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Abstract: Global climate change has become a major threat to biodiversity, posing severe challenges
to species conservation. This is particularly true for species such as Horsfieldia tetratepala that have
extremely small populations in the wild. Little is known about the species distribution of H. tetratepala
in the current climate, as well as how that will change with potential future climates. The key
environmental factors that influence its expansion, especially its habitat sustainability and its potential
to adapt to climate change, are also unknown, though such information is vital for the protection of
this endangered species. Based on six climate factors and 25 species distribution points, this study
used the maximum entropy model (MaxEnt) to simulate the potential distribution for H. tetratepala in
three periods (current, 2050s, and 2070s), and to investigate the changes in distribution patterns and
the main environmental factors affecting species distribution. The modeling results show that the
most important bioclimatic variables affecting H. tetratepala were precipitation of the warmest quarter
(Bio_18) and temperature seasonality (Bio_4). The suitable areas for H. tetratepala will gradually be
lost in Yunnan but will be generally offset in the northeastward direction, expanding in Hainan,
Guangzhou, and Taiwan provinces under the future climate conditions. Therefore, we recommend
protecting the habitats of H. tetratepala in Yunnan and strengthening the in-depth species investigation
and monitoring in areas (Hainan, Guangzhou, and Taiwan) where no related reports of H. tetratepala
have been reported. The results improve our understanding of this species’ response under the
changing climate and benefit strategies for its conservation.

Keywords: Horsfieldia tetratepala; maximum entropy model; species distribution; habitat suitability;
shared socioeconomic pathways; endangered species

1. Introduction

With the progress and development of human society and science and technology,
the global climate is constantly changing, posing a serious threat to many endangered
species and biodiversity on earth [1]. Biodiversity is vital to human well-being but has
been declining throughout human history due to human disturbances, even driving the
sixth mass extinction in Earth’s history [2–4]. Loss of biodiversity not only affects the
function of natural ecosystems but threatens the well-being of human beings [3]. Bio-
diversity conservation has become a global strategy, and countries are actively carrying
out biodiversity conservation. The current threats to the world’s species suggest that the
rate of species extinction is likely to have risen fivefold over the past few years and is
continuing to increase, so it is particularly important and urgent to formulate a reasonable
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and efficient conservation plan [3,5]. China is a recognized biodiversity hotspot and one
of the main global priority conservation areas in the world, as stated by the International
Biodiversity Conservation Organization [6]. Therefore, the protection of biodiversity in
China is important, not only for China but also for the entire world. However, due to factors
such as rapid population growth, rapid economic and sustained growth, and insufficient
social awareness, biodiversity conservation in China still faces serious threats [1,7].

Rapid climate change and human-driven land-use change have become the greatest
drivers threatening biodiversity [8–10]. Climate change affects the current and future
distribution of many species, influencing ecosystems and biotas worldwide [11–16]. Global
warming has caused significant changes in spatial and temporal environmental patterns,
affecting efforts to conserve biodiversity [17–21]. Rapidly changing climates have con-
tinued to result in the serious degradation or loss of species habitats, causing declines
in population sizes or even the extinction of endangered species [22–29]. Predicting the
potential distribution of endangered species can alert scientists and policymakers to the
potential risks that future climate change will pose on their environments to help them
propose positive coping strategies to mitigate these impacts [30,31].

One of the most important challenges for the conservation of endangered species is to
resolve uncertainty surrounding species distribution [32]. In recent decades, the develop-
ment of species distribution models (SDMs) has contributed to solving this challenge [33].
Utilizing SDMs to predict the potential geographical distribution of species is a hotspot in
biodiversity conservation research, and has great significance for developing effective bio-
diversity conservation strategies [14,15,34]. Based on current species occurrence data and
environmental variables, SDMs have been widely used to evaluate the potential distribution
of species without biodiversity observations [28,35–38]. Subsequently, many methods have
been proposed for the construction of SDMs, such as random forests (RF) [39], maximum
entropy models (MaxEnt) [40], and generalized linear models (GLM) [41]. Among these
SDMs, MaxEnt modeling integrates machine learning and maximum entropy principles to
predict the potential distribution areas of species, and have become the most powerful and
extensively used models owing to their operation simplicity, faster operational capability,
and high accuracy, even with minimal occurrence data points [40,42–47]. For endangered
species that have few observational occurrences and live in areas where it is difficult to
collect occurrence data, the MaxEnt model provides an ideal model to predict their potential
distributions under global climate change [14,15,34,36].

