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Abstract
Artemisia annua L. is a medicinal plant valued for its ability to produce artemisinin, a molecule used to treat malaria. Plant 
nutrients, especially phosphorus (P), can potentially influence plant biomass and secondary metabolite production. Our work 
aimed to explore the genetic and metabolic response of A. annua to hardly soluble aluminum phosphate  (AlPO4, AlP), using 
soluble monopotassium phosphate  (KH2PO4, KP) as a control. Liquid chromatography–mass spectrometry (LC–MS) was 
used to analyze artemisinin. RNA sequencing, gene ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses were applied to analyze the differentially expressed genes (DEGs) under poor P conditions. 
Results showed a significant reduction in plant growth parameters, such as plant height, stem diameter, number of leaves, 
leaf areas, and total biomass of A. annua. Conversely, LC–MS analysis revealed a significant increase in artemisinin con‑
centration under the AlP compared to the KP. Transcriptome analysis revealed 762 differentially expressed genes (DEGs) 
between the AlP and the KP. GH3, SAUR , CRE1, and PYL, all involved in plant hormone signal transduction, showed 
differential expression. Furthermore, despite the downregulation of HMGR in the artemisinin biosynthesis pathway, the 
majority of genes (ACAT , FPS, CYP71AV1, and ALDH1) were upregulated, resulting in increased artemisinin accumulation 
in the AlP. In addition, 12 transcription factors, including GATA  and MYB, were upregulated in response to AlP, confirming 
their importance in regulating artemisinin biosynthesis. Overall, our findings could contribute to a better understanding the 
parallel transcriptional regulation of plant hormone transduction and artemisinin biosynthesis in A. annua L. in response to 
hardly soluble phosphorus fertilizer.
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Introduction

Phosphorus (P) is an essential macronutrient for plant 
growth and development, involving the composition of 
membrane phospholipids and nucleic acids and metabolic 
roles such as energy storage and transfer (Rouached et al. 
2010; Veneklaas et al. 2012). However, P exists primarily 
in soils as hardly soluble phosphate compounds combined 
with the mineral elements, such as aluminum phosphate 
 (AlPO4, AlP) and the aluminum salt of phosphoric acid 
in acidic acid soils, and it is difficult for plants to absorb 
(Pradhan et al. 2017). Therefore, P is a limiting nutrient 
for plants due to its low availability of P in soils (Augusto 
et al. 2017). Certainly, in P‑poor environments, plants have 
developed general strategies for obtaining and benefiting 
from P, including exudation of compounds (Ryan et al. 
2001; Shen et al. 2003), root structural specializations 
(Hu et al. 2010; Williamson et al. 2001), and mycorrhi‑
zal symbioses (Smith and Smith 2011; Wan et al.2018), 
which all can lead to an increase in the bioavailability of 
 AlPO4 in acidic soils to plants. However, the molecular 
mechanism of plant response to hardly soluble  AlPO4 is 
poorly understood. Various sequencing technologies have 
recently provided critical information about gene expres‑
sion changes in some plant species in response to P limita‑
tion. Transcriptome analysis of barley revealed that many 
genes were significantly upregulated or downregulated 
in response to low P stress. Furthermore, differentially 
expressed genes (DEGs) were discovered to be primarily 
involved in P metabolism, sucrose synthesis, phospholipid 
degradation, hydrolysis of phosphoric enzymes, phos‑
phorylation/dephosphorylation, and post‑transcriptional 
regulation. (Ren et al. 2018). Furthermore, when treated 
with low phosphorus, DEGs are enriched in carbohydrate 
metabolic processes, oxidation–reduction processes, bio‑
synthetic processes, and the tricarboxylic acid cycle in oat 
roots (Chao et al. 2017). To gain a better understanding 
of these processes, DEGs were studied under low P stress 
in other crops, including Zea mays L.(Du et al. 2016), 
Oryza sativa L. (Deng et al. 2018), and Glycine max Linn 
(Liu et al. 2020), using transcriptome analysis. The above 
results of studies show that transcriptome can provide 
more information on the gene regulation related to low P 
adaptation for plants.

