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Can leaf drought tolerance predict species abundance and its
changes in tropical-subtropical forests?
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Climate change has resulted in an increase in drought severity in the species-rich tropical and subtropical forests of
southern China. Exploring the spatiotemporal relationship between drought-tolerance trait and tree abundance provides
a means to elucidate the impact of droughts on community assembly and dynamics. In this study, we measured the leaf
turgor loss point (1) for 399 tree species from three tropical forest plots and three subtropical forest plots. The plot
area was 1 ha and tree abundance was calculated as total basal area per hectare according to the nearest community
census data. The first aim of this study was to explore myp, abundance relationships in the six plots across a range
of precipitation seasonality. Additionally, three of the six plots (two tropical forests and one subtropical forest) had
consecutive community censuses data (12-22 years) and the mortality ratios and abundance year slope of tree species
were analyzed. The second aim was to examine whether 7y, is a predictor of tree mortality and abundance changes.
Our results showed that tree species with lower (more negative) 7y, were more abundant in the tropical forests with
relative high seasonality. However, 7y, was not related to tree abundance in the subtropical forests with low seasonality.
Moreover, 7y, was not a good predictor of tree mortality and abundance changes in both humid and dry forests. This
study reveals the restricted role of 7y, in predicting the response of forests to increasing droughts under climate change.

Keywords: basal area, climate change, drought, mortality, precipitation seasonality, turgor loss point.

Introduction species abundance changes (Bittencourt et al. 2020), thereby

Functional traits reflect the ecological strategies of plant species
and are thus associated with their commonness or rarity at a
given site (McGill et al. 2006, Umafia et al. 2015). Exploring
the trait abundance relationships within plant communities has
long been a core aspect of trait-based ecology (Cornwell and
Ackerly 2010, R.H. Li et al. 2021). Shifts in trait-abundance
relationships across plant communities along an environmental
gradient could reveal environmental filtering processes influ-
encing species abundance (Lebrija-Trejos et al. 2010, Aiba
et al. 2020). Based on the long-term community census of
permanent forest plots, such trait-based approaches provide a
promising strategy to explain the effects of climate change on

contributing to modeling the fates of forests under future
climates (Katabuchi et al. 2017, Aguirre-Gutiérrez et al. 2019).

Several easily measured economic traits (e.g., specific leaf
area and wood density) can predict the growth and defense
performance of plant species, and have been widely used to
examine trait-abundance relationships in various plant com-
munities (Aiba et al. 2020, Sporbert et al. 2021). How-
ever, these economic traits are weak predictors of species
abundance in many studies, partly due to the fact that a
trait with little context shows weak predictive power (e.g., to
predict species abundance in a drought-prone environment
using a trait unrelated to drought tolerance; Yang et al. 2018).
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In many forests, drought exerts a profound effect on community
assembly and tree dynamics (Anderegg et al. 2013, Choat et al.
2018, Berdugo et al. 2020). In addition, previous studies have
shown that hydraulic failure (loss of xylem hydraulic function
due to cavitation) is the primary mechanism underlying drought-
induced tree mortality (Rowland et al. 2015, Brodribb et al.
2020). Therefore, hydraulic safety-related traits (e.g., cavitation
resistance and hydraulic safety margin) are good proxies for
mortality rate and are thus crucial for predicting tree abundance
dynamics with increasing extreme droughts (Anderegg et al.
2016, Powers et al. 2020). Nevertheless, measurements of
these hydraulic traits are time-consuming and require large
amounts of plant materials, which restricts their application in
species-rich forests (Kunert et al. 2021).

The leaf turgor loss point (yp) defines the water potential
at leaf wilting, and lower (more negative) my, indicates that
plant species could maintain cell turgor pressure and thus sus-
tain hydraulic and photosynthetic functions under lower water
availability (Bartlett et al. 2012a). Several studies have found
that y, is closely associated with cavitation resistance (Bartlett
etal. 2016), stomatal controlling capacity (Meinzer et al. 2016)
and stem sap-flux response to drought (Maréchaux et al. 2018).
Particularly, yp can be rapidly and easily determined (Bartlett
et al. 2012b), and is therefore an important parameter in
the assessment of plants’ drought tolerance in species-rich
communities. Several studies have found that 7y, is associated
with regional tree abundance in Amazonian forests (Maréchaux
et al. 2015), and is a good predictor of the drought-induced
mortality rates of tropical tree seedlings (Alvarez-Cansino et al.
2022) and temperate herbaceous species (Stears et al. 2022).

