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Abstract
We reconstructed summer (June–September) minimum temperature for eastern Nepal over the past 288 years (1733–2020 
CE), using a total tree-ring width chronology of Himalayan Larch (Larix griffithiana (Lindl. and Gord.)) from Kanchanjunga 
Conservation Area (KCA). This study is the first minimum temperature reconstruction for the eastern Himalaya region of 
Nepal. We examined the response of the Larix ring-width chronology to different climate variables including precipitation, 
and minimum, maximum and mean temperatures. Of all climatic variables, minimum temperature has the strongest correla-
tion with tree-ring chronology. This response revealed that the growth of the L. griffithiana is limited by temperature-induced 
physiological behaviors during summer season. The reconstruction shows fluctuating warm and cool periods during the 
entire period and captures warming during recent decades. This increasing warming trend appears to be unprecedented in the 
context of the past 288 years. We observed short (2.5 years) and multidecadal (35, 43, 71 and 100 years) cyclicity, which sug-
gests possible atmospheric teleconnection with the broader circulation system of Atlantic Multidecadal Oscillation (AMO). 
This possible teleconnection is further revealed in spatial field correlation and also supported by temporal comparison of 
the reconstruction with instrumental- and proxy-based AMO records.

Keywords Himalayan Larch · Kanchenjunga Conservation Area · Summer · Atlantic Multidecadal Oscillation · Volcanic 
eruptions

1 Introduction

The eastern Himalaya region covers a broad spectrum of 
ecological zones of eastern Nepal, northeastern regions of 
India, Bhutan, the Tibet and Yunnan of China, and northern 
Myanmar (Zurick et al. 2005; Sharma et al. 2010; Shrestha 
and Devkota 2010). The complex mountain topography of 
the region has created diverse bioclimatic zones such as 
near tropical, subtropical, lower temperate, upper temper-
ate, subalpine evergreen, alpine evergreen, alpine shrubs 
and meadows, and is ecologically rich in natural and crop-
related biodiversity (Sharma et al. 2010; Chaudhary et al. 
2015). The Kangchenjunga Landscape (KL) in the eastern 
Himalaya geographically comprises a part of eastern Nepal, 
Sikkim and Darjeeling in India and western Bhutan. The KL 
is considered as one of the most biodiversity-rich landscapes 
in the eastern Himalaya region (Chettri et al. 2010), con-
stituting many endemics, endangered and threatened flora 
and fauna (Chaudhary et al. 2015; ICIMOD 2015). The 
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eastern Himalaya is not only the home for millions of human 
populations including many ethnic communities, but also 
a critical part of global biodiversity hotspot; it comprises 
parts of Himalayan Hotspot, Indo-Burma Hotspot, Moun-
tains of Southwest China Hotspot, and 25 Global Ecore-
gions including Crisis Ecoregions, and Endemic Bird Areas 
(Myers et al. 2000; Olson and Dinerstein 2002; Brooks et al. 
2006; Sharma et al. 2010). However, global climate change 
poses acute threats to biodiversity in this region (Dhar 2002; 
Chettri et al. 2010).

The KL region is warming rapidly with annual and sea-
sonal temperature increasing at the rate of 0.01–0.015 °C/
year (Chettri et al. 2010; Shrestha and Devkota 2010). The 
rate of warming is higher during winter (December–Febru-
ary) season (0.20–0.3 °C/year), with higher elevated moun-
tainous regions experiencing greater magnitude of winter 
warming (Chettri et al. 2010). Observations show that the 
frequency and intensity of weather extremes are increasing 
along with increase in daily maximum and minimum tem-
peratures by 0.1 °C and 0.3 °C per decade respectively over 
the period of 1975–2010 (Shrestha et al. 2017). Precipitation 
records do not demonstrate any consistent long-term trends 
but the frequency and amount of intense rainfall as well as 
the number of consecutive dry days have increased (Zhan 
et al. 2017; Shrestha et al. 2017). The increase in mean and 
extreme temperatures over the Himalayan region including 
eastern Himalayas of Nepal (Sun et al. 2017) has several 
biophysical and socioeconomic consequences. This rapid 
warming has accelerated snow and glacier retreat, increased 
glacial lake size, and reduced the permafrost-covered area 
(Asahi and Watanabe 2000; Fukui et al. 2007; Bolch et al. 
2012; Chattopadhyay et al. 2016). In addition, phenologi-
cal change of the organisms, alteration in the range and 
distributions of species are observed in various regions of 
eastern Himalaya (Shrestha et al. 2012; Telwala et al. 2013; 
Gaire et al. 2017; Sigdel et al. 2018). Warmer temperatures 
are also causing the trees growing at their vertical limits to 
advance upslope at the rate of 0.01 to 0.93 m/year (Chhetri 
and Cairns 2015; Gaire et al. 2017; Sigdel et al. 2018).

