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Abstract: Fungi are an important component of microbial communities that serve a variety of impor-
tant roles in nutrient cycling and are essential for plant nutrient uptake in forest soils. Distance decay
of similarity (DDS) is one of the few ubiquitous phenomena in community ecology. However, the
contribution of specialist and generalist fungal species in shaping DDS remains poorly investigated.
Through removing operational taxonomic units (OTU) with low or high frequencies, we rigorously
quantified the impact of specialists or generalists on the change in slope, initial similarity, and halving
distance of DDS of undefined saprotroph, plant mutualist, and plant putative pathogen communities
in a 20-ha subtropical evergreen forest plot in Yunnan Province, Southwest China. We hypothe-
sized that (1) the soil fungal co-occurrence networks are different between the three fungal guilds;
(2) specialists and generalists contribute to the spatial turnover and nestedness of beta diversity,
respectively; and (3) the removal of specialists or generalists will have opposite effects on the change
of slope, initial similarity, and halving distance of DDS. Co-occurrence network analysis showed
that the undefined saprotroph network had a much more complicated structure than mutualist
and pathogen networks. Ascomycota and Basidiomycota were the two most abundant phyla in
soil fungal communities. We found that partly in line with our expectations, the change in initial
similarity increased and decreased when removing specialists and generalists, respectively, but there
was always one exception guild of out of the three communities for the change in slope and halving
distance. We identified that such change was mainly due to the change in turnover and nestedness of
beta diversity. Furthermore, the results show that species turnover rather than species nestedness
drove fungal beta diversity across functional guilds for both specialists and generalists.

Keywords: distance decay of similarity; specialists; generalists; FUNGuild; Yunnan; subtropical
forest; beta diversity; soil fungal communities

1. Introduction

Distance decay of similarity (DDS) is widely observed in various organisms [1] and
has long been recognized as “the first law of geography” [2]. A pattern of DDS in a commu-
nity is the consequence of joint effects of dispersal, selection, drift, and diversification [3].
Numerous studies have been implemented to unravel the relative importance of assembly
processes through investigating DDS at various scales [4–7]. Recently, community assem-
bly studies showed that the mechanisms underlying the distribution of generalists and
specialists differ from each other [8–10]. However, the effect of generalist and specialist
species on DDS has been rarely investigated, especially for microbial communities.

How generalist and specialist species alter DDS relationships has mixed evidence,
potentially due to the little related research. A theoretical study showed that specialists
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have relatively weak impacts on DDS compared to those of generalists [11]. On the contrary,
Oono et al. [12] demonstrated that the DDS pattern of specialists was more similar to the
DDS of whole foliar fungal endophytes than that by generalists. Zinger et al. [13] found
a significant association between the removal of specialists and the change in DDS slope.
However, abundance might not reflect species spatial distribution directly, especially for
sequencing data that are compositional [14]. Thus, more knowledge about the underlying
biogeographic patterns governing fungal community composition is required to support
future predictions of ecosystem functioning [15].

The fungal kingdom is one of the most diverse groups on Earth [16] and accounts for
a substantial proportion of the genetic diversity in the biosphere on Earth [17]. It plays
a variety of crucial roles in maintaining species coexistence [18], nutrient cycling [19,20],
and facilitating nutrient uptake by plants in terrestrial ecosystems. Co-occurrence network
analysis has been widely used to study microbial interaction patterns [21]. Recently, this
method, combined with next-generation sequencing, has been employed to explore the
structure and assembly of complex fungal communities in forest soils [22]. Communities
of fungi associated with plants can vary in composition or function when environments
change, which has implications for fungal contributions to plant resilience [23]. A previous
study suggested that geographic distance is a better predictor of fungal community distri-
bution [24]. Understanding soil fungi fine-scale spatial distribution patterns may add to
understanding community assembly mechanisms in soil microbes.

