红掌愈伤组织诱导和芽的分化

兰芹英¹ 李启任² 何惠英¹ 张艳军¹ 解星云³

(¹中国科学院西双版纳热带植物园, 勐腊 666303;² 云南大学生物技术系, 昆明 650091;³ 云南省茶叶科学研究所, 勐海 666201)

摘 要: 对影响红掌愈伤组织诱导及芽分化的几个因素进行了研究。同一成熟度的外植体,其叶柄愈 伤组织诱导率、芽分化率、分化时间均明显优于叶片。不同放置方式和光照时间对叶片愈伤组织的诱导亦 有影响,叶背向下放置,光照时间 24 h/d 和 10 h/d 愈伤组织诱导率较高,分别为 100 %、97 %。光照时间 对叶柄愈伤组织诱导无显著影响,但光照 24 h/d 和 10 h/d 较无光照处理的明显促进芽的分化。叶柄培养以 N₆, KC 和 1/2 MS 培养基为佳。叶片培养则以 P, N₆ 和 1/2 MS 为好。以未展叶叶柄为外植体,从接种到丛 芽分化共 49 d,较已有报道提前 11~31 d。

关健词:红掌;愈伤组织;诱导;芽分化

中图分类号: S 68 文献标识码: A 文章编号: 0513-353X (2003) 01-0107-03

1 目的、材料与方法

红掌(Anthurium andraeanum Linden)又名花烛,安祖花。本试验对影响红掌愈伤组织诱导和芽分化的因素进行研究,为红掌试管苗的工厂化生产和规模化种植提供依据。

取盆栽苗充分展开、半展开和未展开的叶片,常规消毒灭菌后将叶片剪成 0.5~1 cm 见方小块,叶柄剪成长 1 cm 的切段接种在 $P^{(1)}$ +BA 2 mg/L +2,4-D 0.2 mg/L 培养基中,诱导愈伤组织形成和芽分化,研究叶片外植体成熟度的影响。待芽长成小苗后,再用无菌小苗的叶片 (0.5~1 cm 见方)和叶柄(长约 1 cm)作外植体进行不同放置方式、光照时间及培养基等的研究。培养温度(28 ±2),光强 2 000 lx。在芽的增殖和生长中常伴有根的形成,因此,发育正常的小苗可直接移栽,若根生长不好的则转入 1/2 MS + IAA 0.2 mg/L 培养基中进行生根培养。

2 结果与讨论

2.1 叶片外植体对愈伤组织的形成和芽分化的影响

由表 1 结果可知,叶柄的愈伤组织诱导率高于叶片,每块愈伤组织分化的芽数也高于叶片。半展 开叶和未展开叶的叶柄愈伤组织诱导率都为 100 %,展开叶片的叶柄愈伤组织诱导率为 81.87 %。叶 柄接种 9 d 后,切口两端开始膨大,28 d 后愈伤组织分化芽。展开叶片的愈伤组织分化丛芽需 91 d, 而未展开叶共需 49 d。

2.2 叶片放置方式和光照时间对叶片愈伤组织诱导率的影响

将长 3~3.5 cm 的无菌小苗叶片作为外植体,在光照 0、10、24 h/d 条件下,叶片背面向上放置, 愈伤组织诱导率分别为 43.35 %、47.06 %、54.54 %;叶片背面向下时愈伤组织诱导率分别为 56 %、 96.55 %、100 %。因此,我们认为叶背向下,光照 10 h/d 以上有利于愈伤组织的诱导(表 2)。

2.3 光照时间对叶柄愈伤组织诱导及芽生长的影响

- 无菌小苗叶柄外植体在 P + BA 2 mg/L + 2 ,4-D 0.2 mg/L 培养基和光照 0、10 和 24 h/ d 条件下培

收稿日期: 2001 - 12 - 10; 修回日期: 2002 - 06 - 21

基金项目:中国科学院"西部之光"项目资助 (990302-52144);西南创新基地项目资助 (2000-05)