Understanding of long-term climate change and variability is 
required to assess long-term environmental changes. This shall 
in turn aid to make decisions on biodiversity conservation in 
the context of anthropogenic global warming in this critically 
important KL region. However, the instrumental observations of 
climate and hydrology in eastern Himalayan region are brief and 
are sparsely located, limiting our understanding of temperature 
and precipitation changes only over the past four decades. In 
order to extend climate records prior to the instrumental period, 
it is a common practice to use information preserved in natural 
archives including tree rings (Cook et al. 2010; Sano et al. 2013; 
Shah et al. 2014a; Krusic et al. 2015; Thapa et al. 2015).

Owing to its diverse climatic zones and deep elevation 
gradient, the KL region has many conifers and broad-leaved 

tree species that have potentials for dendroclimatic reconstruc-
tions. They are conifer taxa such as Abies densa, A. specta-
bilis, Juniperus indica, J. recurva, Larix griffithiana, Picea 
spinulosa, Pinus kesiya, P. merkusii, P. roxburghii, P. wal-
lichiana, Taxus baccata and Tsuga dumosa (Bhattacharyya 
and Chaudhary 2003; Cook et al. 2003, 2010; Shah and Bhat-
tacharyya 2012; Sano et al. 2013; Krusic et al. 2015; Shah 
et al. 2019). The known broad-leaved taxa such as Betula utilis, 
Rhododendron campanulatum, and Toona ciliata have been 
studied for dendroclimatic analysis ( Liang et al. 2019; Panthi 
et al. 2021; Shah and Mehrotra 2017). However, compared 
to other parts of the greater Himalayas, very few dendrocli-
matic studies have been carried out in eastern Himalaya, and 
those are mostly from Indian (Shah et al. 2014a) and Bhutan 
Himalaya (Krusic et al. 2015). Chaudhary and Bhattacharyya 
(2000) studied tree-ring of L. griffithiana from the Arunachal 
Pradesh, eastern Indian Himalaya and indicated its potential 
for the reconstruction of summer temperature. Bhattacharyya 
and Chaudhary (2003) reconstructed late-summer (July–Sep-
tember) temperature for the eastern Indian Himalayan region 
using tree-ring data of A. densa. Shah et al (2014b) carried out 
stream flow reconstruction from north Sikkim using multiple 
tree-ring parameters of L. griffithiana. Sano et al. (2013) esti-
mated more than 200 years of May–September precipitation 
using oxygen isotope (δ18O) measurements from tree rings of 
J. indica, L. griffithii, and P. spinulosa in the Bhutan Himalaya. 
Similarly, Krusic et al. (2015) used tree-ring chronology of 
P. spinulosa from Bhutan and produced the first multi-cen-
tennial (1376–2013 CE) summer (June–August) temperature 
reconstruction for the country. While significant advancement 
has been achieved in tree-ring reconstructions in central and 
western Nepal (Cook et al. 2003; Thapa et al. 2015; Bhandari 
et al. 2019; Liang et al. 2019; Aryal et al. 2020a; Gaire et al. 
2020), no robust dendroclimatic reconstructions exist from 
eastern Nepal Himalaya including Kanchenjunga Conserva-
tion Area (KCA). However, attempts have been made to assess 
the regeneration, climatic sensitivity and dendroclimatic suit-
ability of L. griffithiana from KCA, Langtang and Manaslu 
region (Bhatta et al. 2018; Aryal et al. 2020b). Therefore, in 
this study, we aim to (1) develop tree-ring site chronology of L. 
griffithiana, (2) assess the growth response of Larix to climate 
variables, and (3) reconstruct multi-centennial climate based 
on tree-ring width of L. griffithiana. In botanical nomenclature, 
L. griffithiana and L. griffithii are synonymously used.

2  Materials and methods

2.1  Study area and sample collection

The present study site is located in the Kanchenjunga 
Conservation Area (KCA) in east Nepal. The KCA is 
named after Mt. Kanchenjunga (8586 m), established in 
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1997 with an area of 2035  km2 and included in IUCN’s 
protected area management category IV. The KCA is an 
important area of the broader Kanchenjunga Landscape 
(KL), a trans-boundary landscape designed for the bio-
diversity conservation and resource management in 
Taplejung District of eastern Himalaya region of Nepal 
(DNPWC 2018). The KCA adjoins the Qomolangma 
National Nature Preserve in Tibet, China in the north, and 
the Khangchendzonga National Park/Biosphere Reserve 
in Sikkim, India in the east (Bhuju et al. 2007; Kandel 
et al. 2016; DNPWC 2018). It also falls within the Sacred 
Himalayan Landscape, which is developed by WWF Nepal 
in partnership with the International Centre for Integrated 
Mountain Development (Aryal et  al. 2010). KCA has 
diverse forest vegetation viz., subtropical evergreen forest 
(800–1200 m), lower temperate forest also known as lower 
temperate mixed broadleaf forest (1200–2500 m), upper 
temperate forest also called upper temperate mixed forest 
or temperate cloud forest (2500–3500 m), sub-alpine zone 
(3500–3900 m) and alpine zone (3900–4600 m) (Carpen-
ter et al. 1994; Bhuju et al. 2007; DNPWC 2018). Com-
pared to other areas of eastern Nepal, evergreen broadleaf 
taxa in KCA grow towards the higher elevation regions in 
the valley of the Ghunsa Khola, with Acer campbellii the 
only abundant deciduous broadleaf tree (Carpenter et al. 
1994). There are 4–5 conifer species growing in the same 
stand indicating the high species richness of conifers in 
this area. At higher elevations near Ghunsa Village (3300 
to 3400 m a.s.l.), A. spectabilis replaces T. dumosa on 
stable slopes and old moraines to form a subalpine forest, 