The fungal kingdom consists of diversified functional guilds [25] exhibiting different
growth strategies and nutrient-acquisition capabilities [26]. Peay et al. [17] reported that the
latitudinal gradient modes of several typical fungal guilds were significantly different from
each other. The relative contribution of vegetation, soil, space, and climate varies across the
guilds and account for variation in patterns [16]. However, the contribution of assembly
processes is scale dependent [27]. Schröter et al. [28] clearly showed that the relative
importance of assembly processes in driving fungal trophic guilds in the root mycobiome
shifted from large scale to local scale. The community of specialist and generalist fungi in
orchard soil was dominated by deterministic and stochastic processes, respectively [29].
Moreover, Jiao and Lu [30] found that the generalist fungal community was dominated by
the stochastic process. In contrast, deterministic process primarily governs specialist fungal
communities in agricultural soils. Therefore, how specialists and generalists influence DDS
across different fungal guilds needs to be clarified at local scales.

To address the effects of specialists and generalists on DDS of multiple fungal guilds,
soil samples were collected from a subtropical evergreen forest in Southwest China. Specif-
ically, the following questions were addressed: (1) Are the soil fungal co-occurrence net-
works different between the three fungal guilds? (2) Which fungal taxa (specialists or
generalists) contribute more to the DDS slope, initial similarity, and halving distance within
each of the three fungal guilds? (3) How does specialists and generalists influence the
nestedness and turnover beta diversity components within each of the three fungal guilds?

2. Materials and Methods
2.1. Study Site

This study was carried out in the 20 ha (500 m× 400 m) mid-mountain moist evergreen
broadleaved forest plot in the Ailaoshan National Nature Reserve (24◦32′ N, 101◦01′ E),
central Yunnan Province, Southwest China (Figure 1). The elevation of the plot ranges from
2472 to 2628 m above sea level. The vegetation type is subtropical evergreen broadleaved
forest, dominated by the subtropical oak species Lithocarpus hancei, L. xylocarpus, Castanopsis
wattii, and Schima noronhae [31]. The climate is a typical monsoon climate, with a 1931
mm mean annual precipitation, 85% of which falls from May to October [32]. The mean
monthly temperature is 11.3 ◦C, ranging from 5.7 ◦C in January to 15.6 ◦C in July [33]. The
soil is classified as an alfisol [34].
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Figure 1. The location and distribution of soil samples (left) in the 20 ha Ailaoshan forest dynamics
plot (right) in Southwest China. The red crosses in the left panel represent the soil samples. Grey
lines are contour lines.

2.2. Collection of Soil Fungal Samples

Soil samples were collected over a regular grid of points with 50 m in between in the
20 ha plot (Figure 1). Each grid point was paired with three additional sample points at
any random selected distances out of 0.5 m, 2.5 m, 5 m, 10 m, 15 m, and 24.9 m in three
random compass directions from the grid to capture variation in soil fungal composition at
finer scales. For each sample, topsoil was collected from a depth between 0 and 10 cm. The
soil included fine roots and comprised both the organic layer and top mineral soil. A total
of 396 soil samples was taken in June 2017. The samples were collected in plastic bags and
immediately transported to the laboratory on ice for analysis. All samples were stored at
−80 ◦C prior to fungal DNA extraction. Soil fungal DNA were extracted using the MoBio
PowerSoil™ DNA Isolation Kits (Bio Mio Lab Inc., Solana Beach, CA, USA) following the
manufacturer’s instructions.

2.3. Sequencing and Sequence Data Processing

The soil samples were sequenced for fungal ITS2 region. The sequencing libraries
were constructed using a previously described process [35], replacing the 16S specific
primers with primers targeting fungal ITS2 region. Sequencing was conducted on the
MiSeq platform in the University of Minnesota Genomic Center.