Tropical-subtropical forests in southern China are biodiversity
hotspots that play a major role in the global carbon cycle
(Yu et al. 2014). Particularly, karst landform (limestone sub-
stance) distributes extensively in this region; forests growing on
karst experience frequent droughts and thus represent a dis-
tinct community structure and preserve many endemic species
(Geekiyanage et al. 2019). Under global change, the climate
of this region has become hotter and drier in recent decades,
resulting in an increase of frequency of extreme droughts
in many areas (Qiu 2010, Dai 2013), which is the main
environmental driver of alterations in forest composition and
ecosystem functioning (Zhou et al. 2014). Previous studies on
tree hydraulics have found that regional tropical and subtropical
forests differed in hydraulic risks, with tropical tree species
operating a narrower hydraulic safety margin compared with
subtropical forests (Zhu et al. 2018, 2019, Tan et al. 2020; see
Figure S1 available as Supplementary data at Tree Physiology
Online). Therefore, it would be novel to clarify the relationship
between myp and abundance and its dynamics across tropical-
subtropical forests with contrasting water environments, for a
better understanding of forests’ responses to drought.

Here, we measured the my, of 399 tree species from six
1-ha permanent plots in tropical-subtropical forests, with three
of them having long-term community-censuses data. We first
analyzed the spatial my,—abundance relationships across the
six plots with a range of water environments. Subsequently, we
explored the temporal patterns of my,—abundance relationships
during the census periods in the three plots and analyzed the
relationships between my, and tree abundance changes and
mortality ratio (MR). The main objective of this study was to
examine whether my, can be used as a proxy for predicting
tree abundance and its dynamics in tropical-subtropical forests
subject to increasing droughts.

Plots and methods

The present study was conducted in six 1-ha (100 m x 100 m)
permanent plots in the tropical and subtropical forests of
southern China (Figure 1, more details are shown in Table S1
available as Supplementary data at Tree Physiology Online).
All plots were established in nature reserves without human
disturbances. These sites are strongly influenced by a monsoon
climate, which results in distinct wet and dry seasons.
The three tropical forests exhibited stronger precipitation
seasonality than the three subtropical forests (Figure 1).
In recent decades, extreme drought episodes have been
frequently reported in the tropical forests of southern Yunnan
(Figure S2 available as Supplementary data at Tree Physiology
Online). Consequently, extensive canopy diebacks have been
observed (Tan et al. 2020). Despite the clear tendency of
climate drying in subtropical regions, subtropical forests are
currently hydrologically stable (Song et al. 2017, Zhu et al.
2019).

In each plot, 26—102 tree species were selected, accounting
for >90% of total individuals (except for 70% in BN1 (Tropical
seasonal rain forest in the ravine area of Xishuangbanna National
Nature Reserve; Table S1 available as Supplementary data at
Tree Physiology Online). Species abundance was estimated as
the total basal area in each 1-ha plot, which was calculated
as the sum of the cross-sectional areas at breast height of all
individuals for that species (Li et al. 2015). The basal area
considers both the number and the size of the individuals
of tree species and thus reflect the overall abundance status
in the plant community (Potvin and Gotelli 2008). For the
three plots with long-term community censuses data (i.e., BN1;
BN2 (Tropical dry forest in the karst area of Xishuangbanna
National Nature Reserve) and DH (subtropical monsoon ever-
green broadleaved forest in the Dinghushan National Nature
Reserve)), we examined species abundance dynamics using a
previously described calculation method (Li et al. 2015; meth-
ods available as Supplementary data at Tree Physiology Online).
For each studied species, we used simple linear regression to
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Figure 1. Locations of the six permanent forest plots. BN 1, tropical seasonal rain forest in the ravine area of Xishuangbanna National Nature Reserve;
BN2, tropical dry forest in the karst area of Xishuangbanna National Nature Reserve; SWS, tropical seasonal rain forest in the Shiwandashan National
Nature Reserve; DH, subtropical monsoon evergreen broadleaved forest in the Dinghushan National Nature Reserve; DMS, subtropical montane
evergreen broadleaved forest in the Daminshan National Nature Reserve; ML, subtropical mixed evergreen and deciduous broadleaved forest in the
Mulun National Nature Reserve. The forest types are recognized according to community structure and composition. Eight-time community censuses
have been conducted in BN1 and BN2 during 2004-15, and six times in DH during 1994-2015. Plots in SWS, DMS and ML were established in
2017 without long-term community census data. The dotted line indicates the tropic of cancer.