Horsfieldia tetratepala C. Y. Wu, a plant species with extremely small populations
(PSESP), belongs to the genus Horsfieldia of Myristicaceae [10,48]. The distribution area of H.
tetratepala is mainly affected by the tropical monsoon climate, in which the average annual
temperature is 20~25 ◦C and the average annual rainfall is 1500~3500 m [49]. Research has
shown that the seeds of this species are mainly dispersed by frugivorous birds, mammals,
some reptiles and gravity dispersal [50,51]. During a field survey in 2018, the species
was found to be disappearing due to the expansion of banana and rubber cultivation and
tourism development. Furthermore, H. tetratepala have high economic value, e.g., their
trunks can be used for redwood furniture and high-end decorative woodwork, and their
oily seeds are an ideal source of biodiesel [52–54]. Combined with field observations, H.
tetratepala is growing in the tropical monsoon forest and is now scattered in the dense
limestone karst forests of Yunnan and Guangxi province on latosol soils, with only a few
hundred wild individuals remaining [55]. Previous studies on this plant have focused
on breeding technology [56], phytochemistry [57], taxonomy [58], community characteris-
tics [53], vegetative characteristics [59], and the genetic diversity and population structure
of H. tetratepala [55,59]. Little information is available about the potential distribution of
H. tetratepala in the current climate, as well as how those patterns will change in potential
future climates; especially, little is known about its habitat sustainability and its potential
to adapt to climate change, which is vital for the protection of this endangered species.

In this study, we used the MaxEnt 3.4.1 (American Museum of Natural History, New
York, USA) model to simulate the potential distribution areas of H. tetratepala under differ-
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ent climatic backgrounds (Current, 2041–2060 and 2061–2080). This study examined what
the main climatic factors affecting the distribution of H. tetratepala are, how the potential
distribution pattern of the species changes under different climate change backgrounds, and
where areas are that will be suitable for potential conservation translocations for the species
in the future. Here, we will test the hypothesis that the species distribution of H. tetratepala
would perform a northward shift to track the climatic niche in temperature and precip-
itation, and the suitable habitat areas will shrink under climate warming. These results
could provide a robust and effective theoretical basis for the preservation, management,
development, and implementation of germplasm resources for H. tetratepala.

2. Materials and Methods
2.1. Current Species Data

The current distribution data for H. tetratepala was obtained from the Global Bio-
diversity Information Facility (GBIF, https//www.gbif.org, accessed on 1 March 2017),
National Specimen Information Infrastructure (NSII; http://www.nsii.org.cn, accessed on
1 March 2017), the Chinese Virtual Herbarium (CVH; http://www.cvh.org.cn, accessed on
1 March 2017), the Plant Photo Bank of China (PPBC; http://ppbc.iplant.cn, accessed on
1 March 2017), and from field investigations on this species around its distribution range
(149 individuals, samples from Yunnan and Guangxi province) in 2018. The total records
were also filtered at a resolution of 2.5 arcminutes. Records without longitude or latitude
and those that were repetitive were removed [60,61]. A total of 25 distribution points for H.
tetratepala were obtained for final analysis and were employed to generate the potential
distribution based on the MaxEnt model (Figure 1; Table S1).
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2.2. Environmental Variables

The 19 bioclimatic variables from the current periods were extracted from the World-
Clim database (http://www.worldclim.org, accessed on 10 March 2021) with a 2.5 arcmin-
utes resolution. To avoid overfitting the prediction results from species distribution models,
the Pearson correlation coefficient was performed for the 19 bioclimatic variables in R-3.6.3
software (eliminate Pearson correlation coefficient |r| > 0.8 and the bioclimatic variables
with low contribution, accessed on 15 March 2021) [62–64].