while L. griffithiana forms pure stands on depositional ter-
races, loose slopes and other places prone to a higher rate 
of disturbance (Carpenter et al. 1994). The Larix forests of 
the region are ecologically significant because they repre-
sent the western most extreme for this unique, deciduous 
conifer of the eastern Nepal Himalaya (Carpenter et al. 
1994). L. griffithiana is distributed in eastern Himalaya 
from East Nepal through Darjeeling, Sikkim, Bhutan, 
Arunachal Pradesh (India), NE Upper Burma (Myanmar), 
and Chumbi Valley in Tibet at 2400–3650 m and mostly 
growing on glacial moraine (Sahni 1990).

The tree-core sample collection was carried out in the 
Ghunsa Khola area, namely Phale and Ghunsa in field expe-
dition carried out during April, 2014 and September–Octo-
ber, 2015 (Fig. 1). We collected tree-core samples from the 
least anthropogenically disturbed L. griffithiana dominated 
forest stands. The slope of the sampling site ranges from 20 
to 30° and sampling site covers an elevation range from 3300 
to 3600 m. Tree cores were collected using a Swedish Haglof 
increment borer following the commonly used technique (Fritts 
1976; Cook and Kairiukstis 1990; Speer 2010). The cores were 
collected at breast height (~ 1.3 m) and two cores per tree were 
collected where possible. A total of 120 cores from 60 trees of 
L. griffithiana were collected for tree-ring analysis.

2.2  Tree‑ring sample processing and chronology 
development

The collected tree-core samples of L. griffithiana were 
brought to the laboratory for preparation and measurement. 

Fig. 1  Map showing the locations of tree-ring site of Larix griffithiana from Kanchanjunga Conservation Area, eastern Nepal Himalaya and 
meteorological station, Taplejung along with 25 grid points of gridded CRU climate data
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The cores were mounted on wooden frames by using water 
soluble adhesive with the transverse surface of the core fac-
ing up. After air drying, cores were sanded and polished by a 
belt sander machine. Furthermore, manual sanding was done 
using successively finer grades of sand paper (600 to 1000 
grits) until optimal surface resolution allowed annual rings 
to be visible under the microscope. Each annual rings were 
counted under a Leica stereo zoom microscope and assigned 
a calendar year with the help of the known date of formation 
of the outer rings validated by cross dating. The width of each 
ring was measured to the nearest 0.001 mm precision with the 
 LINTABTM5 measuring system attached to a computer using 
the TSAP-Win software (Rinn 2003). All tree-core samples 
were cross dated by matching patterns of relatively wide and 
narrow rings across the samples to account for the possibility 
of ring-growth anomalies such as missing rings, false rings, or 
measurement error (Fritts 1976). Each tree-ring width series 
was visually (using the math graphs) and statistically (using 
Gleichläufigkeit, t-values, and the cross-dating index, CDI) 
cross dated using the software package TSAP-Win (Rinn 
2003). The accuracy of the cross dating of all tree-ring series 
was further checked using COFECHA (Holmes 1983). Those 
series which were young, showed irregular growth pattern, 
had several breakages, had very low correlation with mas-
ter series in TSAP or in COFECHA were discarded and not 
included in tree-ring chronology development.

In order to remove the geometric and ecological growth 
trends largely unrelated to climate, and to remove effects of 
differential mean growth rates among individual trees prior 
to averaging into the mean chronology (Cook 1985; Cook 
and Kairiukstis 1990), standardization of each series was car-
ried out. The standardization of each tree-ring width series 
was done by fitting a negative exponential growth curve and 
then dividing the measured value by the curve value at each 
year in RCSSigFree programs (Melvin and Briffa 2008). The 
standardization method in this program generates a series of 
detrending curves that are free of growth patterns common 
to all measurement series, and preserves low to medium 
frequency signal in the final chronology (Melvin and Briffa 
2008). The individual detrended series were averaged using a 
bi-weight robust mean function (Cook 1985; Cook and Kairi-
ukstis 1990) to produce the mean chronology. The average 
correlation between series (RBAR) and the expressed popula-
tion signal (EPS) (Wigley et al. 1984), which are considered 
as measures of common signal strength of chronologies were 
calculated in a running window of 50 years. The EPS is an 
indication of how well the site chronology estimates the popu-
lation chronology. The value of 0.85 was taken as a threshold 
to judge the reliable portion of the chronology time series cap-
tured by adequate sample depth (Wigley et al. 1984). Further-
more, various chronology statistics (Fritts 1976; Speer 2010) 
were calculated for stabilized signal-free chronology for full 
and common periods having maximum samples.