Read1 and Read2 sequencing data were processed using the FAST pipeline (https://
github.com/ZeweiSong/FAST/, accessed on 31 January 2019), following the protocol using
both reads for ITS2 (https://github.com/ZeweiSong/FAST/wiki/Fungal-ITS2-Pipeline-
Using-Both-Reads, accessed on 31 January 2019). Illumina sequencing primers were first
removed using cutadapt [36] and then merged using PEAR v0.9.8 [37]. In order to align
with the UNITE database, we trimmed a 60 bp tail from all sequences. These 60 bp tails were
trimmed in UNITE based on our own test using ITSx [38]. Sequences with ambiguous bases
or homopolymers longer than nine bases were removed and sequences with a maximum
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error rate > 1 were discarded. The sequences passing these quality-filtering steps were then
clustered using NINJA-OPS (Knights Lab, Minneapolis, MN, USA) [39] with a similarity of
0.97. The resulting compositional data were randomly sampled to 10,000 sequence reads
per sample. This was achieved using an iterative sampling process procedure in FAST, in
which each sample was randomly sampled for 1000 times, and the draw closest to medium
OTU richness was picked.

2.4. Soil Fungal Classification

Each fungal OTU was assigned to a functional guild using FUNGuild [25] to examine
whether fungal functional guilds differed among soil fungal communities. FUNGuild v1.0
is a database hosted by Github (https://github.com/UMNFuN/FUNGuild, accessed on
30 May 2019). The database currently contains a total of 9476 entries, with 66% at the
genus level and 34% at the species level. Only OTUs with a confidence ranking of “highly
probable” or “probable” were retained in our analysis as per Cregger and Veach [40]. We
classified our entries into three broad functional groupings referred to as trophic modes:
pathotroph (i.e., plant pathogens), symbiotroph (i.e., mutualist), and saprotroph [16].

2.5. Data Analysis

Co-occurrence networks were constructed to investigate the soil fungal communities.
The interactions between fungal taxa were determined through a network structure to
decipher the complexity of fungal communities in the 20 ha forest plot. Co-occurrence
networks of fungal communities were constructed based on OTU relative abundances and
inferred by calculating the Spearman correlation matrix between OTUs. The network was
explored using the igraph package [41]. To describe the network topology, the number
of nodes and edges was calculated. In the network diagrams, each node represents an
OTU indicating an individual taxon, whereas the edges between every two nodes indicates
significant correlations between those two taxa.

To estimate distance–decay of similarity (DDS), the Bray–Curtis dissimilarity index
was calculated to describe the pairwise dissimilarity between samples. DDS was assessed
in a logarithmic transformed space to enhance the linear fitting, according to Nekola and
White [42], using the formula:

log(Scom) = log(a) + β × log(D) (1)

where Scom is the community similarity, a is the intercept parameter, D is the geographic
distance, and β is the slope of DDS. Pairwise geographic distances between samples were
calculated using the x and y coordinates implemented in the vegan package [43] and were
plotted against the pairwise Bray–Curtis dissimilarities using the plot function in base R.

The impacts of specialists and generalists on the distance–decay of similarity were
assessed by removing minimum frequency and removing maximum frequency OTUs,
respectively. To compare the estimates of parameters obtained using different approaches
for these data, three distance–decay models were fitted: (1) linear regression of Delta log(a)
or initial similarity, (2) linear regression of Delta beta, and (3) linear regression of the Delta
halving distance (m). The halving distance (how much farther apart sites would have to be
to halve the similarity) was calculated by noting similar halves whenever the separation
distance, d, was increased by the amount:

d0.5 = −log(0.5)/β = 0.693/β (2)

where d0.5 denotes the halving distance [44]. Equation (2) does not depend on d itself, but
only on the increase in d.

Partitioning of beta diversity, as proposed by Baselga (2010) [45], was used for calcu-
lating beta diversity components. Turnover, nestedness, slope of DDS, and initial similarity
were calculated to estimate the impact of specialists or generalists for the three functional
guilds. All beta diversity measures were calculated using the betapart package [46]. Addi-

https://github.com/UMNFuN/FUNGuild
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tionally, triangular plots (simplex) were generated to describe the distributions of abundant
OTUs concerning the partitive components of beta diversity for Jaccard similarity in all
OTUs and the three functional guilds. All statistical analyses were performed in the R
software version 4.0.3 (accessed on 6 June 2022) [47].