Artemisia annua is an annual herb appreciated for pro‑
ducing artemisinin, a sesquiterpene molecule used to treat 
fever and malaria (Baraldi et al. 2008; Ma et al. 2007; 
Wani et al. 2021; Wani et al. 2022). It is widely distrib‑
uted in most Chinese areas, especially in southwest China 
(Zhang et al. 2017). It adapts well to different soil types 
and has no specific nutritional requirements; however, P 
and potassium (K) supply stimulate its growth even in 

small quantities (Aftab et al. 2014; Müller and Brandes 
1997). For example, Todeschini et al. (2022) showed that 
P nutrition affected A. annua plant biomass production, 
and its lowest level led to the highest artemisinin con‑
centration. Therefore, optimizing P supply to A. annua 
is essential for maximizing dry matter production and/
or artemisinin yield (Todeschini et al. 2022). Many stud‑
ies have explored the ability of crops to acquire P from 
various hardly soluble forms (Sharma et al. 2013; Giles 
et al. 2014; Lambers 2022; Lee et al. 2012; Li et al. 2015; 
Pearse et al. 2007). Currently, minimal effort has been 
made to understand the adaptive strategies in A. annua 
against Plimit. A controlled greenhouse experiment was 
conducted to learn more about the genetic behavior of A. 
annua in response to the availability of a hardly soluble 
P source, AlP, to simulate low P availability in acid soil, 
with the soluble phosphorus form, KP, serving as a con‑
trol. We then explored the A. annua growth and genetics 
response to the hardly soluble P source, AlP, via second‑
generation sequencing analysis. This study could deepen 
our understanding of the genetic variation of A. annua 
under low phosphorus availability and suggest strategies to 
improve its P‑use efficiency and the production of biomass 
and artemisinin with less fertilizer application.

Material and methods

Plant materials

 Artemisia annua seeds were collected from the planting 
area in the Guangxi Medicinal Botanical Garden scientific 
research base in Nanning, China (108°23′ E, 22°51′ N). 
The seeds of A. annua were sowed into a plastic container 
(30 cm × 20 cm × 8 cm, length × width × height, respectively) 
filled with washed and sterilized river sand and then rinsed 
with distilled water until the sand was wet, every 2 days dur‑
ing germination. The seedings were supplied with 200 ml 
of pH 6.5 half‑strength Hoagland nutrient solution weekly. 
All the seedings of similar size with two cotyledons were on 
standby for the two phosphorus treatments.

Different phosphorus treatments

There were two P sources used in this study: a hardly solu‑
ble P source: aluminum phosphate  (AlPO4)/(AlP), the water 
solubility of which is only 1.89 ×  10−9 g/100 ml at 20 °C, and 
a soluble P source: monopotassium phosphate  (KH2PO4)/
(KP), the water solubility of which is 22.6 g/100 ml at 20 °C. 
The AlP was the low‑P‑availability treatment group, and 
the KP was the control group; each group was replicated 
five times. River sand was used as a cultivation substrate 
in this experiment. All the river sand before the experiment 
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was sieved through a 2‑mm mesh and cleaned to remove 
nutrients with running water and then autoclave sterilized 
for 30 min. The flower pot used for holding the river sand 
was a height of 12 cm and a diameter of 4 cm. P supple‑
ments were added in powder form, 118.06 mg  AlPO4 and 
131.83 mg  KH2PO4, respectively, mixed with the treated 
river sand, to ensure that each flower pot contained 30 mg 
P content. After the transplantation of seedlings, all flower 
pots were put in the greenhouse, with illumination intensity 
300 µmol  m−2  s−1 during the day, temperature 26 ± 2 °C, 
and relative humidity 62 ± 2%. All the flower pots’ positions 
were changed randomly to avoid the influence of environ‑
mental differences. Each flowerpot was supplemented with 
enough distilled water every 2 days, and a 5‑ml Hoagland 
nutrient solution (0.5 × , without P) was added each week. 
The P treatment was sustained for 3 months (Pearseet al. 
2007; Wanet al. 2018).

Plant growth parameters and sample collection

After the different P source treatments, the plant height, stem 
diameter, leaf number, and leaf area were measured before 
seedlings were harvested. The leaf area was taken with a 
digital photo and then calculated with ImageJ software 
(National Institutes of Health, USA). Three fresh leaves of 
every flowerpot were collected and wrapped with aluminum 
foil, immediately frozen in liquid nitrogen for 3–5 min, and 
then stored in a − 80 ℃ until RNA‑Seq and real‑time quanti‑
tative PCR (RT‑qPCR). And then, the final biomass of roots, 
stems, and leaves were counted after drying at 60 ℃ for 72 h.

