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Abstract

Inefficient utilization puts the productivity of cultivated land in a low development

state. The key challenge for the efficient utilization of cultivated land is to clarify how

various factors affect the spatial differentiation pattern of cultivated land productivity

(CLP), to improve food production. However, evaluating the impact of the intensity

and direction of CLP on a large-scale is a difficulty and there is a gap in knowledge. In

this study, we used net primary productivity (NPP) to calculate the productivity of

cultivated land and reveal its spatial differentiation. Also, this study examined the

spatio-temporal heterogeneity of CLP and determined the effect intensity and the

direction of effect of various factors on productivity, using the Songhua River basin

(SRB) in China as a research case. We used genetic algorithms to modify and improve

a neural network model of factor dimensionality reduction, combined with path anal-

ysis, cluster analysis, and regression analysis, to identify the main factors impacting

CLP, synergies between these factors, and effect intensity and direction. The results

showed that: (1) the area of cultivated land in SRB decreased, but the NPP of culti-

vated land area increased, during 2000–2020; (2) spatially, NPP was relatively low in

the middle of the basin and gradually increased towards the periphery; (3) The main

positive factors were the normalized difference vegetation index (NDVI), slope, pre-

cipitation, evapotranspiration, and total nitrogen, while the main negative factors

were temperature, ratio vegetation index, and total phosphorus. Individual principal

factors and the synergy between these factors gave CLP different temporal and

spatial heterogeneity. Collaborative management of the threshold range of

various influencing factors would improve the CLP. This novel information on
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spatial–temporal differentiation and factors influencing CLP can be important in for-

mulating science-based and feasible policies for land protection and for improving CLP.

K E YWORD S

cultivated land productivity, cultivated land protection, land use management, net primary
productivity, production capacity

1 | INTRODUCTION

Cultivated land is a source of food for human survival and develop-

ment (Shi et al., 2020). Cultivated land productivity (CLP) refers to the

potential capacity for crop yield in a particular region, in a certain

period, and under specific natural, economic, social, and technological

conditions (Deng et al., 2017). Stability of CLP has always been a mat-

ter affecting food security and human livelihoods (Gaupp et al., 2020).

Thus, China's National Plan for Increasing Food Production Capacity

[(NPIFPC); 2009–2020] refers to food 'production capacity' rather

than food 'yield' (Chen, Zhao, et al., 2022). This involves pursuing not

only actual increases in yield, but also improvement of cultivated land

production capacity (Chen et al., 2019).

Given its strategic importance, there is considerable interest in

improving CLP to ensure the sustainability of future food production.

However, with recent rapid economic development population and popu-

lation growth in China, the intensity of exploitation and utilization of culti-

vated land resources is increasing (Ye et al., 2020). This in turn is causing

frequent land-use changes (Girma et al., 2022) and soil fertility decreases

(Tsymbarovich et al., 2020), which can lead to a decline in CLP over time.

In addition, the productivity of cultivated land in different regions is not

consistent, reflecting spatial heterogeneity in soil quality, which could

pose difficulties for efforts to improve CLP (Olmo et al., 2016). Therefore,

research to clarify the spatial–temporal differentiation in CLP and identify

the intensity and direction of factors influencing CLP is urgently needed

to improve the productivity of cultivated land.

Research to date has examined spatial–temporal differentiation

and influencing factors on CLP using different approaches. The

spatial–temporal pattern of CLP has been assessed using different

metrics, e.g., correlation with agricultural land gradation (Chen, Lin,

et al., 2022), correlation with regional yields (White et al., 2019), and

total factor productivity (Han & Zhang, 2020). This has been done

using different models, e.g., multivariate statistical models (Döös &

Shaw, 1999), agro-ecological zoning (AEZ) methodology (Jiang

et al., 2017), enhanced vegetation index (EVI) crop growth curves (Xu

et al., 2019), MODIS normalized difference vegetation index (NDVI)

data estimation models (Saeed et al., 2017), light-temperature (cli-

mate) potential productivity (Song et al., 2014), and crop mechanistic

models (Bali & Singla, 2022). These studies have examined in depth

the mechanisms affecting crop yield, which is valuable knowledge.

However, it is difficult to obtain large-scale, high-precision crop classi-

fication data, so these mechanism models often lack generalizability,

and some statistical methods are based on the regional scale, which

limits expression of heterogeneity on spatial grids.

