTS ON PIGMENTATIONS
Colorful flowers attract pollinators for pollination, and the
color of a flower is determined through pigmentation by
carotenoids, flavonoids, and betalains.108 Chromoplasts are
organelles which synthesize and store carotenoids in flowers
and other tissues of plants.109 Besides the role in pollinator
attraction, these pigments have other vital roles in photosyn-
thesis and in responses to environmental cues.109 It has been
experimentally proved that the disruptions in content,
synthesis, and/or mutation in biosynthetic pathways of
carotenoids in flowering plants negatively affect the pollinators
visits to plants and affect the pollination biology.110−113

Similarly, the difference in pigmentation establishes floral
patterns and mediates plant pollinator interactions.108 Several
types of MNPs caused chronic carotenoids stress in plants.114

For a prolonged period of time, plants exposed to MNPs
showed severe disruption in different pigment levels including
carotenoids.115 These studies conclude that MNPs like other
abiotic stressors such as heavy metals affect the level and
synthesis of plant carotenoids by interfering with chlorophyll
pathways via inhibition of enzymes such as Protochlorophyl-
lide reductase and Aminolaevulinic acid dehydratase involved
in the biosynthesis of carotenoids.114,115 The disruption of
carotenoids profiles in plants by MNPs may have severe
implications for plant and pollinator effective interactions and
could possibly alter the pollination biology.

■ MNPS EFFECTS ON VOLATILE ORGANIC
COMPOUNDS

Flowers produce scents, which are a mix of plant volatile
organic compounds (VOCs).116 Chemically, VOCs are
lipophilic in nature, with low boiling points and high vapor
pressure at ambient temperatures.117 Terpenoids, benzenoids,
phenylpropanoids, and fatty acid derivatives are the major
classes of plant floral VOCs, while terpenoids are considered
the largest and diverse class of floral VOCs.118,119 Flowers emit
these volatiles to attract and guide pollinators toward the
flowers from long distances and influence their probing and
landing behavior.97,120 Despite this, floral VOCs also have
many other functions such as protection against microbes and
prevention of pollen and nectar robbers.121,122 Experimental
evidence suggests that blocking the expression of genes
associated with VOCs metabolite biosynthesis and disruption
in metabolomic profiles of VOCs negatively affect the
pollinator visits to flowers.123,124 The metabolomic analysis
of several plants exposed to MNPs showed downregulation in
secondary metabolites, while a significant decline was noticed
in metabolites involved in biosynthesis of terpenoids.102

Different plants react differently to MNPs stress; however,
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the effects on terpenoids and other metabolites involved in
plant VOCs are obvious. The decline in VOCs biosynthetic
compounds with MNPs stress in plants may have severe
repercussions for pollination, as VOCs are vital for pollinator
attraction.
Several studies reported the transcriptome of Arabidopsis

thaliana, wheat, and rice plants and its tissues such as root,
shoot, and leaf, in response to different MNPs stresses. We
analyzed the differentially expressed (DE) genes and
investigated the enrichment of DE gene pathways in response
to MNPs stresses in relation with those pathways involved in
the molecular mechanism of pollination biology. The effects of
MNPs stress on plant physiology and morphology such as
cytotoxicity, genotoxicity, nutritional and oxidative stress,
changes in plant photosynthesis, and metabolism are
summarized and reviewed by Wang et al.125

■ EFFECTS OF MNPS ON MOLECULAR BIOLOGY OF
POLLINATION

The RNA-Seq analyses of plants in response to MNPs particles
show DE genes enriched in anthocyanin-containing com-
pounds, anthocyanin biosynthesis and metabolic processes,
flavonoids biosynthetic and metabolic processes, phenyl-
propanoids metabolic process, phenylalanine metabolic proc-
ess, terpenoid biosynthesis and metabolic processes, triterpe-
noid biosynthesis, terpene synthase activity, carotenoid biosyn-
thesis, and circadian rhythm.126−129

Anthocyanin, betalains, and carotenoids are the major
groups of plant chemically distinct pigments, are responsible
for attractive flower color displays, and attract pollinators.130

Anthocyanin is a phenylpropanoid-derived water-soluble
pigment, possessing a vast distribution of any floral pigments
and producing blue, black, purple, pink, and red colors. The
biosynthesis, regulation, chemistry, and distribution of
anthocyanin is extensively documented.130,131 Members of
R2R3MYB and basic helix−loop−helix (bHLH) families that
form a complex with WR-repeat (WDR) proteins controlled
the synthesis of anthocyanin, and the function and interaction
of these complexes in anthocyanin synthesis are conserved
across divergent taxa.108,132,133 Similar to flower color, floral
patternings, such as pigment spots, stripes, and bicolor, are
important signals for pollinator attraction and mediate plant−
pollinator interactions.134 R2R3MYBs are important com-
plexes of pigmentation intensity and patterning in plants.108

Likewise, venation is also regulated by R2R3MYB and
anthocyanin-pigmented venation stimulates pollinator visita-
tion rates.135 Carotenoids are terpenoid-derived lipid soluble
and in the yellow−red range,136 while betalains are tyrosine-
derived pigments, ranging from yellow or red−purple, found
only in caryophyllales.137 The biosynthesis, transport, storage,
and regulation of betalain and carotenoids are extensively
described.109,130 The carotenoid biosynthesis starts with C5
IPP and DMAPP formation through the MEP (methylery-
thritol) pathway, which also produces several volatiles involved
in pollinator attraction.136,138 The production of betalains is
mutually exclusive with anthocyanin, and both pigments use
arogenate as a precursor, However, betalains are synthesized
from tyrosine, while anthocyanins are derived from phenyl-
alanine.1,139