3. Results
3.1. The Co-Occurrence Network of Soil Fungal Communities

Across all the 396 soil samples, a total of 3182 fungal OTUs (singletons removed) were
obtained from high-throughput sequencing datasets. Among them, 1,552,685 reads and
468 OTUs of undefined saprotrophs, 56,732 reads and 170 OTUs of plant pathogens, and
985,544 reads and 349 OTUs of mutualists were found. Ascomycota and Basidiomycota
accounted for the largest proportion of nodes in soil fungal communities. The co-occurrence
network of soil fungal communities was more complex in undefined saprotrophs than in
mutualist and plant pathogens (Figure 2). The composition of nodes and edges also varied
within each network. The undefined saprotroph was the most represented functional guild
and was dominated by taxa from both Ascomycota and Basidiomycota (Figure 2a). The
plant pathogen network had the least number of nodes and significant correlations among
nodes and was dominated by Ascomycota (Figure 2b). Meanwhile, the mutualist network
was relatively more complex than plant pathogen network and was dominated by members
from Basidiomycota (Figure 2c).
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Figure 2. Co-occurrence networks of soil fungal communities in undefined saprotrophs (a), plant
pathogens (b) and mutualists (c). OTUs are represented as nodes and correlations as edges. The
node sizes are correlated to the OTU abundances, node color indicates the corresponding taxonomic
assignment at phylum level, and edge width indicates the correlation strength.

3.2. Distance-Decay Relationships on Soil Fungal Communities

The removal of specialists and generalists had opposite effects on the change in slope,
initial similarity, and halving distance of DDS (Figure 3). The initial similarity, DDS slope,
and halving distance all decreased when specialists were removed (Figure 3a–c). In contrast,
the removal of generalists resulted in increased initial similarity, DDS slope, and halving
distance (Figure 3d–f). Similarly, the removal of specialists and generalists also had opposite
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effects on the change in slope, initial similarity, and halving distance of DDS of undefined
soil saprotrophs, plant mutualists, and pathogen communities (Supplementary Material
Figures S1–S3).
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(a,d), slope (b,e), and halving distance (c,f) of distance–decay of similarity.

3.3. Beta Diversity Partitioning

Turnover and nestedness contributions to beta diversity were similar in both specialists
and generalists across functional guilds. Turnover was relatively higher in generalists than
in specialists (Figure 4a), whereas nestedness was relatively higher in specialists than in
generalists (Figure 4b). Nevertheless, turnover was higher and nestedness was lower
for both specialists and generalists and turnover was the greater contributor to overall
beta diversity across functional guilds for both specialists and generalists (Figure 4a,b).
Slope of DDS was relatively higher in specialists than in generalists, except in pathogen
specialists (Figure 4c). Meanwhile, initial similarity was relatively higher in specialists than
in generalists in all functional guilds (Figure 4d).

Similarly, the triangular plots show that the beta diversity was high for the overall
fungal community, as well as the individual functional guilds (Figure 5). Of the three
components, species replacement dominated for the overall fungal community and all
functional guilds. In the overall fungal community and undefined saprotrophs, the Jaccard
similarity component was higher than the richness difference component. In contrast,
the richness difference component was higher than the Jaccard similarity component for
plant pathogens and mutualists. In all cases, the sum of species replacement and richness
difference components was higher than the Jaccard similarity component, i.e., the beta
diversity among samples was higher than the similarity (Figure 5).
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Figure 4. Comparison of turnover (a), nestedness (b), β (c), and log(a) (d) between the original
fungal functional guild communities and communities where specialists and generalists had been
removed. The boxplots show the distributions of the four features in each of the fungal functional
guild communities. A red star stands for an observed feature in a community. p.sp: specialists
were removed for the putative plant pathogen community; m.sp: specialists were removed for the
mutualistic community; u.sp: generalists were removed for the undefined saprotroph community;
p.co: generalists were removed for the mutualistic community; m.co: generalists were removed for
the mutualistic community; u.co: generalists were removed for the undefined saprotroph community.
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4. Discussion