Research on the factors influencing CLP has mainly focused on indi-

vidual natural factors such as sunshine (Gopinath et al., 2022), precipita-

tion (Huang et al., 2017), temperature (Pan & Dong, 2018), the thickness

of black soil (Gu et al., 2018), organic matter content (Lal, 2020), organic

carbon (Luo et al., 2022), carbon fluxes (Ichii et al., 2005), fertilizer (Sinha

et al., 2022), salinization degree (Sui et al., 2018), Differential Vegetation

Index (DVI) (Franch et al., 2019), landform (Rahmanipour et al., 2014),

slope (Montealegre et al., 2022), loss of biodiversity (Cowles et al., 2016),

degree of mechanization (Zhu et al., 2019), and irrigation potential

(Ozdogan, 2011). However, different combinations of meteorological,

climate change, land degradation, and seasonal variations could have a

significant combined impact on productivity (Raich et al., 1991). The par-

ent material of soil formation, the climate and the lithology of the water-

shed were also important for the process of soil formation and

productivity (Gong et al., 2021). Human activities (Lyu et al., 2020) such as

logging and land use changes for farming and urbanization can also cause

major changes in productivity (Kuhnert et al., 2017; Rollinson et al., 2017)

and CLP distribution (Riutta et al., 2018). Studies on the influence of spe-

cific socio-economic factors on CLP indicate that capital, labour, and policy

are also important factors (Paudel et al., 2019; Yang et al., 2020). How-

ever, research on the impact of CLP has usually been concentrated on

natural factors, with the experimental research generally being carried out

with small experimental field blank control, limiting the possibility of

expanding to large-scale areas, which was a gap. Meanwhile, these natural,

ecological and socio-economic factors are seldom considered together to

explore the synergy or trade-off between these cross domain factors.

Large scale regions or watersheds flow through many regions and

have a wide range of influences. The resources in different regions are

unevenly distributed, which leads to significant regional differences in

the distribution of natural, ecological, and social resources in large-

scale regions. It is difficult to calculate the CLP of large-scale regions

and identify influencing factors. Therefore, the calculation cannot

copy the results of small-scale zones or experimental fields. It is diffi-

cult to bring regional differences and the heterogeneity of large-scale

regional spatial elements into the research framework.

Simulation of CLP from net primary productivity (NPP) has been

used for estimating grain yield of cultivated land on a spatial scale

(Running et al., 2000), and has been shown to be an effective way to

express the spatial–temporal heterogeneity (Gholkar et al., 2014).

NPP refers to the accumulation of organic dry matter in crops per unit

time and area, calculated as the total amount of organic matter pro-

duced by crop photosynthesis minus the remaining part after autotro-

phic respiration (Bradford et al., 2005). Thus crop yield is directly related

to NPP, and CLP can be calculated by inverting the NPP value (Lin
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et al., 2012). Based on the spatial differentiation of NPP on cultivated

land, a spatial distribution pattern with high- and low-yielding fields can

be obtained (Ji et al., 2015). This makes it possible to explore a modeling

approach using NPP to express CLP when studying the influence charac-

teristics of spatial heterogeneity in large-scale regions.

The Songhua River basin (SRB) is an obvious large-scale region

with prominent spatial heterogeneity of CLP and complex influencing

factors. The SRB is one of the three largest black soil areas in the

world, and also the best-cultivated land in China. It was instrumental

to the NPIFPC task of increasing food production in the Northeast

region of the SRB by 15 billion kg by 2020 (Yang et al., 2021). How-

ever, with the ongoing occupation of land by human beings and the

inefficient use of some cultivated land, as well as the constraints

imposed by natural ecological and social-economic factors, the pro-

ductivity of cultivated land in the SRB is under pressure. It is impor-

tant to assess whether future changes in CLP will affect grain yield

and the factors influencing CLP changes.

A new approach is therefore needed to integrate nature, ecology,

and society, reflect the spatial heterogeneity of CLP in large-scale

areas with the help of remote sensing, and overcome the problem of

the difficulty of data acquisition. Also, it may be able to delve into the

intensity and direction of influencing factors. Specific objectives of

this work were thus to: (1) analyze the spatial differentiation in CLP in

the SRB based on NPP changes; (2) perform a combined assessment

of the natural, ecological, and socio-economic factors influencing CLP

and determine the intensity and direction of effect of the main

influencing factors, and (3) explore synergistic/tradeoff effects of indi-

vidual and composite factors on CLP. The intention was to make an

important contribution to improving CLP in practice, achieving sus-

tainable utilization of regional cultivated land, implementing protec-

tion policies for cultivated land, and ensuring food security.

2 | MATERIALS AND METHODS

2.1 | Study area

Songhua River basin is an important commercial food base in North-

east China (41�420 N–51�380 N, 119�520 E–132�310 E) (Figure 1). The

total area of SRB is 56.12� 104 km2, of which a plains area makes up

21.21� 104 km2 and hill areas 34.91� 104 km2. The elevation of the

basin is 43 - 2667 m with a general trend for higher elevation in the

west and east, while the central part is mainly plains. Fertile land and

abundant water resources are two major advantages for expansion of

agriculture in the SRB. Cultivated land in the SRB currently accounts

for nearly 20% of the national cultivated land area in China, and it pro-

duces 35% of the maize and soybean grown in the Country, and

around one-third of national commodity grain production.

F IGURE 1 (a) Relief map of the basin, (b) location of the Songhua River basin (SRB) in Northeast China, and (c) distribution of unchanged cultivated
land in the SRB 2000–2010 and location of randomly selected experimental points. Wiley acknowledges that the borders within the figure are subject
to multiple territorial claims [Colour figure can be viewed at wileyonlinelibrary.com]
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2.2 | Operational framework

The operational framework developed for the study is shown in

Figure 2. It involved: (1) using land use-land cover (LULC) data to

extract the area of unchanged cultivated land in the SRB and calculating

the spatio-temporal heterogeneity in CLP based on NPP data. (2) Prepa-

ration of data on natural, ecological, and socio-economic aspects.