www.gbif.org
http://www.nsii.org.cn
http://www.cvh.org.cn
http://ppbc.iplant.cn
http://www.worldclim.org
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To predict the potential distribution of H. tetratepala under future climate conditions,
future bioclimatic variable data (2041–2060 and 2061–2080) were downloaded from the
WorldClim dataset (http://www.worldclim.org, accessed on 10 March 2021) with two
global climatic models (BCC-CSM2-MR, Beijing Climate Center Climate System Model;
and MIROC6, Model for Interdisciplinary Research on Climate) and four emission scenarios
of the shared socioeconomic pathways (SSPs) (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5)
provided by the CMIP6 of the sixth assessment report (AR6) of the Intergovernmental
Panel on Climate Change (IPCC). Four SSPs (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5)
represent net radiative forcing of 2.6, 4.5, 7.0, and 8.5 W/m2 at the end of the year 2100,
and represent a green development pathway, a middle development pathway, a rocky
development pathway, and a high development pathway, respectively [65,66].

2.3. Habitat Suitability Modeling

MaxEnt v3.4.1 (http://Biodiversityinformatics.amnh.org/open_source/maxent/, ac-
cessed on 10 March 2021) was used with 30 replicates and the Bootstrap method to model
the suitable habitat distributions of H. tetratepala based on occurrence records and climate
variables [40,45,67,68]. The MaxEnt model was run with a convergence threshold of 10−5,
maximum 500 iterations, 10,000 maximum background points [42], a regularization pa-
rameter value of 1 [69], an auto-feature option, and the logistic output format. Other
settings used the default values in [44]. A total of 90% of the database was used as training
data, and 10% of the total database was used as test data to evaluate the accuracy and
quality of the model predictions. Following this, the area under curve (AUC) of the receiver
operating characteristic (ROC) as implemented in MaxEnt [37] was used to evaluate the
model accuracy. The AUC can vary from 0.5 to 1, and, according to its value, the model
performance can be categorized as insufficient (0.5–0.6), poor (0.6–0.7), average (0.7–0.8),
good (0.8–0.9), or excellent (0.9–1) [64,70].

2.4. Predicting the Suitable Areas of Plants under Global Climate Change

ArcGIS 10.2 software (ESRI Inc., Redlands, CA, USA) with an add-in SDM toolbox [71]
was used to quantify the habitat suitability of H. tetratepala from the MaxEnt output results.
The habitat suitability maps produced by the MaxEnt model varied from 0 to 1. Jenks’
Natural Breaks method available in ArcGIS layer properties was used to reclassify the
potential distribution areas of the species based on 10 percentile training presence Logistic
threshold (marginal value) in the MaxEnt results. Suitable areas for the species were
divided into four levels: unsuitable (<marginal value), marginally suitable (marginal
value—0.6), medium suitable (0.6–0.8), and optimal (0.8–1.0). The raster calculator in
ArcGIS 10.2 software (ESRI Inc., Redlands, CA, USA) was then used to calculate the
potential geographical distribution area of H. tetratepala.

3. Results
3.1. Model Performance and Contributions of the Variables

Based on the AUC values of the models developed, the accuracy of the predicted result
was evaluated. The results showed that the AUC values of all climate conditions were
significantly higher than 0.9, indicating a high accuracy of the MaxEnt model to predict the
potential distribution of H. tetratepala.

Six of the bioclimatic variables used for H. tetratepala prediction were the mean diur-
nal range (Bio_2), temperature seasonality (Bio_4), mean temperature of coldest quarter
(Bio_11), precipitation seasonality (Bio_15), precipitation of driest quarter (Bio_17), and
precipitation of warmest quarter (Bio_18) (Table 1; Figure 2). Among them, precipitation in
the warmest quarter (Bio_18) was determined to be the most important bioclimatic variable,
followed by temperature seasonality (Bio_4).

http://www.worldclim.org
http://Biodiversityinformatics.amnh.org/open_source/maxent/
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Table 1. Environmental variables used for modeling and their permutation importance.