2.3  Climate data

The KCA region has been largely dominated by monsoon 
climate; however, in the northern corner of the area, many 
dry valleys also exist (Bӧhner et al. 2015). We use climate 
date from Taplejung meteorological station (27.35° N Lati-
tude, 87.66° E Longitude, 1732 m), which is the nearest 
meteorological station from our present tree-ring sampling 
site (Fig. 1). This station records both temperature and pre-
cipitation datasets. This station showed, winter (Decem-
ber–February), spring (March–May), summer (June–Sep-
tember) and autumn (October–November) receive 2.6, 
20.7, 71.8, and 4.9% of annual precipitation, respectively. 
During 1948–2013 CE, the average annual total precipi-
tation was 1981 mm (Fig. 2). The highest annual precipi-
tation (2505 mm) was recorded in 2003 while the lowest 
(1408.9 mm) was recorded in 2009. There is a slight increase 
in annual precipitation by a rate of 0.84 mm/yr, but it is 
statistically not significant. The average mean annual tem-
perature for 1962–2012 was 16.2 °C (Fig. 2). January and 
August are the coldest and warmest months in the area, with 
lowest temperature recorded in January 1983 (2.4 °C) and 
highest in August 2012 (26.8 °C). During 1962–2013, the 
mean annual temperature has increased by 0.023 °C/year 
with a more pronounced increase in average annual maxi-
mum temperature (0.034 °C/year) as compared to minimum 
temperature (0.01  °C/year). In addition to instrumental 
record, gridded climate data from Climate Research Unit 
(CRU) covering the sampling area were also used (Harris 
et al. 2020). We extracted monthly minimum (TMN), maxi-
mum (TMX) and mean (TMP) temperature and precipita-
tion datasets for 25 grid points covering 26.55–28.25° N 
and 86.25–88.25° E to represent regional climate (Fig. 1). 
The correlations between annual mean temperature of Taple-
jung with each 25 CRU temperature grids points range from 
0.775 to 0.838 (p < 0.0001). However, we have not observed 
significant positive correlation between gridded and station-
based precipitation, which is common for topographically 
varied region such as KL. Similar to instrumental record 
from Taplejung station, CRU gridded data also exhibited 
positive trends in TMP, TMX, and TMN, with higher mag-
nitude of warming in the period common to instrumental 
data (1962–2013 CE).

2.4  Response of tree growth to climate

Longer climatic data from near the tree-ring sampling site 
is more reasonable to examine the response of tree growth 
to climate. Taplejung is the nearest meteorological station 
located about 40 km from our sampling site. However, the 
length of temperature records is shorter compared to pre-
cipitation data. In addition, both climatic variables have 
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some missing records (precipitation, 7% and temperature 
6.2%). Alternatively, we used gridded CRU climate datasets 
to establish tree-growth climate relationship and to estab-
lish regional climate response. The spatial field correlations 
between our tree-ring chronology of L. griffithiana and CRU 
climate variables for all the 25 grids were calculated for a 
14-month dendroclimatic window starting from September 
of the prior year through the current year October. Based on 
the overall spatial correlation analysis, the seasonal climate 
which strongly limits the growth of L. griffithiana has been 
selected for climate reconstruction using modified point-by-
point regression methodology.

2.5  Palaeoclimate reconstruction 
and teleconnections

The climate variable with strongest and significant associa-
tion with L. griffithiana chronology was reconstructed using 
a modified version of the point-by-point regression (PPR) 
method (Cook et al. 2010, 2015). The PPR method has been 
widely used for climate field reconstructions based on either 
single or multiple tree rings datasets (Cook et al. 1999, 2004, 
2010, 2015). The PPR methodology can be used as a flexible 
procedure in small-scale experiments with single predictor 
(a tree-ring chronology) and a single predictand (a climate 

record). When PPR method is used with a single predic-
tor and predictand, it estimates a simple linear regression 
model that transforms the tree-ring time series into the cli-
mate time series (Krusic et al. 2015). The AR models were 
estimated from the calibration period data and applied back 
in time over the lengths of the tree-ring and climate data 
not used for calibration. This produces approximate ‘white 
noise’ reconstructions which is later ‘reddened’ by adding 
the AR persistence in the instrumental data and applied for 
full lengths of the reconstructions.

The time stability of the PPR model was tested by 
using rigorous calibration and validation tests commonly 
used in tree-ring–based climate reconstructions using 
PPR methodology (Cook et al. 1999, 2004, 2010, 2015). 
The calibration statistics used are the coefficient of 
determination (CRSQ) and cross-validation reduction of 
error (CVRE). The CVRE is calculated using ‘leave-one-
out’ procedure and considered as analogous to R2 based 
on Allen’s PRESS statistic (Allen 1974). The CVRE is 
considered as a more traditional measure of explained 
variance than CRSQ (Cook et al. 2015). The validation 
period statistics considered are the Pearson correlation 
coefficient squared (VRSQ), the reduction of error sta-
tistic (VRE) and the coefficient of efficiency (VCE). The 
VRSQ should be positive at the 95% level to judge the 