(3) Statistical analysis, including GA-BP [genetic algorithm (GA); back

propagation (BP)] factor dimensionality reduction, path analysis, cluster

analysis, and regression analysis. (4) Assessment of individual effects of

main factors and synergistic effects of different groups of factors.

2.3 | Spatial–temporal pattern of CLP

2.3.1 | Changes in cultivated land

Changes in cultivated land area will inevitably lead to a change in CLP.

Based on the characteristics of the SRB and the surrounding region,

we chose the years 2000, 2010, and 2020 for analysis of LULC

change. We extracted information on pure cultivated land area and

calculated the change in cultivated land area in the period. To prevent

the impact of change in cultivated land area masking that of the main

underlying factors, we did not consider the increase or decrease in

CLP caused by an increase or decrease in cultivated land area. Thus in

the analysis of CLP we only included pure cultivated land, i.e., land

with no change in use type 2000–2020.

2.3.2 | Calculation of CLP from NPP

The NPP products used originated from the MODIS database, which

applies the principle of light energy utilization in the process of plant

photosynthesis. Values are obtained by simulating a series of plant

physiological and ecological processes such as photosynthesis, assimi-

lation and distribution, self-respiration, transpiration, and growth sea-

son (Bolinder et al., 2007). NPP can reflect the productivity of

cultivated land with a unified scale standard. It avoids the interference

of agricultural structure adjustment and crop variety change on the

measurement of CLP, which is a very objective indicator of CLP

(Wiedmann & Barrett, 2010).

Based on this conclusion, we also verified the relationship

between NPP and CLP in the SRB (Part 1 in Appendix S1). We

extracted NPP through the cultivated land mask to explore the spatial

and temporal heterogeneity and dynamic changes in CLP at grid-scale

based on changes in NPP 2000–2020. We then used the spatial ran-

dom value of NPP to explore factors influencing CLP.

2.4 | Mechanism of influence of driving factors

The productivity of cultivated land is a huge and complex system, with

specific functions, that has developed under the long-term influence

of natural, ecological, and social-economic factors. The main determi-

nants of grain yield are irrigation (Moradi et al., 2022), cultivated land

area (Jiang et al., 2020), fertilizers (Martey et al., 2019), and pesticides

(Rahman, 2013). Therefore, these are also the decisive driving factors

of CLP.

According to the Chinese Environmental Protection Administration,

the maximum amount of pesticides and fertilizer that may be applied in

ecological conservation areas is 3 and 250 kg ha�1, respectively (Zhang

et al., 2017), which aims to meet the demands of crop production without

damaging the ecological environment. The actual amount applied is greater

than the standard value, so the degree of application at grid scale can be

considered sufficient to meet the needs of growing crops. Hence this indi-

cator was excluded from the productivity calculations. Similarly, irrigation

water supplied was assumed to be similar and sufficient at each grid scale,

so we only considered the impact of natural precipitation on CLP.

F IGURE 2 The operational framework applied in the present analysis [Colour figure can be viewed at wileyonlinelibrary.com]
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Based on findings in previous studies (Jiang et al., 2015; Song

et al., 2014), 25 factors closely related to the productivity of cultivated

land were selected for analysis (Table 1). We randomly selected 10,000

points in the SRB, of which 3161 points were on permanent cultivated

land (Figure 1c), and then matched the data on influencing factors to the

sampling points in the area of unchanged cultivated land. We used the

extract values to points function in the Spatial Analyst Toolbox from

ArcGIS 10.2 software to match the data to random sampling points of

cultivated land from the spatial grid. The raster data of spatial distribution

of the 25 main factors influencing CLP are provided in Figures S1–S4.

Because the ecological soil data originated from the Second National Soil

Survey in 2009, we chose 2010 as the baseline research year.

2.5 | Statistical analysis

2.5.1 | Method used for identification of the main
factors influencing CLP

In identifying the main factors influencing CLP, we used MATLAB

R2016b software for programing and the genetic algorithm

(GA) model to modify and improve the back propagation (BP) neural

network, in what is called the GA-BP factor dimension reduction

method (Ge et al., 2014). Because the GA-BP model has a high fault

tolerance to random variables, it can deal with the multicollinearity

and dimension of high data. It is convenient to measure the relation-

ship between input variables and output variables, to explain the main

influencing factors on the change of CLP.

This method is based on the conventional BP model, where the

first step is to optimize and improve the fitness function and codec

function in the GA model, and the second step is to use the improved

GA model to optimize the weight and threshold of the BP model

(Shen et al., 2020). By installing and employing the genetic algorithm

toolbox (GAOT), a GA-BP factor dimension reduction model was

established (Figure S9 in Appendix S1).

2.5.2 | Path analysis, cluster analysis, and regression
analysis

The theory of path analysis proves that the simple correlation coeffi-

cient (riy) between any independent variable Xi and the dependent var-

iable Y is equal to the sum of the direct path coefficient (Piy) of Xi and

Y, and the indirect path coefficient (Pij) of all Xi and Y, which is the

total effect of Xi on Y: riy = Piy+ Pij.