analyze the response of abundance to the year. The coefficient
of regression slope was referred to as ‘abundance—year slope’,
which indicates temporal changes of abundance (Figure S3
available as Supplementary data at Tree Physiology Online).
Additionally, we calculated the MR (%) during the monitoring
period using the following equation:

MR = 100 x (N; — Ns) /N;,

where Nj is the initial number of individuals in the first survey,
and N is the number of survivors in the last survey.

To determine myp, we sampled sun-exposed leaves from
three to five healthy and mature individuals per species, and
their size was at the average diameter at breast height of
that species in the plot. In this study, we used species-level
mean value because several studies have reported that intraspe-
cific variations of my, was small (Zhu et al. 2019, Kunert
et al. 2021, Liu et al. 2022). For tree species from BN1,
BN2, DH and ML (Subtropical mixed evergreen and deciduous
broadleaved forest in the Mulun National Nature Reserve),
Typ was measured using the traditional pressure-volume curve
approach (Zhu et al. 2019). For the tree species from SWS
(Tropical seasonal rain forest in the Shiwandashan National
Nature Reserve) and DMS (Subtropical montane evergreen
broadleaved forest in the Daminshan National Nature Reserve),

we used the osmometer measurements technique to determine
myp (Bartlett et al. 2012b, Methods available as Supplementary
data at Tree Physiology Online). A previous study has proven
that y, did not differ significantly between the two methods in
these tropical-subtropical tree species (Zhu et al. 2018).

Prior to all data analyses, all variables were logyo-transformed
to improve normal distribution and homogeneity of variance.
For the six plots, Pearson correlation analysis was used to
examine the relationships between my, and abundance of
the nearest survey. For the three plots (i.e.,, BN1, BN2 and
DH) with community census data, we analyzed my,—abundance
relationships using Pearson correlation analysis in each census
year, and then used simple linear regression to examine the
changes of my,—abundance relationship coefficients (represent
the strength of the relationships) over year. We conducted a
weighted least-squares linear regression analysis to explore the
relationship between myp and tree abundance changes and MR.
All analyses were performed in R 4.1.1 statistical software (R
Core Team 2021).

Significant myp—abundance relationship in tropical
forests with high seasonality

The mean my, ranged from —1.58 MPa in DH to —2.24 MPa in
BN2 (Figure S1 available as Supplementary data at Tree Physiol-
ogy Online). Our results showed that significant 7 y,—abundance
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Figure 2. Relationships between leaf turgor loss point (7y,) and tree abundance in the six 1-ha plots. Tree abundance is calculated as the total basal
area in the plot according to the nearest community census data. Each point represents one species. Plot codes are shown in Figure 1. The standard
deviation of monthly P - PET (the difference between precipitation and potential evapotranspiration) during a year was calculated to qualify the degree
of seasonality (Table S1 available as Supplementary data at Tree Physiology Online).

relationships were only found in tropical forests that suffered
from high seasonality and hydraulic risk (Figure 2). Because
tree species with lower Ty, were more drought-resistant, they
thus contributed to a higher abundance (competitive advan-
tages) in the tropical forests. Additionally, 7y, has also been
found to be a predictor of habitat preference in tropical forest
plots, with lower-mry, tree species occurring in relatively drier
habitats (Kunert et al. 2021). Taken together, myy, represents an
important parameter for investigating drought-driven community
assembly in tropical forests.

In a previous study, Maréchaux et al. (2015) found that lower-
myp tree species are currently rare in Amazonian tropical forests
but are likely to gain abundance in a more drought-prone future,
indicating a profound change of forest composition. Contrary to
this finding, our results showed that lower-ry, species are more
abundant in the three tropical forests and would become more
dominant with climate drying (e.g., BN1). This may be because
the high hydraulic risks in the north tropical forests (e.g., BN1
and BN2) exert an environmental selection pressure for highly
drought-toleran tree species. From this perspective, this study
supports Hubbell (2013) who claimed that conservation efforts
should focus more on rare tree species (with low drought
tolerance) in tropical forests.