Despite recent attempts to disentangle the distribution of fungal community assembly,
few studies have focused on the contribution of soil fungal specialists and generalists in
shaping distance–decay of similarity. Here, the co-occurrence networks and the characteris-
tics of soil fungal specialists and generalists in terms of beta diversity and the underlying
mechanisms of biogeographic patterns were investigated. The results show that (1) fungal
co-occurrence networks showed significantly distinct structural properties in undefined
saprotrophs, pathogens, and plant mutualists; (2) specialists and generalists contributed
differently to the DDS slope, initial similarity, and halving distance within each of the three
fungal guilds; and (3) turnover was the greater contributor to overall beta diversity across
functional guilds for both specialists and generalists—however, generalists had a greater
turnover rate than specialists within each of the three fungal guilds whereas specialists had
a higher nestedness rate than generalists. These findings would bring new insights into
how these two groups contribute to the diversity of the community and add knowledge on
predicting soil fungal biogeographic community patterns among different fungal guilds.

4.1. Soil Fungal Community Diversity and Composition

Network analysis showed that fungal communities in the subtropical forest were
non-randomly distributed. Fungal co-occurrence networks have considerably different
structural properties in undefined saprotrophs, pathogens, and plant mutualists. The
undefined saprotroph network showed a much more complicated structure than the plant
mutualist and pathogen networks. It has been proposed that a highly connected network
provides more functional redundancy [48]. Therefore, this suggests that the complex fungal
network in undefined saprotrophs would lead to greater community stability and thus
may enhance the decomposition of organic matter [49]. Ascomycota and Basidiomycota
were the two most abundant phyla. Consistent with our study, Shi et al. [50] found that
Ascomycota was the dominant phylum in forest soil and was better able to endure envi-
ronmental pressures. Ascomycota is the most diverse group of saprotrophic fungi [51];
thus, differences in the composition within the Ascomycota may play a role in keeping
similar saprotrophic functions operating [52]. Basidiomycota is reported to be ubiquitous in
forest soils [16,53]. Many ectomycorrhiza (EcMF) and endomycorrhiza (EMF) belonging to
the phyla Ascomycota and Basidiomycota, e.g., Elaphomyces muricatus and Russula cyanox-
antha, were found to dominate in tropical and subtropical forests [50,54,55]. Our results
show that the phyla Ascomycota and Basidiomycota dominated the fungal communities in
subtropical forest soils.

4.2. Distance–Decay Relationships of Soil Fungal Communities

Removal of generalist and specialist taxa had opposite effects on DDS. Numerous
studies have reported that generalist and specialist microbial taxa typically have distinctive
distribution patterns and functional traits [56–58]. Consequently, they could have unique,
possibly contrasting, influence on distance–decay relationships of species. Generalists,
which live in a wide range of environmental conditions, and specialists, which require more
specific environmental conditions, are thought to be governed by contrasting assembly
processes and thus contribute to overall diversity in different ways [59,60]. The contribution
of generalists or specialists is still limited when attempting to predict and explain spatial
patterns of biodiversity.

Our observations revealed the significant effects of the removal of specialists and
generalists on distance–decay of similarity in soil fungal communities. We found that the
removal of specialists from the entire community resulted in a decrease in distance–decay
relationships. In contrast, the removal of generalists from the entire community resulted in
an increase in distance–decay relationships. The removal of generalists had the effect of
increasing the change in slope, initial similarity, and halving distance of DDS, indicating
impacts of dispersal limitation [61]. Dispersal limitation is one of the most important
stochastic processes influencing microbial community assembly [30]. In contrast, the
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removal of specialists had the effect of decreasing the change in slope, initial similarity, and
halving distance of DDS, and could have been influenced by deterministic processes. These
results are consistent with a previous study that showed that the assembly of generalists
was driven by stochastic processes due to their general indifference to changes in habitat
conditions, whereas the assembly of specialists are more affected by deterministic processes
due to their preferences for specific environmental conditions [62]. Our results are also
consistent with a recent study [60] that also showed slightly weakened distance–decay
relationships when specialists were removed and increase in the slope of distance–decay
relationships with the removal of generalists. They found that generalists contributed more
to stochastic processes in community assembly whereas specialists mainly contributed to
the deterministic processes [60]. Due to dispersal limitation and environmental filtering,
the removal of generalists and specialists having opposite effects on the change in slope,
initial similarity, and halving distance of DDS may result in a change in the turnover of
beta diversity.