When many independent variables jointly affect a dependent var-

iable, the importance of each independent variable to the dependent

variable is different, and one of the independent variables may act on

the dependent variable through other independent variables, which

can be represented by indirect path coefficient. For example, the indi-

rect path coefficient of Xi to Y through Xj is: Pij = rij � Pjy.

The basic concept in hierarchical cluster analysis is that variables

with similar distances are clustered first and variables with longer

distances are clustered later. We used SPSS 21 software to call the

linkage function, and created a hierarchical cluster tree by the method

of the class average. In addition, we used Pearson correlation to mea-

sure the interval of the standard. R-cluster analysis was carried out for

all influencing factors, and the main influencing factors and their syn-

ergistic relationships were grouped.

2.5.3 | Individual effect of main factors and
synergistic effects between factors

Synergistic effects are based on multiple regression, the correlation

coefficient is decomposed into direct path coefficient (the direct influ-

ence of independent variables on the dependent variable) and indirect

path coefficient (the indirect influence of independent variables on

the dependent variable through other independent variables). The

standard coefficient of the regression equation is the direct path coef-

ficient (direct effect), which reflects the single effect of the main fac-

tors on cultivated land productivity. Path coefficient multiplied by a

correlation coefficient gives us indirect path coefficient (indirect

effect), which reflects the synergistic effect of the main factors on

CLP. The formula is as follows:

r x,yð Þ¼ Cov x,yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var xð ÞVar yð Þp

R2
ið Þ ¼R2

i þ
X

j≠ i

R2
ij ¼2biriy�b2i i, j¼1,2,…,pð Þ

Where: r(x,y) is the correlation coefficient, Cov(x,y) is the covariance

between independent variable x and dependent variable y, Var(x) is

the variance of x, Var(y) is the variance of y. R2
ið Þ reflects the compre-

hensive decisive effect of xi on y through the correlation network of

x1, x2,… xp. In addition, R2
i ¼ b2i represents the direct determination

coefficient of xi to y; R2
ij ¼2biriy represents the indirect determination

coefficient of xi and xj to y through the correlation path; That is, it

includes the decisive effect of xi on y through xi, and also includes the

decisive effect of xj on y through xi. bi is the partial regression coeffi-

cient of xi; rij is the correlation coefficient between xi and xj; riy is the

correlation coefficient between xj and y. When R2
ið Þ >0, it indicates

that xi has an enhanced effect on y, and when R2
ið Þ <0, xi has a restric-

tive effect on y.

Synergism among factors refers to the combined effect of factors

on CLP. There are synergies among various factors and they can all

jointly affect CLP in the study area, but the magnitude and direction

of the synergy are different. There are two aspects regarding the

influence of synergies among factors on CLP: one is the influence of

synergies among the main factors, which is called synergistic effects

1, and the other is the influence of synergies between other factors

and the main factors, which is called synergistic effects 2. The value

range of the partial correlation coefficient is (�1,1) among factors,

with the larger the absolute value, the greater the degree of partial

correlation.

YANG ET AL. 1921
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2.6 | Data requirement and preparation

The LULC data used was taken from the global land cover data prod-

uct service website (http://www.globallandcover.com/) of the

National Geomatics Center of China (DOI: 10.11769). The digital ele-

vation map (DEM) data was downloaded from the Geospatial Data

Cloud (http://www.gscloud.cn/). The data on soil physical and chemi-

cal properties came from the Cold and Arid Region Scientific Data

Center (http://westdc.westgis.ac.cn/) (Shangguan et al., 2012). The

NPP data came from NASA (National Aeronautics and Space Adminis-

tration) (https://earthdata.nasa.gov). Spatial grid data on precipitation,

sunshine duration, and temperature was obtained through kriging

interpolation of ArcGIS 10.2 software (Figure S5), and data on the

study area was extracted using the boundary mask for SRB.

A brief summary of these and other relevant data sources used in

this study is provided in Table S2. The resolution of all raster layers

was 90m� 90m. The geographical coordinate system used was

GCS_WGS_1984 and the projection was Albers.

3 | RESULTS

3.1 | Changes in cultivated land area

The cultivated land area in SRB in 2000, 2010, and 2020 was

24.32� 104 km2, 24.18� 104 km2, and 24.16� 104 km2, respec-

tively, i.e., it showed a gradual decrease (Figure 3). From 2000 to

2010, the increase in area of newly cultivated land (0.57� 104 km2)

F IGURE 3 Cultivated land area in Songhua River basin in (a) 2000, (b) 2010, and (c) 2020, (d) types of cultivated land changes from 2000 to
2010, and (e) types of cultivated land changes from 2010 to 2020 [Colour figure can be viewed at wileyonlinelibrary.com]
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was less than the reduction in cultivated land area (0.71� 104 km2).

From 2010 to 2020 more cultivated land was added than in 2000–

2010, but the increase in newly cultivated land area (1.62� 104 km2)

was still less than the decrease in cultivated land area (1.64�
104 km2).