Fig. 2  Walter and Leith climate 
diagram of the Taplejung mete-
orological station. The blue line 
represents monthly precipitation 
(for 1948–2013 CE) and red 
line represent monthly tempera-
ture (for 1962–2012 CE). The 
monthly mean maximum of 
the warmest month (August) is 
24.7 °C and the monthly mean 
minimum temperature is 4.2 °C 
for January. The upper right 
corner of the diagram shows 
the mean annual temperature 
(16.2 °C) and total annual 
precipitation (1981 mm). The 
blue filled area represents wet 
period and the red dotted area 
represents dry period

Taplejung (1732 m a.s.l.)
Time span: Temperature (1962-2012 CE)
     Precipitation (1948-2013 CE)

16.2 oC        1981 mm

Te
m

pe
ra

tu
re

 (o C
)

Pr
ec

ip
ita

tio
n 

(m
m

)

Month

0

10

20

30

40

50

0

20

40

60

80

100

300

500

24.7

4.2

J F M A M J J A S O N D

899Spatial minimum temperature reconstruction over the last three centuries for eastern Nepal…



1 3

significant reconstruction skill. In case of VRE and VCE, 
there are no theoretical significance tests available; how-
ever, if VRE and VCE value is greater than 0, then the 
reconstruction has some skill in excess of the calibration 
or verification period means (Cook et al. 1999, 2010, 
2015). Once the PPR method based on linear regression 
model was considered effective and stable, it was used to 
reconstruct our target significant climatic variable. The 
final reconstruction was truncated to the effective chro-
nology period based on commonly used EPS threshold 
criteria, i.e., > 0.85 (Wigley et al. 1984).

Furthermore, the reconstruction was compared with 
independent proxy-based summer temperature records 
from the adjoining regions. Additionally, we also per-
formed spatial correlations between our reconstruction and 
global Sea Surface Temperature (SST) datasets to assess 
the coherency and atmospheric teleconnection patterns. 
For this purpose, two different SST datasets viz., Hadley 
Centre Sea Ice Sea Surface Temperature (HadISST, Rayner 
et al. 2003) and NOAA Extended Reconstructed Sea Sur-
face Temperature version 5 (ERSST v5, Huang et al. 2017) 
were used. The spatial field correlations analysis was per-
formed in the KNMI Climate Explorer (Trouet and Olden-
borgh 2013; http:// clime xp. knmi. nl/). The Power spectral 
analysis using the Multiple-Taper Method (MTM, Mann 
and Lees 1996) was applied on reconstruction to compute 
the periodicity in the time series. The localized variation 
of power to identify domain periods within reconstructed 
variable was assessed using wavelet analysis (Torrence and 
Compo 1998).

3  Results and Discussion

3.1  Assessment of tree‑ring chronology of L. 
griffithiana

The tree-core samples have distinct ring boundary with a 
clear demarcation from earlywood to latewood. Based on 
the well cross dated samples the L. griffithiana, a 292-year 
long ring-width chronology (1724–2015 CE) was developed 
(Fig. 3). The chronology statistics revealed that it has good 
dendroclimatic potential with moderate mean sensitivity 
(1.01), high standard deviation (0.179). The common period 
(1958–2008 CE) Rbar statistics observed between all series, 
within trees and between trees are 0.499, 0.692 and 0.497 
respectively and are higher and significant. The EPS of the 
site chronology was above (0.982) the threshold limit of 0.85 
(Wigley et al. 1984) and the running EPS showed that the 
chronology is reliable till 1733 (Fig. 3). The signal to noise 
ratio and variance explained in the first principal component 
analysis are 55.9 and 52.9% respectively, which showed that 
common climatic factor affects the growth of the trees in the 
study site.

The tree-ring chronology statistics observed in the pre-
sent study are comparable to those reported for the same 
or other conifer species from different parts of the eastern 
Himalaya (Bhattacharyya et al. 1992; Chaudhary and Bhat-
tacharyya 2002; Cook et al. 2003; Shah and Bhattacharyya 
2012; Shah et al. 2014b; Krusic et al. 2015; Thapa et al. 
2017). The chronology exhibits growth fluctuations over 
time with positive growth during the first half of twentieth 

Fig. 3  Tree-ring chronology of 
Larix griffithiana from eastern 
Nepal Himalaya region along 
with sample size, EPS and 
RBAR
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century followed by continuous growth decline in the recent 
few decades (after 1970s) (Fig. 3). The Larix chronology 
displayed reduced growth during dry periods and enhanced 
growth during warm and moist periods, suggesting that 
Larix trees in eastern Himalaya are sensitive to climatic 
variations. The observed long-term growth trend is almost 
similar with that in the composite chronology developed for 
the Bhutan Himalaya (Krusic et al. 2015). Other studies have 
also observed similar growth trends with twentieth century 
growth enhancement in different regions in the Himalaya 
(Krusic et al. 2015; Gaire et al. 2020). A positive growth 
trend was observed in the nationwide composite chronol-
ogy of Nepal (Thapa et al. 2017). But we observed growth 
decline in our chronology in the recent decades, which sug-
gests that growth trends might vary regionally and accord-
ingly in tree species. Larix species was not included in the 
country-wise tree growth synthesis by Thapa et al. (2017). 
A decline in growth trend was also observed in tree-ring 
studies carried out in B. utilis from central Nepal (Tiwari 
et al. 2017) and in A. spectablis and B. utilis from western 
Nepal (Bista et al. 2021).