Isolation of Artemisinin and Analysis by LC–MS

The leaves were dried at 60 ℃ and prepared for artemisinin 
determination. Samples of 0.2 g of dried A. annua leaves 
were extracted using 25 ml petroleum ether (boiling point 
30–60) for 40 min with ultrasonic waves, filtrated, trans‑
ferred to 100 ml evaporating dish, and dried at 40 ℃; then, 
the evaporating dish was rinsed with methanol repeatedly. 
All solutions were kept in a volumetric flask at a constant 
volume of 10  ml (Stringham et  al. 2018). The sample 
extracts were analyzed using an LC–ESI–MS/MS system 
(HPLC, EXPEC 5210 system1). The analytical conditions 
were as follows: HPLC column, Waters ACQUITY UPLC 
BEH C18 (1.7 μm 2.1 × 150 mm); solvent system, water 
(0.1% acetic acid): acetonitrile; gradient program, 80:20 V/V 
at 0 min, 5:95 V/V at 4.0 min, 5:95 V/V at 6 min, 80:20 V/V 
at 6.1 min, 80:20 V/V at 9 min; flow rate, 0.3 ml /min; tem‑
perature, 40 ℃; and injection volume, 2 µl. LIT and triple 
quadrupole (QQQ) scans were acquired on a triple quadru‑
pole linear ion trap mass spectrometer EXPEC 5210 LC/MS/
MS system equipped with an ESI. The ESI source operation 
parameters were as follows: ion source, turbo spray; source 

temperature, 105 ℃; capillary voltage, (IS) 4800 V; source 
offset voltage, 700 V; desolvation temperature, 495 ℃; cone 
gas flow, 72 l/h; and desolvation gas flow300 l/h. Instru‑
ment tuning and mass calibration were performed with 10 
and 100 µmol/l polypropylene glycol solutions in QQQ and 
LIT modes, respectively. QQQ scans were acquired as MRM 
experiments with collision gas (nitrogen) set to 5 psi. DP and 
CE for individual MRM transitions were done with further 
DP and CE optimization. A specific set of MRM transitions 
were monitored for each period according to the metabolites 
eluted within this period.

RNA extraction and transcriptome sequencing

The RNAprep Pure Plant Kit (TIANGEN, Beijing, China) 
was used to extract total RNA from frozen samples. The 
purity of the RNA was determined using the manufacturer’s 
protocols and a KaiaoK5500 Spectrophotometer (Kaiao, 
Beijing, China). An RNA Nano 6000 Assay Kit of the Bio‑
analyzer 2100 system was used to assess RNA concentration 
and integrity (Agilent Technologies, CA, USA). RNA deg‑
radation was monitored on agarose gels. Three replicates of 
each treatment were deemed high quality and used to build 
transcriptome libraries. The cDNA construction library 
refers to the following reagents: oligo (dT) magnetic beads 
for enriched mRNA from total RNA, divalent cations under 
elevated temperature in NEB Next First Strand Synthesis 
Reaction Buffer (5 ×) for fragmentation, random hexamer 
primer and RNase H for synthesizing the First‑strand cDNA, 
and DNA polymerase I, buffer, dNTPs, and RNase H for 
synthesizing second‑strand cDNA. QiaQuick PCR kits and 
elution with EB buffer were used to purify the library frag‑
ments, and then, the terminal repair, A‑tailing, and adapter 
were implemented. The aimed products were retrieved, PCR 
was performed, and the library was completed. The library 
quality was evaluated using the Step One Plus Real‑Time 
PCR Agilent Bioanalyzer 2100 systems. The BioNovo Gene 
Technology Co., Ltd. (Suzhou, China) sequenced six librar‑
ies using an Illumina HiSeq 2500.

qRT‑PCR analysis

Total RNA extraction, reverse transcription, and qPCR were 
operated as described previously (El‑Sappah et al. 2021). 
β-actin mRNA was used as an internal control; all primers, 
including β-actin as a reference gene, were designed with 
the Primer 5.0 software (Leišová‑Svobodová et al. 2020; 
Ahmed et al. 2023). The gene‑specific primers used for 
qPCR are listed in Table S1. Gene expression was relatively 
quantified using the MM Ct method, as described by Livak 
and Schmittgen (El‑Sappah et al. 2023). Each treatment had 
three replications, and the experiment was performed thrice. 
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The mean and standard errors (SEs) were presented using 
ORIGIN 8.6 (Singh et al. 2021).

Statistical analysis

The one‑way ANOVA was performed using the SPSS Sta‑
tistics 19.0 software (IBM Corp, Armonk, NY, USA), and 
the Duncan test was used to determine significant differences 
(P < 0.05). The data were presented as mean ± SD (standard 
deviation). The sample was sequenced on the machine, and 
the software in the sequencing platform was transformed to 
generate the raw data (RAW Data) of FASTQ, which is the 
off‑machine data. The raw data of each sample was used 
for statistical analysis. The connector sequence of 3′ ends 
was removed with Cutadapt, using the HISAT2 software 
to compare the filtered reads to the reference genome. The 
read distribution compared to the genome was statistically 
divided into CDS (coding region), intron (intron), and so 
on. HTSeq statistics, with three statistical schemes, was 
used to compare the Read Count value on each gene to the 
original expression of the gene. RSeQC was used to ana‑
lyze expression saturation; DESeq was used to analyze the 
difference in gene expression and to screen the expression 
of different genes. GO enrichment analysis was performed 
using top‑GO.