4.3. Beta Diversity Partitioning

Species turnover almost entirely explained the fungal beta diversity rather than nest-
edness, indicating that the fungal beta diversity may mainly arise from the species turnover
component. The specialists may have a greater turnover rate because they adapt to environ-
mental changes more quickly [63]. Generalists are predicted to minimize species turnover
and beta diversity, which represents the loss or replacement of species due to dispersal
limitation and environmental filtering [60]. Recent studies have revealed that beta diver-
sity and species turnover of fungal communities significantly increased with increasing
geographic distance [64]. They also found that fungal beta diversity was almost entirely
driven by species turnover rather than species nestedness [64]. We expected turnover
to predominate because nestedness was much lower, but nestedness was also involved
in contributing to beta diversity. We found that distance–decay relationships of fungal
guilds in the subtropical forest of Southwest China are different. Such differences should
be reflected in either turnover or nestedness in species and/or trait composition among
the three functional guilds. Our results show that the impact of specialists and generalists
contributed primarily to the spatial turnover and nestedness of soil fungal beta diversity in
our study.

The triangular plots (simplex) showed that soil fungal communities among the samples
were more dissimilar than similar. Beta diversity was high and was more associated with
the highest species replacement rate for all OTU and three functional guilds. This suggests
that no cosmopolitan generalist fungal taxa were present in most of the samples [65]. A high
rate of fungal OTU replacement or turnover could indicate either restricted fungal niches
and strong environmental filtering [66], strong interspecific competitive exclusion [65],
or historical contingencies with priority effects that allow early colonizers to prevent
latecomers from colonizing [67,68]. At local scales, habitat heterogeneity may be high in
the subtropical forest dynamics plot and could be causing the high turnover patterns. It
would have been ideal to identify biotic and abiotic factors shaping soil fungal community
beta diversity, but those are currently outside of the scope of this research.

5. Conclusions

This study provides insights on local soil fungal distance–decay of similarity in a sub-
tropical forest. Through next generation sequencing and co-occurrence network analysis,
we described soil fungal communities from different functional guilds. In addition, by
removing low- and high-frequency fungal OTUs, the respective effects of specialist and gen-
eralist fungi on DDS were quantified. The results demonstrated that the phyla Ascomycota
and Basidiomycota dominated the entire fungal community and the undefined saprotroph.
Ascomycota dominated plant pathogen communities and Basidiomycota dominated the
mutualist communities. Undefined soil saprotroph co-occurrence networks were more com-
plex than plant mutualist and pathogen networks. The removal of specialists or generalists
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had significant and contrasting effects on the change in slope, initial similarity, and halving
distance of soil fungal DDS. The removal of specialists resulted in the weakening whereas
the removal of generalists resulted in the strengthening of soil fungal DDS. These observed
patterns were consistent for the entire soil fungal community and across the fungal guilds.
Lastly, fungal beta diversity was derived almost entirely from species turnover rather
than from species nestedness across functional guilds for both specialists and generalists.
Although it is difficult to disentangle the underlying mechanisms of soil fungal community
assembly, the results could be used as a tool to study fungal biogeographic patterns through
time and to predict future changes that might be damaging to forests.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13081188/s1, Figure S1. Effect of removal of specialists (top) and
generalists (bottom) on initial similarity (a,d), slope (b,e), and halving distance (c,f) of distance–decay
of similarity in soil undefined saprotrophs. Figure S2. Effect of removal of specialists (top) and
generalists (bottom) on initial similarity (a,d), slope (b,e), and halving distance (c,f) of distance–decay
of similarity in plant mutualists. Figure S3. Effect of removal of specialists (top) and generalists
(bottom) on initial similarity (a,d), slope (b,e), and halving distance (c,f) of distance–decay of similarity
in pathogens.
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