Unlike tropical forests, we found no significant myp—
abundance relationships in the three subtropical forests with
low seasonality and hydraulic risks (Figure 2 and Figure S1
available as Supplementary data at Tree Physiology Online).
Moreover, we analyzed the myp—abundance relationship by
separating evergreen and deciduous species in ML, and the
results showed that there was no significant relationship in
both functional groups (Figure S4 available as Supplementary
data at Tree Physiology Online). Nevertheless, several previous
studies have reported that high abundance is associated with
lower specific leaf area and high woody density in subtropical
evergreen broadleaved forests in southern China (Yan et al.
2013, Wang et al. 2021). In another study carried at DH,
R.H. Li et al. (2021) also found tree species with ‘slow-return’

economics traits (e.g., low nutrient concentrations) are more
abundant, because such ‘conservative’ strategy is beneficial
in the mature subtropical forests where nutrient and light
availability (rather than water availability) are limited.

Typ is not related to tree MR and abundance
change at the community level

In the tropical seasonal rain forests in BN1, the strength
of myp,—abundance relationships increased from 2004 to
2015 (Figure 3b). That is, my,—abundance relationship was
insignificant before droughts but became significant after
extreme droughts (Figure S5 available as Supplementary data
at Tree Physiology Online). In addition, we found that tree
mortality substantially increased following drought episodes,
which led to a direct impact on tree abundance changes in the
tropical forest (Figure S6 available as Supplementary data at
Tree Physiology Online). According to these results, we inferred
that the tropical forest might exhibit a predictable response
to increasing extreme droughts and that tree abundance
dynamics (and mortality) could be predicted by my, (e.g.,
Alvarez-Cansino et al. 2022). However, inconsistent with
our expectations, myp was not associated with tree mortality
and abundance changes across all the tree species in BN1
(Figure 3e and h) or in different functional groups (e.g., canopy
and understory; Figure S7 available as Supplementary data at
Tree Physiology Online). One reason is that extreme drought-
induced mortality in BN1 was predicted by vulnerability
segmentation, an important hydraulic strategy that is not
related to my, (Wang et al. 2023). Moreover, osmotic potential
changes (osmotic adjustment) under different abiotic conditions
(Bartlett et al. 2014), and such plasticity might be a better
predictor of demographic characteristics than species mean
(Zhang et al. 2020).

Although there were significant 7 y,—abundance relationships
in each census year in the tropical dry karst forest in BN2,
we find insignificant temporal variation of the strength of the
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Figure 3. (a—c) Temporal changes of my,—abundance correlation coefficient (the strength of the relationship) in the three plots with long-term
community censuses. Each point denotes the correlation coefficient in each census year. * and ** indicate significant ryp—abundance relationships in
the census year at P < 0.05 and P < 0.01, respectively. Solid green lines indicate significant temporal changes, i.e., the strength of my,—abundance
relationships increase significantly. (d—f) Relationships between my, and abundance—year slope (reflect temporal changes of tree abundance; Figure S3
available as Supplementary data at Tree Physiology Online). (g—i) Relationships between my, and MR. Plots codes are shown in Figure 1. Each point

in (d—j) represents one species.

relationship, and a non-significant relationship between
and tree mortality (Figure 3c, f and i). Similarly, 7y, could not
predict tree demographic rates in the subtropical evergreen
broadleaved forests in DH (Figure 3d and g), because tree
mortality in this humid forest has been previously reported to
be mainly caused by insect pest attacks (Chen etal. 2017) and
typhoons (Y.L. Li et al. 2021).

Conclusion

This study is the first to examine the my,—abundance relation-
ship in species-rich tropical and subtropical forests with different
water environments. Tree species with lower my, were more
abundant in tropical forests with high seasonality, but such
a myp—abundance relationship was not found in subtropical
forests with low seasonality. As a key drought-tolerant trait
however, Ty, is not a predictor of tree mortality and abundance

changes at the community level. This might be because species-
mean myp could not account for the mechanism underlying
drought-induced tree mortality. Therefore, more investigations
are necessary before my, can be applied in modeling forest
responses to global climatic change.

Supplementary data

Supplementary data for this article are available at Tree Physiol-
ogy Online.
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