3.2  Regional response of climate on tree growth 
of L. griffithiana

The growth-climate response analysis using field correlations 
shows negative relationship between the growth of L. griffithi-
ana and temperature during most of the months. The Larix 
chronology has the strongest correlation with June–September 
minimum temperature  (JJASTMN) compared to maximum and 
mean JJAS temperatures across the 25 CRU grid points (Fig. 4). 
There is no significant correlation between tree growth and pre-
cipitation. The limited ecological distribution of this species at 
an altitude of 2400–3650 m a.s.l. in the eastern Himalaya where 
it grows on glacial moraines on well-drained soils of grassy 
slopes (Ostenfeld & Larsen 1930; Sahni 1990) distinguishes 
its preferences of lower temperature zones and moisture avail-
ability. The species growth consequently can be impacted due 
to lack of moisture and variations in minimum temperature.

The positive relationship with precipitation and negative with 
temperature during summer and late summer season indicates 
that moisture availability during the beginning or whole grow-
ing season is the primary limiting factor to the Larix growth. 

Fig. 4  Spatial correlation 
between tree-ring chronology of 
Larix griffithiana and a mini-
mum b mean and c maximum 
temperature for 1951–2015 CE
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Larix is a deciduous conifer species, optimum climatic conditions 
are therefore very important for the species to attain optimum 
growth. Compared to other species and regions, very few dendro-
climatic studies have been carried out from the eastern Himalaya 
to adequately weigh the climate response of our Larix chronology 
from others. Earlier studies also showed that the growth of this 
tree is influenced by summer to late summer temperature in the 
eastern Himalaya region (Chaudhary and Bhattacharyya 2000; 
Yadava et al. 2015). This growth response is typical for most 
conifer tree-ring chronologies from the dry mountain valleys in 
the Himalaya (Chaudhary and Bhattacharyya 2000; Bhattacha-
ryya and Chaudhary 2003; Cook et al. 2003; Gaire et al. 2014; 
Yadava et al. 2015). The L. griffithiana growing in Arunachal 
Pradesh, eastern Himalaya exhibited a higher growth in relation 
to increased temperature during November of the previous year 
and May and July of the current growth year, whereas it displayed 
negative relationship current January temperature (Chaudhary 
& Bhattacharyya 2000). But in the present study, warm summer 
temperature still has a negative influence on the Larix growth. 
In Arunachal Pradesh region, precipitations during August and 
September of the previous year and July of the current year have 
inverse relationships with tree growth, whereas January and Feb-
ruary of the current year exhibit a direct relationship with growth 
(Chaudhary & Bhattacharyya 2000). Differing from our find-
ings, the L. chinensis from Qinling Mountains in China showed 
a positive relationship with summer temperature (Liu et al. 2018). 
These differences in the response might be associated with the 
differences in the topography in India and Nepal Himalaya and 
China. Similar to our results, tree-ring analysis from A. densa 
growing at the tree line in the Sikkim (east of the present sam-
pling site) and Arunachal Pradesh from eastern Himalaya region 
shows negative relationship between the temperatures during the 
current year’s summer months (Bhattacharyya and Chaudhary 
2003). The tree-ring network-based studies from Nepal Himalaya 
(Cook et al. 2003) also obtained negative response with summer 
temperature in some sites. In dry Himalayan valleys, the higher 
temperature during late-spring and summer months leads to more 
evaporative water demand causing shortage of water for photo-
synthesis and tree growth, since temperature during these periods 
often would be high. Several possible reasons why trees from 
different parts of Himalaya have negative response to summer 
temperature have been explained in several studies (Chaudhary & 
Bhattacharyya, 2000; Bhattacharyya and Chaudhary 2003; Cook 
et al. 2003; Yadav et al. 2004; Gaire et al. 2014; Yadava et al. 
2015).

3.3  JJAS Minimum temperature  (JJASTMN) 
reconstruction

Based on the correlation result, we selected June–Septem-
ber minimum temperature  (JJASTMN) as a target variable for 
reconstruction. For this tree-ring chronology of L. griffithiana 
as the predictor and the average June–September minimum 