Environmental Variables Code Percent Contribution

Mean diurnal range Bio_2 0.3
Temperature seasonality Bio_4 13.4

Mean temperature of coldest quarter Bio_11 3.2
Precipitation seasonality Bio_15 5.9

Precipitation of driest quarter Bio_17 3.7
Precipitation of warmest quarter Bio_18 73.6
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3.2. Potential Distribution under Future Climate Conditions

The predictions of suitable areas for H. tetratepala in 2041–2060 (2050s) and 2061–2080
(2070s) according to BCC-CSM2-MR (Beijing Climate Center Climate System Model) and
MIROC6 (Model for Interdisciplinary Research on Climate) climate data under SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5 are shown in Figures 3–6. In the future climate conditions
(2050s and 2070s), under two CMIP6 climate scenarios, including SSP1-2.6, SSP2-4.5, SSP3-
7.0, and SSP5-8.5, the prediction area suitability for the distribution of H. tetratepala in China
was basically unchanged (Figures 3–6). Compared with the high emission scenario, the
global suitability of H. tetratepala under the low emission scenario is expected to lower. The
model predicted the suitable area was the highest under the SSP5-8.5 scenario with both
model and future climate conditions (Table S2).
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An analysis of the prediction of BCC-CSM2-MR under different SSPs revealed that
the maximum threshold of suitable areas was attained under SSP5-8.5, and the minimum
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under SSP1-2.6. Compared to the prediction of current conditions, the optimal and medium
suitable areas increased dramatically under SSP2-4.5 (2070s) and SSP3-7.0 (2050s), respec-
tively. Through observations and comparisons (Figures 3 and 4), it was found that the
suitable zones were primarily located in the Yunnan, Guangxi, Guangzhou, and Hainan
Provinces. Furthermore, optimal zones were significantly reduced or even disappeared in
the 2050s and 2070s, except under the SSP2-4.5 (2070s), where they had an approximate
increase of 350% compared to the current number of highly suitable areas.

Conversely, the prediction of the MIROC6 model under different SSPs revealed that
the total suitable areas attaining a maximum under SSP2-4.5 (2050s) and SSP5-8.5 (2070s)
and reaching a minimum under SSP1-2.6 (2050s and 2070s) was the same as that from the
prediction of the BCC-CSM2-MR model (Table S2). Under SSP1-2.6 (2050s), the total suitable
zone was the smallest, whereas the optimal zone was the largest. For the 2070s, SSP3-7.0
attained a maximum suitable area in total, and optimal areas had an approximate increase
of 275.01% compared to the current highly suitable areas. Through observations and
comparisons (Figures 5 and 6), it was found that the suitable zones of H. tetratepala under
this model were the same as the prediction of the BCC-CSM2-MR model (Figures 3 and 4).

3.3. Future Changes in Suitable Habitats

Figures 7 and 8 show the future changes in suitable habitats in the 2050s and 2070s
under climate scenarios of the MIROC6 models. In the 2050s, compared with current condi-
tions, the prediction results indicated that the largest contraction of suitable habitat areas
of H. tetratepala was under the SSP5-8.5 scenario of the MIROC6 models, (32,771.72 km2);
the gained area was also the largest (94,031.77 km2) (Table 2). The lost area was primarily
located in Yunnan, where there was a medium suitable area for H. tetratepala (Figure S1).
The gained area was mainly concentrated in Guangxi, Guangzhou, Taiwan, as well as
North Hainan, which became a medium suitable area for H. tetratepala (Figures 5 and 7).
Furthermore, the prediction of the MIROC6 model under SSP1-2.6 showed that there
were 17,589.77 km2 of suitable areas lost and 13,762.6 km2 gained, which was the lowest
contraction of suitable habitat areas of H. tetratepala out of all four scenarios (Table 2).

Table 2. Habitat suitability changes from the current conditions to the future climate (2050s and
2070s) under climate scenarios in MIROC6 models: SSP 2.6, SSP 4.5, SSP 7.0, and SSP 8.5.