Results

Growth parameter assessment and artemisinin 
concentration

Plant growth parameters, including the plant height, the 
number of leaves, the stem diameter, and the leaf area, were 
significantly reduced under the AlP compared to the KP 
(Fig. 1A‑E). Moreover, the leaf biomass and the root bio‑
mass had a slight reduction, but the stem biomass recorded a 
significant reduction under the AlP, compared to the control, 
KP, which led to a significant reduction in the total biomass 
of A. annua (Fig. 1F). Conversely, LC–MS analysis revealed 
not only no decrease but also a slight increase in artemisinin 
concentration under the AlP, compared to the KP (Fig. 1G).

Transcriptome sequencing and the DEGs

The cDNA libraries were constructed for generating tran‑
scriptome sequences using A. annua leaves of the KPas, 
a control sample and the AlP as a hardly soluble Psource. 
Sequence libraries were prepared on the Illumina NextSeq 
500 platform from 100 × to 120 × depth. Raw data from 
paired‑end sequencing‑by‑synthesis generated 44,281,438, 
and 45,146,916 bp reads from the KP and the AlP, respec‑
tively. For all samples, the maximum read length was 

6,910,596,600 bp. Following quality control and raw read 
data processing, 40,888,780 and 41,961,136 reads from 
the KP and the AlP, respectively, were retained for further 
assembly. Filtered reads were assembled, and transcripts 
were generated using Trinity at a hash size of 25. As a result 
of assembly, 39,274 transcripts of the KP vs the AlP were 
obtained in treatment comparatives with average transcript 
lengths of 283.58 bp for the KP vs the AlP (Table S2). The 
assembled transcript from different replicates showed vari‑
ation in its numbers, possibly due to variable P absorbed 
by the plants or noises caused by technology at some point 
during the sequencing process. The distribution pattern of 
these transcripts is presented in Fig. 2.

The principal component analysis (PCA) was used to 
assess variability between RNA‑seq experiments. The PCA 
results revealed a strong correlation between the three rep‑
licates at two different treatments (Fig. 2A). A total of 762 
DEGs were identified through a comparison of control to 
treatment (the KP vs the AlP) (323 upregulated, 439 down‑
regulated). To identify common transcripts in the DGE data, 
transcripts exclusive to the low P availability treatment and 
the control treatment and downregulated and upregulated 
transcripts were analyzed for overlap (Fig. 2B).

Identification of the GO and KEGG enrichment 
analysis

All DEGs were assigned 210 GO terms (P < 0.05), divided 
into three categories: molecular function, cellular compo‑
nent, and biological process. The top 20 enriched GO terms 
were shown in Fig. 3 and Fig. S1, with the largest two terms 
being “protein localization (GO:0,072,662)” and “enzyme 
inhibitor activity (GO:0,004,857)” from the “biological 
process” and “molecular function” categories, respectively 
(Table S3). Furthermore, the MAPK signaling pathway, 
plant‑pathogen interaction, and aminoacyl‑tRNA biogenesis 
subcategories of the “molecular function” category were sig‑
nificantly enriched in more than 50 DEGs.

To describe enriched biological pathways, a KEGG path‑
way enrichment analysis was performed (Fig. 4; Fig. S2; 
Table S4). The DEGs under the KP, compared to the AlP, 
were most significantly enriched in “catalytic activity,” 
“cellular metabolic process,” and “ion binding” categories. 
Moreover, this comparison was significantly involved in 
“glyoxylate and dicarboxylate metabolism,” “RNA degra‑
dation,” “glycine, serine and threonine metabolism,” and 
“proteasome” (Fig. 4).

Analysis of DEGs involved in hormone biosynthesis 
and signal transduction

 Several genes involved in phytohormone, tryptophan, carot‑
enoid, and phenylalanine acid signaling were differentially 
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expressed under AlP treatment, according to RNA‑seq and 
RT‑PCR analyses (Fig. 5B, C). For example, in the brassi‑
nosteroid and carotenoid acid metabolic pathways, DEGs 
3 and 2, respectively, were differentially expressed. In the 
tryptophan biosynthesis pathway, the expression levels of 
Gretchen Hagen 3 (GH3, CTI12_AA417000) and small 
auxin‑up RNA (SAUR, CTI12_AA600200) were upregu‑
lated (Fig. 5B, C).

The cytokinin response 1 (CRE1, CTI12_AA197330) 
gene involved in cytokinin (zeatin) signal transduction was 
significantly downregulated in response to AlP stress.