temperature  (JJASTMN) based on the 25 CRU grid points as 
predictand. The correlation was carried out as 1-tailed test using 
negative correlations. The tree-ring (t and t + 1) and instrumen-
tal  JJASTMN data used for calibration were pre-whitened using 
autoregressive (AR) models fit to correct for differences in 
autocorrelation between them (Cook et al. 1999; Meko 1981). 
We developed robust spatial reconstruction model between the 
tree-ring chronology of L. griffithiana and average  JJASTMN for 
each 25 CRU grid points. The calibration period of 1975–2014 
CE (40 years) was reserved for the calibration analysis and 
 JJASTMN records from 1951 to 1974 (24 years) was withheld 
from the calibration period to test validation skill of estimated 
 JJASTMN. Additionally, the reconstruction was updated up to 
the last year (2020 CE) of instrumental datasets using ‘com-
posite-plus-scale’ (CPS) method (Smerdon et al. 2015). Both 
CRSQ and VRSQ statistics for all the 25 grid points are sta-
tistically significant (Fig. 5). Except VCE for two grid points, 
all other three statistics, calibration (CVRE) and validation 
statistics (VRE and VCE) are found positive and therefore the 
reconstruction model is reliable for all the CRU 25 grid points 
(Fig. 5). We further modelled the tree-ring chronology of L. 
griffithiana against the average  JJASTMN across 25 grid points. 
This final model explains 36.4% of variations in instrumental 
 JJASTMN during calibration period of 1975–2014 CE. Using 
this model, 283 years long (1733–2015 CE) average  JJASTMN 
was reconstructed for the eastern Nepal Himalaya region 
(Fig. 6). The average  JJASTMN reconstruction model has robust 
skill based on the calibration verification statistics. The calibra-
tion period CRSQ and CVRE are 0.364 and 0.284, respectively. 
The verification period VRSQ, VRE and VCE are 0.422, 0.665 
and 0.273, respectively.

3.4  Assessments of  JJASTMN reconstruction

Our  JJASTMN reconstruction shows an overall increase in 
the temperature with unprecedented late twentieth century 
warming. The observed warming trend in our reconstruc-
tion is similar to other tree-ring–based temperature recon-
structions from the Himalaya (Cook et al. 2003; Krusic 
et al. 2015; Aryal et al. 2020a; Gaire et al. 2020). The early 
eighteenth century cooling and warming from the late nine-
teenth century until the present in our reconstruction are 
consistent with other summer temperature reconstructions 
for Nepal, Bhutan, India, Tibetan Plateau, as well as with 
large-scale continental-scale reconstructions from south 
and east Asia (Cook et al. 2003; Krusic et al. 2015; Yadava 
et al. 2015; Cook et al. 2015; PAGES2k 2013; Wang et al. 
2015) (Fig. 7). Our reconstruction shows a relatively longer 
cooling episode during 1810–1822 that coincides with two 
major Indonesian volcanic eruptions; 1809 unknown and 
1815 Tambora (Cole-Dai et al. 1997; Stothers 1984). These 
explosive eruptions, specifically Tambora, are among the 
largest eruptions over the Common Era (Gao et al. 2008; 
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Oppenheimer 2003), responsible for cooling much of 
Northern Hemisphere for a couple of years (Cole-Dai et al. 
2009). The  JJASTMN reconstruction suggests that the cool-
ing impacts of these eruptions were also felt in the north-
east corner of Nepal. Because our reconstruction is based 
on ring widths, which are known to have biological memory 
(Anderegg et al. 2015; Thapa et al. 2017), the longer cooling 
period following these two eruptions may not represent the 
true length of volcanic impacts in this region (Esper et al. 
2015). Further, our reconstruction, which is based on ring 
widths that are known to have biological memory, may also 
be overestimating the length of cooling in the early eight-
eenth century following eruptions (Esper et al. 2015; Thapa 
et al. 2017). Wood density measurements from tree-rings are 
known to be a superior proxy in realistically representing 
temperature following eruptions, therefore producing new 

density chronologies might help resolve the issue persisting 
in reconstruction (Esper et al. 2018).

The power spectral analysis of  JJASTMN reconstruction 
using Multi Tapered Methods revealed short (2.5) and multi-
decadal (35, 43, 71 and 100 years) periodicities (Fig. 8). Fur-
thermore, the wavelet analysis showed that the multi-decadal 
frequency prevails throughout the reconstruction (Fig. 8). The 
shorter periodicity falls in the frequency cycles of El-Nino 
Southern Oscillation (ENSO), which is the most dominant cli-
mate mode affecting interannual variability of Asian climate, 
particularly hydroclimate of South Asia (Cook et al. 2010). 
Such ENSO-like frequency of variability has been reported in 
several tree-ring–based temperature records across the Hima-
laya and Tibetan Plateau (Thapa et al 2015; Shah et al. 2019; 
Aryal et al. 2020a; Gaire et al. 2020, 2022; Huang et al. 2019; 
Shi et al. 2017), but we observed only a weak correlation 
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Fig. 5  Calibration and verification statistics for the June–September 
minimum temperature reconstruction carried out for 25 CRU mini-
mum temperature grid points. Calibrated statistics (prefixed with 
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sented in units of fractional variance. The verification statistic, VCE 
and VRE plotted only for those grid points with values > 0
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between our  JJASTMN reconstruction and SSTs over the Nino 
regions of the tropical Pacific Ocean (Fig. 9). The multi-
decadal periodicity present in our reconstruction falls in the 
range of Atlantic Multidecadal Oscillation (AMO; Hurrel 
et al. 2003), which is also witnessed with highly significant 
spatial correlation of  JJASTMN reconstruction with SST over 
the Atlantic region (Fig. 9). This strong positive correlations 
between our reconstruction and SSTs in the Atlantic Ocean 
region, suggesting the AMO can have remote influence on the 
eastern Himalayan temperature variability (Fig. 9).