3.2 | Changes in NPP

Spatially, NPP was relatively low in the middle of the basin and gradually

increased to the periphery (Figure 4). Thus the productivity of cultivated

land was greater at the periphery than that in center of the basin. In

terms of time, NPP increased from 2000 to 2020. The total amount of

NPP in SRB in 2000, 2010, and 2020 was 6350.56 � 1010 g C, 8172.70

� 1010 g C, and 9007:62�1010gC 9007.62 � 1010 g C, (Table S3),

respectively, that is, so the production capacity of cultivated land also

increased in the period.

According to the statistics on random sample points extracted

from unchanged cultivated land in 2000, 2010, and 2020 (Figure 5),

the average of NPP of random sample points in the SRB in 2000,

2010, and 2020 was 252.56, 329.70, and 361.46 gC m�2 (Table S3),

respectively. NPP increased annually, confirming that CLP increased

in terms of quantity in the period.

3.3 | Intensity and direction of the individual effect
of main factors on CLP

The results from the GA-BP factor dimensionality reduction model

after optimization and identification indicated that eight factors

(NDVI, slope, precipitation, potential evapotranspiration (ETo), tem-

perature, ratio vegetation index (RVI), total phosphorus (TP), and total

nitrogen (TN) were the most important factors determining CLP (see

Part 3.2 in Appendix S1).

After eliminating the influence of other factors, we calculated the par-

tial correlation coefficient between NPP and these eight main factors

(Table 2). The partial correlation coefficient of NPP with NDVI, slope, pre-

cipitation, ETo, temperature, RVI, TP, and TN was 0.303, 0.265, 0.499,

0.459, �0.348, �0.134, �0.145, and 0.13, respectively. The degree of

partial correlation was relatively large, confirming that these were the

main factors affecting the productivity of cultivated land in SRB.

Multiple regression analysis revealed that the model of factors

impacting CLP was:

YNPP= 0.494XNDVI+ 0.195XSlope+ 0.489XP+ 0.391XETo� 0.291XTemp

� 0.207XRVI� 0.141XTP+ 0.125XTN

The goodness-of-fit test results for the model were: correlation

coefficient R = 0.742, determination coefficient R2 = 0.550. Checks

F IGURE 4 Net primary productivity (NPP) in Songhua River basin in (a) 2000, (b) 2010, and (c) 2020 [Colour figure can be viewed at
wileyonlinelibrary.com]

F IGURE 5 Statistics of random sample points for net primary
productivity (NPP) in 2000, 2010, and 2020 [Colour figure can be
viewed at wileyonlinelibrary.com]
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on the independence of residuals using the Durbin-Watson test

showed that its parameter DW = 2.067 fulfilled requirements

(Table S4), indicating that the residuals were normally distributed, and

the equations were significant. The p value for each influencing factor

was <0.05, so all were significant (Table 2).

The direct influence of main factors on CLP was called the 'single

effect' of these factors. The single effect of NDVI on CLP was 0.494,

which was the largest impact intensity. The effect intensity of precipita-

tion, ETo, temperature, RVI, slope, TP, and TN on CLP was 0.489, 0.391,

0.291, 0.207, 0.195, 0141, and 0.125, respectively. The single effect of

NDVI, precipitation, ETo, Slope and TN on CLP was positive, while the

single effect of temperature, RVI, and TP on CLP was negative.

3.4 | Intensity and direction of synergies among
factors on CLP

3.4.1 | Intensity and direction of synergies among
main factors on CLP

Path analysis showed that the synergistic effect between each main

factor and RVI on CLP was the strongest synergistic effect (0.607)

(Table 3). The synergistic effect of each main factor with ETo, TP,

slope, TN, precipitation, and temperature on CLP declined in that

order, with a value of 0.330, 0.200, 0.143, 0.070, 0.053, and 0.030,

respectively. The synergistic effect of each main factor and NDVI on

CLP was lowest (0.010). The synergy of the main factors with ETo,

precipitation, NDVI had a negative impact on CLP, while the synergy

of the other main factors had a positive impact.

3.4.2 | Intensity and direction of synergistic effects
between other factors and main factors on CLP

Cluster analysis showed that there were synergies among the fac-

tors influencing CLP. Based on a distance of 20 between groups,

the impact factors fell into nine groups (Figure S11). In terms of the

synergy between other factors and the main factors, there were

five groups, comprising: NDVI, RVI, and precipitation; slope, and

DEM; ETo and sunshine duration (Sun); temperature and DVI; and

TN, TP, total potassium (TK), and organic content (OC). Complete

quadratic regression analysis was used to assess the synergy

between the factors. The influence intensity and direction of other

factors on the main factors were mainly determined according to

the coefficients of the primary factor in the regression equation

(Table 4).