In brassinosteroid signal transduction, the BRI1‑asso‑
ciated receptor kinase 1 BAK1, (CTI12_AA100010), BSK 
(CTI12_AA091650), and CYCD3 (CTI12_AA210800) 
were upregulated, whereas BSK (CTI12_AA380960) was 

downregulated. Only PR1 (CTI12_AA324860) showed 
upregulation in response to the AlP treatment in phenyla‑
lanine metabolism.

Analysis of DEGs involved in the artemisinin 
biosynthesis pathway

Our transcriptome analysis revealed many DEGs, such as 
the artemisinin biosynthetic genes. Seven essential arte‑
misinin biosynthesis‑related structural genes were exam‑
ined, and their expression was investigated further using 
RT‑PCR (Fig. 6). There are two independent pathways 
that lead to isopentenyl diphosphate (IPP) in the synthe‑
sis of artemisinin: the mevalonate (MVA) pathway and the 

Fig. 1  Plant morphology, growth parameter assessment, and arte‑
misinin concentration in response to the hardly soluble phospho‑
rus source (AlP) compared to control (KP). A Plant height under 
the AlP, B plant height under the KP, C leaf area under the AlP, D 

leaf area under the AlP, E morphological traits, F biomass measure‑
ments, and G artemisinin concentration (mg kg.−1). Different letters 
(a and b) indicated significant differences between the AlP and the 
KP (P < 0.05, Student’s t‑test)
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methylerythritol phosphate (MEP) pathway in the cytosol 
and plastid, respectively (Fig. 6A).

None of the associated genes in the MEP pathway dis‑
played altered expression in response to the AlP treatment. 
In the MVA pathway, only the acetyl‑CoA acetyltransferase 
(ACAT , CTI12_AA520360) was upregulated, whereas the 
3‑hydroxy‑3‑methylglutaryl‑CoAreductase (HMGR) was 
downregulated. When IPP and dimethylallyl diphosphate 
(DMAPP) are condensed to farnesyl diphosphate (FPP) via 
a farnesyl diphosphate synthase (FPS) catalyzed reaction, 
two distinct pathways are initiated, with the FPS (CTI12_
AA302700) demonstrating upregulation. In the steps from 
farnesyl diphosphate to artemisinin formation, many genes, 
such as the cytochrome P450 monooxygenase (CYP) gene 
family, showed differential expression under the AlP treat‑
ment. Our transcriptomic findings, consistent with our 
expression findings, show amorphadiene monooxygenase 
(CYP71AV1, CTI12 AA566140), which has previously been 
shown to play a role in the artemisinin synthesis pathway, 
is being upregulated. The aldehyde dehydrogenase (ALDH, 
CTI12_AA008900) gene catalyzes dihydroartemisinic alde‑
hyde conversion to dihydroartemisinic acid was upregulated 
(Fig. 6B, C).

Identification of TFs related to AlP treatment

To better understand A. annua’s transcriptional regulation 
mechanisms under different P form treatments, 30 TFs 
changed dramatically in response to the AlP (Fig. 7A). The 
17 differentially expressed TF gene families were classified; 

12 upregulated TF genes (Fig. 7B; table S5) and 18 down‑
regulated TF genes (Fig. 7C; table S6) were obtained using 
the Plant TFDB database.

MYB, which contained three members, constituted the 
most prominent upregulated family among these transcrip‑
tion families. Two families, ERF and WRKY, were the largest 
among the downregulated TFs, with ten members (Fig. 7).

Discussion

After nitrogen (N), P is the second most crucial nutrient 
for plants (Amarasinghe et al. 2022; Kvakić et al. 2020). 
Many biological structures and functions of plants depend 
on the participation of P, such as the creation of nucleic 
acids (DNA and RNA), photosynthesis, glycolysis, respira‑
tion, membrane formation and stability, and enzyme acti‑
vation and inactivation (Malhotra et al. 2018; Shen et al. 
2011; Todeschini et al.2022; Vance et al.2003). Therefore, 
the P availability in the growth medium has been shown to 
have important effects on plant growth and development in 
numerous studies (Malhotra et al. 2018; Todeschini et al. 
2022). P can be found in soil as mineral salts or organic 
compounds (Cordovil et al. 2020); however, most are hardly 
soluble (Miller et al. 2010). Therefore, our study compared 
the effect of  AlPO4, as a hardly soluble P source, with the 
control  KH2PO4, as a water‑soluble P source. A. annua 
also showed a significant reduction in growth parameters, 
such as the plant height, the number of leaves, the stem 
diameter, and the leaf area (Fig. 1A–E), which also led to 