Periods Area of Suitability Changes (km2)

SSP 2.6 SSP 4.5 SSP 7.0 SSP 8.5

Current vs. 2050
Expansion 19,110.5 13,762.6 19,921.56 94,031.77
Unchanged 35,027.47 45,773.96 38,651.87 30,592.01
Contraction 28,336.26 17,589.77 24,711.85 32,771.72

Current vs. 2070
Expansion 15,334.02 22,532.14 40,679.51 44,101.15
Unchanged 40,426.06 39,032.05 43,061.99 42,909.91
Contraction 22,937.67 24,331.67 20,301.74 20,453.81

In the 2070s, compared with current conditions, the prediction results indicated that
the largest gained area was also under the SSP5-8.5 scenario (44,101.15 km2); the contraction
area was also near the lowest value (20,453.81 km2) (Figure 8 and Table 2). The lost area
was primarily located in Yunnan, and the gained area was mainly concentrated in Guangxi,
Guangzhou, and Taiwan (Figure 8). In general, this indicates that temperature increases
may be beneficial to the survival of H. tetratepala and show a trend toward distribution
moving to the northeast.
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4. Discussion

Here, the MaxEnt model was used to evaluate potentially suitable H. tetratepala habitat
distribution based on two global future climate models. The results showed a highly effec-
tive and accurate method for predicting the potential suitable areas of H. tetratepala, despite
the fact that the use of AUC value to estimate the predictive accuracy of the MaxEnt model
is controversial [72–74]. At large spatial and temporal scales, climate was the primary deter-
mining factor in regulating species distribution [16,75]. This study revealed that the most
important bioclimatic variables affecting the presence of H. tetratepala were precipitation
during the warmest quarter (Bio_18), followed by temperature seasonality (Bio_4).

It was found that prediction results varied when analyzing the different models under
the same scenario. For example, under the SSP1-2.6 scenario, the predicted results of
the BCC-CSM2-MR and MIROC6 models in both the 2050s and 2070s showed that the
unsuitable area for H. tetratepala will increase in the future, but the optimal suitable area in
the 2050s increased only under MIROC6 modeling. In the SSP5-8.5 scenario, the prediction
results of the two models were consistent in their predicted changes of the unsuitable
area, marginally suitable area, and moderately suitable area (increase or decrease), but the
optimal suitable area in the 2070s increased only under MIROC6, while in others it was
predicted to absolutely disappear (Table S2). Studies have shown that the prediction of
multiple models can avoid the single model’s uncertainty and show trends that are more
likely to be accurate [36,37,76]. In the SSP scenario with higher radiative forcing (SSP5-
8.5), the increase in marginal and medium suitable areas was larger, while under the SSP
scenario with lower radiative forcing (SSP1-2.6), the increased areas of unsuitable habitat
was larger (Table S2). The reason behind the trend between different SSP scenarios may be
due to societies with different development pathways in the future. For example, SSP1-2.6
represents the sustainable development of society with low challenges to mitigation and
adaptation, whereas SSP5-8.5 represents the fossil-fueled development of society, with high
challenges to mitigation and low challenges to adaptation [66].

The potential habitats of H. tetratepala can be concluded to be restricted to Yun-
nan, Guangxi, Hainan, Guangzhou, and Taiwan provinces (Figures 3–6 and S1). Cur-
rently, there are no relevant reports on H. tetratepala in Hainan, Guangzhou, and Taiwan
provinces [10,55]; therefore, researchers need to strengthen in-depth species investigation
and monitoring in those areas in the future. The model projections from this study indicated
that in response to the warming climate, the suitable survival areas for H. tetratepala exhib-
ited a trend of northeastward migration compared to current habitats; in the Yunnan area,
its habitats appeared to be severely threatened, which is consistent with field observations.
Future climate change is mainly reflected in the escalating temperature increase caused
by greenhouse gases, which will promote species migration to the boreal forests [77]. At
large spatial and temporal scales, climate was the primary determining factor in regulating
species distribution [16,75]. This study revealed that the most important bioclimatic vari-
ables affecting the presence of H. tetratepala were precipitation during the warmest quarter
(Bio_18), followed by temperature seasonality (Bio_4). H. tetratepala is a subtropical species
that prefers warmth and humidity; therefore, in the highest greenhouse gas emissions
scenario, high-latitude regions will provide greater space for H. tetratepala distribution.