TABLE 2 Path analysis and regression analysis of the relevant parameters to extracting factors

Model

Unstandardized coefficients

Standardized coefficients T Sig. Partial correlationsB SE

(Constant) �286.191 18.315 �15.626 0.00

NDVI 457.5 25.63 0.494 17.85 0.00 0.303

Slope 7.001 0.453 0.195 15.442 0.00 0.265

Precipitation 0.196 0.006 0.489 32.318 0.00 0.499

ETo 0.188 0.006 0.391 29.032 0.00 0.459

Temperature �15.392 0.738 �0.291 �20.863 0.00 �0.348

RVI �3.759 0.495 �0.207 �7.589 0.00 �0.134

TP �215.653 26.206 �0.141 �8.229 0.00 �0.145

TN 106.702 14.536 0.125 7.341 0.00 0.13

TABLE 3 Path analysis of the main factors

Main
factors

Coefficients
with NPP

Direct
effects

Indirect effects
Synergistic
effects 1XNDVI XSlope XP XETo XTemp XRVI XTP XTN

XNDVI 0.484 0.494 0.012 0.166 �0.076 0.078 �0.186 �0.032 0.028 �0.010

XSlope 0.338 0.195 0.029 0.105 �0.042 0.045 �0.011 0.001 0.015 0.143

XP 0.435 0.489 0.168 0.042 �0.158 �0.048 �0.069 0.003 0.009 �0.053

XETo 0.061 0.391 �0.096 �0.021 �0.198 �0.044 0.037 0.005 �0.013 �0.330

XTemp �0.26 �0.291 �0.132 �0.030 0.080 0.059 0.048 0.038 �0.033 0.030

XRVI 0.4 �0.207 0.443 0.010 0.164 �0.070 0.068 �0.032 0.025 0.607

XTP 0.059 �0.141 0.111 �0.002 �0.012 �0.014 0.077 �0.047 0.087 0.200

XTN 0.196 0.125 0.112 0.024 0.037 �0.041 0.077 �0.041 �0.098 0.070
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The interaction between the main factors and other influencing

factors and the synergistic effect of the main factors on CLP through

the other factors were as follows (Table 4). Among the main factors

affecting CLP in the first group (NDVI, RVI, precipitation), RVI and

precipitation had positive effects on NDVI, but NDVI was mainly

affected by RVI (influence intensity 0.883) and precipitation had little

effect (intensity only 0.044). However, NDVI had a positive synergis-

tic effect on CLP through RVI and precipitation (intensity 0.412).

In the second group, DEM and slope had a nonlinear relationship.

DEM had little influence on slope (intensity 0.007) and slope had a

positive synergistic effect on CLP through DEM (intensity 0.051).

In the third group, the relationship between Sun and ETo was

positive. When Sun increased by 1%, ETo also increased by 0.396% in

the same direction. However, ETo had a negative synergistic effect on

CLP through Sun (intensity 0.159).

In the fourth group, DVI and temperature were positively related,

such that if DVI increased by 1 unit, then temperature increased by

0.453 units in the same direction. However, temperature had a posi-

tive synergistic effect on CLP through DVI (intensity 0.07).

In the fifth group, TP and OC had a positive effect on TN (inten-

sity 0.581 and 0.347, respectively). TK had a negative impact on TN

(intensity 0.045). In addition, TN had a positive synergistic effect on

CLP through TP, TK, OC (intensity only 0.026).

3.5 | Comprehensive analysis of the single and
synergistic effects of influencing factors on CLP

The factors influencing CLP were closely linked and interacted, but

the magnitude, intensity and direction of the synergistic effects

among the factors differed. NDVI, slope, precipitation, ETo, tempera-

ture, RVI, TP, and TN were the factors with the most significant

impact on CLP. For example, NDVI and precipitation had the greatest

positive effects on CLP, 0.494 and 0.489 respectively while tempera-

ture had the greatest negative effect, 0.291. The single effect of the

main factors, the synergies among the main factors, and the synergy

between the main factors and other factors affected CLP to different

degrees and in different directions. For example, the synergistic effect

between each main factor and RVI on CLP was the strongest

synergistic effect (0.607), while the negative synergistic effect of each

main factor and NDVI on CLP was lowest (0.010). Overall, the single

effects of the main factors and the synergy between the factors had

important impacts on CLP in the study area (Figure 6).

4 | DISCUSSION

4.1 | Impact of the changes in cultivated land area
and NPP on CLP

The cultivated land resource is the most important means of agricul-

tural production and one of the most basic national strategic

resources (Wu et al., 2017). We found that the area of cultivated land

in the SRB changed frequently (Figure 3), which affected the spatial

patterns and magnitude of soil erosion, affecting land productivity

(Borrelli et al., 2017). At the same time, abandoning poor cultivation

land and occupying new land for farming will cause the quality of soil

to decline, and CLP will run a risk of declining (Liu et al., 2017). Land

occupation for cultivation is the main driving force in soil degradation

according to trajectory analysis (Yan, 2020). If not cultivated, most

new land is expected to be suitable for grassland and forestry

(Lindborg et al., 2013).

At present, the productivity of cultivated land is increasing over

time (Figure 5). This is because China is increasing crop production

mainly through increased use of fertilizers and pesticides (Zhuang

et al., 2019). In the short term, the productivity of cultivated land has

been dramatically improved. In the long run, there is still a potential

risk of decline in CLP, mainly due to long-term application of fertilizers

and pesticides causing soil hardening and salinization (Bi et al., 2017).