Fig. 2  Overview of the RNA‑seq data and distribution of DEGs. A 
Principal component analysis (PCA) of the RNA‑seq output. The 
PCA plot is calculated based on the transcriptome‑wide profiles of 
gene expression. Distances between samples reveal differences in the 

transcriptome profiles between the samples. B Volcano plots display 
differentially expressed transcripts. Each dot represented a DEG; dots 
above the red line displayed the significant DEGs (P < 0.05)
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a reduction of total biomass under the AlP, compared to the 
KP (Fig. 1F). Interestingly, the artemisinin concentration 
was not reduced but significantly increased under the AlP, 
compared to the KP which was similar to Todeschini et al. 
(2022) study that showed the inverse relationship between P 
level and artemisinin concentration. However, plant growth 
and secondary metabolism responses to P availability are 
quite complex. For example, optimizing A. annua’s P and 
boron supply is critical for increasing dry matter production 
and/or artemisinin yield (Lulie et al. 2017). The yield of faba 
beans can be increased up to a certain level of P fertilizer 
application but exceeding that level decreases yield. Further‑
more, Kebede et al. (2018) and Singh (2000) found no sig‑
nificant increase in oil content as P concentration increased. 

Again, limitations in the published data describing A. annua 
responses to P (Davies et al. 2011; Liu et al. 2003) indicated 
that artemisinin concentration decreased when P application 
was greater than 200 mg  l−1  (KH2PO4). This decrease in 
artemisinin production occurred at a P concentration simi‑
lar to that at which no further increase in plant growth was 
observed, and the amount of artemisinin per plant decreased 
dramatically (Liu et al. 2003). Furthermore, the increase in 
artesiminin concentration under stress, despite the reduc‑
tion in plant growth parameters, may be due to artesmine’s 
expected essential role in elevating the harmful effect of 
stress and participating in plant cell protection. Many pre‑
vious studies support our hypothesis because they discov‑
ered that artemisinin content (except in severe drought) and 

Fig. 3  GO enrichment analysis of all the DEGs between the AlP and the KP. The top 20 enriched GO terms were presented. The horizontal axis 
represented the rich factor, while the vertical axis represented the GO terms. Number: DEG number; P adjust: adjusted P value
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biosynthetic pathway genes are generally linked (Qureshi, 
et al. 2005; Yadav, et al. 2017; Vashisth, et al. 2018).

Hence, we performed transcriptomic analysis to gain 
more knowledge about the genetic behavior under the hardly 
soluble P source and more knowledge about which genes 
were responsible for these findings. cDNA libraries were 
used to generate transcriptome sequences. Using the leaves 
of the A. annua plant, 762 DEGs were identified in the com‑
parison between the AlP vs. The KP (323 upregulated, 439 
downregulated). The results of the GO enrichment analysis 
revealed that the two most enriched GO terms were “pro‑
tein localization” and “enzyme inhibitor activity” (Fig. 3). 
Furthermore, the subcategories “catalytic activity,” “cellu‑
lar metabolic process,” and “ion binding” were significantly 

enriched in the 1459 DEGs (Table S2). Based on KEGG 
pathway enrichment analysis, “glyoxylate and dicarboxy‑
late metabolism,” “RNA degradation,” “glycine, serine and 
threonine metabolism,” and “proteasome pathways” were 
significantly enriched under the AlP compared to the KP 
(Fig. 4; Table S2). These findings suggested that hardly 
soluble P source could have an adverse effect on the regu‑
lation of artemisinin accumulation in A. annua. The AlP 
treatment also increased the expression of some structural 
genes involved in artemisinin biosynthesis.

Previous studies have shown that endogenous hormones 
are necessary for plant growth and development (Pacifici 
et al. 2015). In RNA sequencing data and RT‑PCR analy‑
sis (Fig. 5B, C), it was discovered that the AlP treatment 

Fig. 4  The KEGG enrichment analysis of DEGs between the AlP and the KP. The most enriched KEGG pathways were presented. The horizon‑
tal axis represented the rich factor, while the vertical axis represented the pathway names. Number: DEG number; P adjust: adjusted P value
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varied the expression of many genes involved in tryptophan, 
carotenoid, and phenylalanine acid pathways. The differ‑
entially expressed 3 and 2 DEGs were in the brassinoster‑
oid and carotenoid acid metabolic pathways, respectively. 
These DEGs are widely thought to control plant growth 
and stress adaptation (Shi et al. 2020). Tafvizi et al. (2009) 
and Chen et al. (2007) previously investigated 14 and 10 
differentially expressed genes (DEGs) that regulate cotton 
plant growth in the cytokinin (zeatin) and GA production 
pathways, respectively. The expression levels of GH3 and 
SAUR  were upregulated in the tryptophan biosynthesis path‑
way, which promoted cell expansion and might be one of the 
causes of the maintaining artemisinin concentration under 
the AlP. According to earlier research, auxin can quickly 
and briefly increase the expression of three gene families, 
the SAUR  family, the GH3 family, and the Aux/IAA family, 
which regulate plant development and growth. The auxin 
response factors (ARFs), controlling most SAUR , GH3 and 
Aux genes, activate or repress the expression of target genes 
(Woodward and Bartel 2005). In addition, overexpression 
of GH3-8 causes abnormal plant morphology as well as 
slowed growth and development in rice (Ding et al. 2008). 
On the other hand, the SAURs are the most common family 
of early auxin response genes, and they play a crucial role 
in regulating plant growth and development via hormonal 