Although the fast-changing climate will pose a threat to the survival of endangered
species, H. tetratepala has been reported to be highly adaptable towards a changing climate
and other environmental conditions [55]. However, owing to anthropogenic activities, the
rapid expansion of agricultural/developed lands and economic development, H. tetratepala
has been listed as an “Endangered species” and PSESP [48,78] This study provides vital
information for developing viable conservation strategies for policymakers. The results
indicated that H. tetratepala will face a high risk of habitat loss in Yunnan area in response to
climate change during the 21st century, particularly under the SSP1-2.6 scenario (both in the
2050s and 2070s) based on the MIROC6 model (Figures 5 and 6; Table S2). Yunnan Province
is a biodiversity hotspot in China and forms a major part of the Indo-Burma biodiversity
hotspot [6]. Previous studies have revealed Yunnan lineage with the high genetic diversity
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of H. tetratepala [55], which was consistent with this study’s result that the Yunnan area
is a suitable distribution area for H. tetratepala. Combing genetic background and species
distribution models of H. tetratepala is important to protect the shrinking habitats of H.
tetratepala in those areas and strengthen in-depth species investigation and monitoring
outside of its current known distribution.

Previous studies showed that low seed set, few seedlings and saplings, excessive
human-induced disturbance, and ongoing habitat fragmentation were the main factors
accounting for the endangered status of H. tetratepala [49,55]. Future projections from this
study suggested that the H. tetratepala range of climate-suitable habitats would expand to
Guangdong, Hainan, and Taiwan provinces. Therefore, it can potentially offer massive
benefits to entire ecosystems and these regions should be examined as priority areas
for species introduction and cultivation, such as through establishing protected areas and
conservation botanical gardens [4,79]. Knowing that habitats in the Yunnan area are severely
threatened, adaptive measures are recommended close to the in situ conservation sites to
ensure that native habitats are stable and protected, including establishing protected areas,
periodic scientific monitoring, and strengthening the publicity of species protection [80–82].
In summary, a combination of multiple approaches is advocated to develop effective
protection and restoration management strategies for H. tetratepala.

5. Conclusions

In this study, the potential future suitable growth areas of H. tetratepala were first
preliminarily predicted using the MaxEnt model based on two global climatic models
under different scenarios in two future periods. Due to insufficient sample sizes, the ac-
tual distribution area of H. tetratepala may be smaller than the predicted results; however,
maximum entropy is highly reliable despite the small sample sizes, and the model esti-
mations matched current observations of H. tetratepala distribution. Because of this, we
can be confident that the model correctly predicted the potential habitats of H. tetratepala
within the context of climate warming. The results show that precipitation in the warmest
quarter (Bio_18) and temperature seasonality (Bio_4) are the most important bioclimatic
variables affecting H. tetratepala. Under the future climate conditions, the suitable areas
for H. tetratepala are predicted to decrease continually under the SSP1-2.6 scenario and
become restricted to Yunnan, Guangxi, Hainan, Guangzhou, and Taiwan provinces. In
response to climate warming, the suitable survival area of H. tetratepala is predicted to shift
considerably northeastward, with noticeable changes in the Yunnan area which contains
high genetic diversity. These results will be useful for policymakers and governments to
initiate appropriate strategies to protect suitable habitats for H. tetratepala during future
global warming.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f13071051/s1, Figure S1: Projected potential distribution maps of
H. tetratepala under the current conditions; Table S1: The geographic coordinates used to generate
the potential distribution models of H. tetratepala.; Table S2: Area of Horsfieldia tetratepala under
different suitability classes (km2) under current and future periods (2050s and 2070s) in MIROC6 and
BCC-CSM2-MR models.
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