Positively and negatively charged polystyrene NPs, PS-NH2
and PS-SO3H, respectively, accumulate in roots and shoots of
A. thaliana.128 The RNA-Seq revealed that positively charged
NPs caused higher impact on gene expression, compared with

negatively charged NPs. PS-NH2 upregulated the mRNA
expression of genes, functioning in anthocyanin and flavonoids
biosynthesis and metabolic processes. The genes involved in
phenylpropanoids and carotenoids biosyntheses are also
disrupted with NPs accumulation.128 Similarly, the RNA-Seq
analysis of two rice species, exposed to polystyrene MPs,
showed disruption in genes related to phenylpropanoid
metabolic processes and flavonoid biosynthesis,126 while the
transcriptome of Arabidopsis exposed to degradable plastic
poly(butylene adipate-co-terephthalate) (PBAT) showed dis-
ruption in genes involved in anthocyanin biosynthesis and
metabolic processes, phenylpropanoids metabolic process, and
flavonoid biosynthesis and metabolic processes.127 The wheat
root and leaf RNA-Seq, exposed to polystyrene NPs, showed
DE genes related to phenylalanine metabolism and phenyl-
propanoid biosynthesis.129 These studies conclude that
different plant species and their tissues exposed to different
types of MNPs severely disrupt the biosynthesis and
metabolism of plant pigments. Despite the type of MNPs,
the molecular pathways of both anthocyanin and carotenoids
are disrupted in all studied plants, which indicate the harmful
effects of MNPs on pigments. These studies did not evaluate
the impact of MNPs stress on floral pigments; however, it is
confirmed that flower color could be influenced by the
accumulation of flavonoids elsewhere in the plant.130 We
speculate that MNPs have the potential to influence flower hue
and pollinator interaction and attraction by manipulating the
molecular mechanism of biosynthetic and metabolic pathways
of major pigments groups.
The production, regulation, and emission of floral VOCs are

important for pollinator attraction and guidance.140 Terpe-
noids are the largest floral volatile class, while phenyl-
propanoids derived from the amino acid phenylalanine are
the second largest class of plant VOCs.141−143 The MNPs
stress in several plants caused the disruption of terpenoids
biosynthesis and metabolism, terpene synthase activity, and
triterpenoid biosynthesis pathways.126,128 The disruption in
these pathways could have greater impact on the production
and emission of floral volatiles. Similarly, the circadian clock
and rhythm of both pollinators and plants tightly regulate the
emission of VOCs and influence flower seeking behavior.144

The role of the circadian clock in VOCs emission and
pollinator attraction has been established.145 The RNA-Seq
analysis of A. thaliana showed disruption in genes involved in
the circadian clock and rhythm metabolism.128 The alteration
in the circadian rhythm by MNPs could affect volatile emission
and pollinator attraction, as studies suggested that disruption
in plant circadian rhythm impacted pollinator visitation
preference.146

■ FUTURE PERSPECTIVES
MNPs pollution affects the health of pollinators and plants
several ways and disrupts the plant−pollinator interactions and
communication. We have focused on the key events in
pollination biology which are potentially disrupted by MNPs
contamination and adversely affect the process of pollination.
We highlighted the direct impacts of MNPs contamination on
pollinator health, such as metabolic alteration, reduced
immunity, growth, impaired hormonal activities, on the
negative affects on gut microbiota, on the adverse effects on
plant health, such as negatively regulating plant growth,
immunity, root and shoot structures, metabolic alteration,
susceptibility to biotic and abiotic stresses, and on the
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alteration of enzymatic and endocrine activities. These effects
directly or indirectly alter the pollination process and pose
threats to all stakeholders involved in the pollination process.
Studies about MNPs contamination in ecosystems mainly

focused on the uptake and distribution of MNPs particles in
plant and insect tissues and its adverse effects on individual
health. To the best of our knowledge, no study has undertaken
the direct impacts of MNPs contamination on pollination
biology.

1. To elucidate the in-depth understanding of the possible
adverse effects of MNPs contamination on plant−
pollinator interactions and pollination biology, future
field and laboratory studies should addess the dynamics
and roles in stress response, which could explain in
plants and pollinators the different factors, key genes,
and pathways.

2. For effective communication between plant and
pollinator, plant floral features and pollinator behavior
play vital role for the success of the pollination process.
Future studies should highlight the interaction of plant−
pollinator in MNPs stress conditions, and effects on
pollinator behavior will create a more comprehensive
context for the exploration of possible adverse effects of
MNPs on pollination biology.

3. Modern molecular biology techniques and extensive
genomic, transcriptomic, and metabolomic resources
must be utilized to determine the effects of MNPs on
genotypes of plant and pollinator and elucidate the
target genes. Experimental procedures such as CRISPR
and RNAi along with genomic resources will enable the
analyses of many candidate genes.

4. Field studies, surveys, soil analysis, and monitoring and
observation of pollinators would help to assess plant
yield losses in terms of pollination disruption and
decline in pollinator populations with MNPs contami-
nation.

5. A comprehensive understanding of the mechanisms of
plant−pollinator interactions, pollination biology, and
response of plant−pollinator to MNPs stresses requires
knowledge and skills drawn from several disciplines. The
advancements in molecular biology, genetic techniques,
and modern bioinformatics tools greatly enhance how to
deal with big data and unsolved questions and address
systems involved in stress responses.
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