and environmental cues (Ren and Gray 2015). Conversely, 
in our investigation, a factor that decreased cell division and 
shoot initiation was the downregulation of CRE1. As demon‑
strated by Laffont et al. (2015) in Medicago truncatula, the 
cytokinin CRE1 pathway influences root development and 
tolerance to abiotic and biotic environmental challenges in 
addition to being necessary for symbiotic nodule organo‑
genesis. In our study, in brassinosteroid signal transduc‑
tion, both BAK1, BSK (CTI12_AA091650), and CYCD3 
were upregulated, whereas the BSK (CTI12_AA380960) 
was downregulated, which would be expected to have a sig‑
nificant effect on cell division and plant length. Although it 
has already been established that BSKs and BAK1 are both 
substrates of the BRI1 kinase, there is evidence to suggest 
that they have different functions in brassinosteroid signal‑
ing (Tang et al. 2008). Moreover, BSK is a crucial family of 
receptor‑like cytoplasmic kinases (RLCK) in the first step of 
BR signal transduction, activating downstream phosphatase 
BSU1 (Kim et al. 2009).

Regarding artemisinin biosynthesis, the sesquiterpene 
route involves numerous enzymatic steps to produce arte‑
misinin (Xie et al. 2016). In the artemisinin syntheses path‑
way, two distinct mechanisms, the MEP pathway in the plas‑
tid and the MVA pathway in the cytosol, are used to generate 
isopentenyl diphosphate, as shown in Fig. 6A (Vranová et al. 

Fig. 5  A Plant hormone signal transduction KEGG pathway in 
response to the hardly soluble phosphorus source (AlP). The red 
shapes represented upregulated genes under the AlP; the blue shapes 
represented downregulated genes under the AlP; the shapes marked 
with yellow represented both the AlP and the KP upregulated genes. 

B Validation of RNA sequencing results by quantitative real‑time 
PCR (qRT‑PCR) of selected genes. C Heat maps showing variations 
in the expression of genes involved in hormone signal transduction 
biosynthesis under the AlP and the KP
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2013). Genes implicated in the MVA and MEP pathways 
have been described in numerous plants. Our transcriptome 
analysis uncovered many differentially expressed genes that 
were identified as producing artemisinin. In our investiga‑
tion, the MVA pathway had all of the DEGs, whereas the 
MEP pathway did not exhibit appreciable changes in its gene 
expression in response to the AlP treatment. In the MVA 
pathway, the ACAT  was upregulated, which produced iso‑
pentyl diphosphate (Xieet al.2016), whereas both HMGR 

and GGPS were downregulated. It showed upregulation of 
FPS but no change in ADS expression in our study. FPS 
overexpression increased artemisinin production (Han et al. 
2006; Banyai et al. 2010), confirming the role of FPS and 
substrate availability in the regulation of artemisinin biosyn‑
thesis (Ikram and Simonsen 2017; Simonsen et al. 2013).

The CYP71AV1 gene, which is required for the two 
oxidation steps of artemisinin biosynthesis, amorpha4,11‑
diene, and artemisinic alcohol, was upregulated (Teoh et al. 

Fig. 6  A Artemisinin backbone biosynthesis KEGG in response to 
the hardly soluble phosphorus source (AlP). The red shapes repre‑
sented upregulated genes under the AlP; the blue shapes represented 
downregulated genes under the AlP; the shapes marked with yellow 
represented both the AlP and the KP upregulated genes. B Validation 

of RNA sequencing results by quantitative real‑time PCR (qRT‑PCR) 
of selected genes. C Heat maps showing variations in the expression 
of genes involved in artemisinin biosynthesis under the AlP and the 
KP
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2006; Ikram and Simonsen 2017). Furthermore, our study 
recorded the upregulation of ALDH. ALDH1 is used in yeast 
and plants for the metabolic engineering of artemisinin pre‑
cursors (Xie et al.2016). Paddon et al. (2013) successfully 
produced artemisinic acid on an industrial scale by incor‑
porating ALDH1 into engineered yeast strains. Zhang et al. 
(2011) found that ALDH1 was overexpressed in tobacco 
plants. Transgenic plants could synthesize dihydroarte‑
misinic alcohol even if neither artemisinic nor dihydroar‑
temisinic acid was found (Zhanget al.2011). Additionally, 
according to previous transcriptional investigations, ALDH1 
expression in A. annua is directly linked to the generation of 
artemisinin (Dilshad et al. 2015; Xiang et al. 2015), showing 
that it participates in the biosynthetic process.