The previous tree-ring–based reconstructions from the 
Himalayas and Tibetan plateau have also observed the simi-
lar periodicities and indicated the influence of AMO in the 
climate of the Himalayas and Tibetan Plateau region through 
atmospheric bridges (Shah et al. 2019; Aryal et al. 2020a; 
Gaire et al. 2020; Huang et al. 2019; Shi et al. 2017). In 
a study, St. George (2014) mapped teleconnection patterns 
associated with major climate modes, over the Northern 
hemisphere using a network of 2270 tree-ring records, and 
showed ENSO and the AMO have stronger and more con-
sistent effects on tree growth than do the PDO, PNA, and 
NAO. Specifically, in Europe and Asia, chronologies are 
significantly correlated with the AMO index, but the major-
ity of records did not show a strong association with North 
Atlantic sea-surface temperatures. AMO is a 40–130-year 
quasi-periodic variation in Atlantic sea-surface temperature 
(Gray et al. 2004). Simulations with a climate model in the 
Atlantic Ocean suggested that variability in the Atlantic 

partially explains the multidecadal variability in the North-
ern Hemisphere mean temperature record (Zhang et  al. 
2007). Song et al. (2021) reconstructed winter temperature 
over Asia for the past 700 years using 260 temperature sen-
sitive tree-ring chronologies. They suggested the possible 
influence of multidecadal oscillations in regional climate and 
tree growth along with the influence of volcanic eruptions, 
anthropogenic activities and winter solar insolation on the 
winter temperature variations. Shah et al. (2019) in win-
ter temperature reconstruction (1855–2012) for the Lidder 
Valley, Kashmir, Northwest Himalaya based on tree-rings 
of P. wallichiana found that a significant long-term quasi-
periodicity (72 years) may likely be linked to the AMO.

Considering the strong spatial relationship with SSTs in the 
Atlantic Ocean region, we compared our  JJASTMN reconstruc-
tion temporal variations with instrumental and proxy-based 
AMO records. We found a significant correlation (r = 0.224, 
n = 151, p < 0.05) between our reconstruction and HadISST1-
based AMO index EQ-60N, 0-80W minus SST 60S-60N 
(Trenberth and Shea 2006). The correlation coefficient 
increases to 0.312 after applying 10 years of low pass filter 
(Fig. 10). Similar comparison was made with reconstructed 
summer Atlantic multidecadal variability (Wang et al. 2017) 
and annually resolved Atlantic Sea surface temperature vari-
ability (Lapointe et al. 2020). In both these comparisons, we 
observed significant positive correlation and the correlation 
coefficient increased after applying 10 years of low pass filter 
(Fig. 10). It was observed that the warm phases of the AMO 

Fig. 6  a Actual and estimated 
June–September minimum 
temperature for 1951–2014 along 
with 10 years low pass filter. 
b Reconstructed June–September 
minimum temperature from 1733 
to 2020 CE along with 10 years 
low pass filter
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are associated with positive temperature anomalies over the 
eastern Nepal Himalaya while the cold phase of the AMO is 
associated with negative temperature anomalies (Fig. 10). This 
result suggests a close link between the Atlantic Sea surface 
temperature variability and temperature variations over the 
eastern Nepal Himalaya at decadal/multidecadal time scales.

4  Conclusions

In this study, we developed an annually resolved robust mini-
mum summer (June–September) temperature back to 1733 
CE based on a new Larix griffithiana (Sikkim Larch) tree-
ring chronology from the eastern Nepal Himalaya. This is 

Fig. 7  Comparison of a June–
September minimum tempera-
ture reconstruction from this 
study with other proxy-based 
temperature reconstruction, 
b February–June mean tempera-
ture, Nepal (Cook et al. 2003), 
c July–September mean temper-
ature from North Sikkim, India 
(Yadava et al. 2015), d June–
August mean temperature, Bhu-
tan (Krusic et al. 2015), e June–
August mean temperature, 
Eastern Tibetan Plateau (Wang 
et al. 2015), f gridded summer 
temperature of East Asia (Cook 
et al. 2013), and g Asian sum-
mer temperature from PAG-
ES2K Consortium (PAGES2k 
Consortium 2013). The period 
with low temperature value due 
to volcanic eruption of Tambora 
and recent rise in temperature 
are highlighted with yellow and 
blue band respectively
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a first minimum temperature reconstruction in the eastern 
Nepal Himalaya that shows that summer warming during the 
recent decades is unprecedented at least over the past three 
centuries. The reconstructed temperature series exhibits sig-
nificant decadal variations, largely driven by the sea surface 

temperature variability in the Atlantic Ocean region. These 
findings indicate that it is important to consider the influence 
of extrinsic factors such as AMO and external forcing factors 
such as volcanic eruptions in order to improve temperature 
forecasts in eastern Nepal in the face of anthropogenic climate 
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change. Given the difficulty in accessing remote Himalayan 
forests, our Larix chronology is of great value, and aids in 
expanding and updating the old collections from the region in 
the late 1990s. We also acknowledge that our study is based on 
a single site chronology of L. griffithiana. Developing newer 
tree-ring records and attempting reconstructions based on 
multiple site chronologies is desirable to increase confidence 
on regional temperature variability and its drivers.
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