Therefore, the productivity of cultivated land should not be measured

solely based on the actual output while ignoring protection of local

factors that affect CLP.

From a spatial point of view, NPP differs between regions due to

the limitations imposed by the main influencing factors (Figure 4). Dif-

ferent levels of productivity exist, but places with low productivity will

lead to a vicious circle of land occupation—ecosystem deterioration—

further land occupation (Yang et al., 2019). Therefore, improving the

productivity of cultivated land in areas with low productivity is

TABLE 4 Path analysis and regression analysis between the main factors and other influencing factors

Main factors Other factors Regression equation Synergistic effects 2

NDVI Precipitation XNDVI = 0.044XP + 0.883XRVI (R = 0.898, R2 = 0.807) 0.412

RVI

Slope DEM XSlope = �0.535 + 0.007XDEM + 1.319 � 10�5XDEM
2

� 1.5 � 10�8XDEM
3 (R2 = 0.304, p < 0.01)

0.051

ETo Sun XETo = 0.396XSun (R = 0.396, R2 = 0.157) �0.159

Temperature DVI XTemp = 0.453XDVI (R = 0.453, R2 = 0.205) 0.07

TN TP XTN = 0.581XTP + 0.347XOC � 0.045XTK (R = 0.763,

R2 = 0.582)

0.026

TK

OC
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essential not only for grain yield, but also for sustainable ecological

security, as it will minimize expansion and prevent encroachment of

agriculture onto other land types. In general, although unsustainable

production methods will increase productivity, in the long run there is

a risk that the quality of cultivated land will decline. Thus, regional and

local governments should not consider only the short-term interests

and ignore the potential long-term threats.

4.2 | Spatial heterogeneity of driving factors
for CLP

Net primary production is the result of the long-term interaction and

influence of nature, ecology, climate, and human activities, with signif-

icant effects of the main influencing factors on CLP (Mahé &

Paturel, 2009). In particular, natural and ecological factors play a major

role in CLP and socio-economic factors have less effect. In SRB, we

found that the productivity of cultivated land was low in the middle of

the basin and high in the surrounding area, indicating great heteroge-

neity (Figure 4). The eight main influencing factors and their synergis-

tic effects resulted in spatial and temporal differentiation of CLP in

the basin (Table 2).

Total nitrogen was a main influencing factor, and TK had a syner-

gistic effect on TN (Table 2). Thus, interactions among the different

influencing factors made a net positive contribution to CLP (Oehri

et al., 2020). The accumulation rate of organic matter in the middle of

the SRB was less than in the periphery, making a great contribution to

NPP (Figure 4). The productivity of cultivated land was greatly

affected by NDVI and RVI, in a positive and negative way, respectively

(Figure 6). This confirmed that 'cultivated land' can be very different in

terms of suitability and productivity for different vegetation types

(Popp et al., 2016). In areas with more vegetative cover, NPP values

were higher, meaning higher productivity in these areas (Wang

et al., 2016). NDVI would also promote productivity in the process of

F IGURE 6 Influence of single and
synergic factors on cultivated land
productivity (CLP) in Songhua River basin
[Colour figure can be viewed at
wileyonlinelibrary.com]
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vegetation restoration with the synergistic effect of soil quality

improvement. This also verified that vegetation cover and restoration

could improve the CLP (Quanhou et al., 2008). However, the negative

synergy of factors, such as illumination being too long and an excess

of evapotranspiration affecting crops, will lead to the reduction of

crop yield (Table 4). We should also recognize the potential threat of

negative synergy effects. We also found greater agricultural produc-

tivity in higher rainfall areas, and lower productivity in low rainfall

zones (Figure S5), showing that CLP is also affected by precipitation

(Table 3). Precipitation can cause relatively nutrient-rich soil to play a

more significant role (Cohn et al., 2013), enabling high productivity.

Therefore, the relative importance of soil feedback, their synergy,

environmental dependence, and its impact on coexistence were noted

(Lekberg et al., 2018).

The relationship between grain yield and phosphorus absorption

showed a parabolic trend, first increasing and then decreasing, with

the increase of phosphorus application (Ji et al., 2021). The world

inputs 14.2 million tons of fertilizer phosphorus and 9.6 million tons

of organic fertilizer phosphorus into the soil every year, and only 12.3

million tons of phosphorus is absorbed by crops, resulting in a signifi-

cant increase in phosphorus in most cultivated land (MacDonald

et al., 2011). The application of phosphorus fertilizer plays a positive

role in improving crop yield, but when the phosphorus application rate

increases to a certain extent, the yield starts to decrease (Gong

et al., 2011; Ma et al., 2005). It is able to meet crop demand for phos-

phorus nutrition in SRB (Zhang, Du, et al., 2020), and we found that

the percentage content of phosphorus was significantly higher than

that of nitrogen in the regional location of cultivated land

(Figure S12); this was also proved in the study of a dry farming area in

Northeast China (Zhuo et al., 2019). Due to the slow fertilizer effect

of phosphorus fertilizer and great after effects, the higher the amount

of phosphorus application, the longer the cumulative life, and the

higher the soil phosphorus surplus (Muller et al., 2017; Sattari

et al., 2014). This would then start to limit growth after reaching the

maximum threshold, and the total phosphorus would have a negative

impact on CLP (Figure 6). This also strongly verifies that the content

of soil available phosphorus in China has reached the level of no phos-

phorus deficiency, and the soil phosphorus pool in some high agricul-

tural producing areas is at a surplus (Li et al., 2013). Now, the annual

accumulation of soil phosphorus exceeds 90 kg hm�2 (Zhang

et al., 2019).