Despite the fact that HMGR was downregulated, arte‑
misinin production increased in the presence of Alp, in con‑
trast to previous studies that showed HMGR upregulation 
leads to an increase in artemisinin production. Despite the 
downregulation of HMGR, artemisinin levels increased due 
to the upregulation of most artemisinin‑related genes (ACAT 
, FPS, CYP71AV1, and ALDH1).

On the contrary, it has been postulated that TFs play sig‑
nificant roles in the transcriptional control of gene expres‑
sion through their binding to DNA regulatory elements 
(Hou et al. 2019; Mathelier et al. 2016). In addition, there 
is strong evidence that TFs have a role in phosphate homeo‑
stasis (Castrillo et al. 2013; Nilsson et al. 2007; Secco et al. 
2012; Wang et al. 2009). Our study identified 31 TF fami‑
lies, such as GATA, NIN‑like, C2H2, GRF, MYB‑related, 
ERF, and HSF, and showed differential expression under 
the AlP (Fig. 7A, B). These transcription factors, under 
our treatment, play significant roles in alleviating P starva‑
tion, increasing phosphate acquisition, ROS homeostasis, 

root system establishment, and artemisinin biosynthesis 
regulation. Many TFs, including one MYB gene (CTI12_
AA463820) and one MYB‑related gene (CTI12_AA434110), 
showed upregulated expression after exposure to the AlP. In 
addition, downregulation was revealed in two MYB‑related 
genes (CTI12_AA271060 and CTI12_AA271110) and two 
MYB genes (CTI12_AA572640 and CTI12_AA340370), 
which may be crucial for enhancing phosphate uptake, acti‑
vating responses to P shortages, and root architecture. An 
earlier investigation in rice found that the OsMYB2P-1 gene 
controls downstream genes to repress or activate responses 
to P shortage and influence root architecture (Dai et al. 
2012). Additionally, OsMYB4P overexpression might trig‑
ger the expression of several Pht genes and boost phosphate 
uptake (Yang et al. 2014). Additionally, it has been discov‑
ered that the MYB TFs, AaMYB1, AaMIXTA1, and AaTAR2 
are crucial for increasing trichome initialization and arte‑
misinin accumulation (Matías‑Hernández et al. 2017; Shi 
et al. 2018; Zhou et al. 2020). Our findings also indicated 
that two WRKY TF members showed downregulation. Our 
results demonstrate the anticipated functions of these TF 
families under phosphate deprivation circumstances. AaW-
RKY1, the first isolated and characterized A. annua tran‑
scription factor, regulates artemisinin biosynthesis (Shen 
et al. 2016). A previous study (Dai et al. 2016) indicated that 
WRKY74 modifies rice’s susceptibility to phosphate depri‑
vation. C2H2 displayed differential expression in our work, 
with just one TF upregulated and one TFs downregulated, 
both of which may be significantly involved in P starvation. 
TaZAT8, a C2H2‑ZFP‑type TF gene in wheat, is crucial in 
mediating wheat tolerance to a lack of P by controlling P 
uptake, ROS homeostasis, and the development of the root 
system (Ding et al. 2016). Additionally, our research showed 

Fig. 7  TF family percent distribution.) The upregulated TFs in response to different phosphorus treatments, and B the downregulated TFs in 
response to different phosphorus treatments
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that BHLH was downregulated, which may impact the final 
accumulation of artemisinin. Previous research has dem‑
onstrated the positive regulation of artemisinin production 
by AaORA and AabHLH1 (Ji et al. 2014; Lu et al. 2013). 
Five members of the ERF family were downregulated in 
response to AlP. As a result, ERF may be crucial in cop‑
ing with P stress and may result in a large accumulation 
of artemisinin. ADS and CYP71AV1 were both favorably 
regulated by AaERF1 and AaERF2 simultaneously, which 
helped plants produce artemisinin and artemisinic acid (Yu 
et al. 2012). Overall, our results will help to understand how 
hardly soluble P fertilizer influences the transcriptional regu‑
lation of A. annua L. about artemisinin and plant hormone 
production in these conditions.
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