4.3 | Collaborative management implications of
cultivated land protection

The turbulence of international trade will place pressure on the food

supply in China for a long time (El Bilali, 2020). To ensure future food

security, cultivated land needs to be protected in a long-term plan.

Without stable CLP, there can be no real food security (Feng &

Li, 2000).

The first step should be rational allocation of cultivated land

resources, planned implementation of land development (Xu

et al., 2010), farmland expansion, consolidation and fallow rotation

(Yu-sen, 2002), in strict accordance with the Chinese red line for culti-

vated land protection and the ecological red line (Bai et al., 2021). At

the same time, regions with weak CLP identified in the spatiotemporal

pattern of CLP should be supported. Integrated soil conservation mea-

sures on cultivated land need to be implemented, such as prevention

of soil erosion (Guerra et al., 2020), desertification (Briassoulis, 2019;

Siqueira-Gay et al., 2020), salinization and poor cultivation practices

(Cuevas et al., 2019).

Second, the impact of a single factor or multi-factor coupling on

CLP in different development stages may change (Table 3 and 4). We

should pay attention to the threshold of collaborative management on

the influencing factors of CLP, so that the relevant factors are in a

dynamic collaborative state. The research showed that the ecological

threshold of soil available phosphorus was 25mg kg�1, which not only

met the high yield of crops but also did no harm to the ecological and

environment (Zhang, Huang, et al., 2020). We should look for appro-

priate phosphorus reduction measures. There are differences in the

phosphorus content of topsoil in different regions. During the process

of phosphorus fertilizer application, we need to make corresponding

adjustments according to local conditions. This can not only realize

efficient land use with a dynamic balance of influencing factors of cul-

tivated land resources as the core but also maintain the utilization rate

of phosphorus fertilizer at a high level, reduce the accumulation of

phosphorus in soil and reduce environmental risks. Overall, protection

of cultivated land in the future should include clearer land use regula-

tion, the promotion of productivity factors at different spatial scales

and the interaction among factors.

4.4 | Innovation and limitations

This study identified the following innovations: (1) Analysis of fac-

tors influencing CLP can be based on the specific relationship with

NPP, which can be used for accurate calculation of the relationship

between CLP and influencing factors at grid scale. This overcomes

the drawback associated with using statistical yearbook data on

food output at the scale of administrative divisions in factor analy-

sis of CLP, where the results are too 'macro'. Thus for large-scale

watersheds, the accuracy of calculation is improved. (2) Analysis of

the factors influencing CLP combined with analysis of synergistic

effects of the main factors and other factors provides powerful

support in formulation of policies for the protection of cultivated

land. (3) Analysis at the large watershed scale increases the general

applicability of the findings compared with previous experimental

tests based on a small watershed or research area, and the findings

have high relevance for similar large river basins elsewhere in the

world.

However, there were also some limitations. Due to the large spa-

tial scope of the river basin studied, the quality of data on the

influencing factors was low and expression ability in regression analy-

sis was lacking. For future research, there is a need for better data

acquisition methods to improve the quality of the scientific data.
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5 | CONCLUSIONS

The following conclusions were drawn: (1) NPP can reflect the CLP

level in each grid and can effectively construct the relationship

between the factors affecting CLP. The productivity of cultivated land

shows great heterogeneity which is mainly characterized by low cen-

tral productivity and high surrounding productivity, increasing year by

year over time, with eight main influencing factors and their synergis-

tic effects causing spatial and temporal differentiation in CLP. (2) The

factors influencing CLP are closely related and interact with each

other, but the magnitude, intensity, and direction of synergies among

the factors differ. In particular, TN is one of the main positive factors,

while TP may have reached the highest threshold content for the soil,

showing a negative impact. The strongest positive synergistic effect of

each main factor and RVI on CLP was 0.607, and the strongest negative

synergistic effect with ETO on CLP was 0.330. The degree of impact on

CLP in the SRB also varied. (3) Synergies among the eight main factors

greatly impact the productivity of cultivated land. Specifically, NDVI

and precipitation had the greatest positive effects on CLP, 0.494 and

0.489 respectively while temperature had the greatest negative effect,

0.291. The single effects of the main factors and the synergistic effects

of factors have an important impact on CLP in the study area. We

learned that the synergistic effect between each main factor and RVI

on CLP was the strongest synergistic effect (0.607). All in all, the impact

of the main factors on CLP helps us to better protect cultivated land

according to local conditions, and the synergistic effect of various fac-

tors helps us to better manage the matching of suitable soil elements.
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