养两个月的结果表明:光照对叶柄愈伤组织诱导没有影响,但对丛芽的分化影响较大,24 h/ d 光照芽 分化最多、黑暗条件下最少(表 3)。

2.4 基本培养基对叶片、叶柄愈伤组织诱导和丛芽分化的影响

外植体接种在 MS、1/2 MS、P、N₆、B₅、 KC 附加 BA 2 mg/L + 2,4-D 0.2 mg/L 培养基中, 光照 10 h/d,两个月后统计结果(表4)所示:P、KC、N₆和1/2 MS 对叶片愈伤组织诱导效果较好;芽数较 多的为 P 培养基。叶柄培养在 P、N₆、KC、1/2 MS 培养基中,愈伤组织诱导率和芽分化率较高,MS 较低, B₅ 芽分化率为 0; 芽数较多的是 N₆、KC、1/2 MS。

表1 外植体成熟度对愈伤组织的形成和芽分化的影响 Table 1 The effect of explant maturity on inducing callus and differentiation of bud

外植体成熟度 Explant maturity	接种数 No. explants	诱导愈伤 组织数 No. calli	愈伤组织诱导率 Callus induction Percent (%)	分化芽的块数 No. calli of differentiated bud	芽分化率 Shoot percent of differentiated bud(%)	芽数/块 No.shoot/ callus
未展开叶片 Folded leave	18	8	44.44	6	33.33	1~4
叶柄 Petiole	24	24	100	22	91.67	10 ~ 50
半展开叶片 Partly folded leave	22	16	72.73	9	40.91	2~28
叶柄 Petiole	19	19	100	14	73.68	5~45
展开叶片 Unfolded leave	24	16	66.67	10 0	41.67	10~21
叶柄 Petiole	22	18	81.82	10	45.46	8~50

表 2 叶片不同放置方式及光照时间对愈伤组织诱导的影响

Table 2 The effect of laying way leave and light time on colluce induction

	on c	anus induc	tion	
放置方式 Laying way	光照时间 Light time (h/d)	接种数 No. explants	诱导愈伤 组织数 No. calli	诱导率 No. callus percent (%)
叶背向上	0	34	16	47.06
Abaxial of leave	10	30	13	43.33
facing up	24	33	10	54.44
叶背向下	0	25	14	56.00
Abaxial of leave	10	29	28	96.55
facing down	24	24	24	100

表 3 光照时间对叶柄愈伤组织诱导率的影响

Table 3	The effect of	petiole on	callus induction	in	different lig	ht
---------	---------------	------------	------------------	----	---------------	----

				e
光照时间 Light time	接种数 No.	诱导愈伤 组织数	诱导率 No. callus	每块愈伤组 织的芽数
(h/d)	explants	No. calli	percent (%)	No. buds
0	49	47	95.92	+
10	30	28	93.33	+ + +
24	32	31	96.86	+ + + +

表4 不同基本培养基对叶片,叶柄愈伤组织诱导 和芽分化的影响

Table 4 The effect of leave and petiole on callus induction

and differentiation of bud in different base mean					
		<u>愈伤组织</u> C	allus	<u> 芽分化 Bud di</u>	fferentiation
ト 植体 xplant	培养基 Medium	诱导率 Induction percent rate (%)	> 0.5 cm (%)	分化率 Differentiation percent rate (%)	芽数 No.buds
丨片	MS	42	52.38	61.91	+
eave	1/2 MS	96	49.92	56.72	+ +
	KC	100	50	0	-
	N_6	97.5	79.49	94.92	+ +
	Р	100	96	96	+ + +
	_				

and differentiation of bud in different base mediu

				>) /) D dd dd	
外植体 Explant	培养基 Medium	诱导率 Induction percent rate (%)	> 0.5 cm (%)	分化率 Differentiation percent rate (%)	芽数 No.buds
叶片	MS	42	52.38	61.91	+
Leave	1/2 MS	96	49.92	56.72	+ +
	KC	100	50	0	-
	N_6	97.5	79.49	94.92	+ +
	Р	100	96	96	+ + +
	B_5	68	35.29	0	-
叶 柄	MS	50	55	35	+
Petiole	1/2 MS	92	45.65	71.74	+ +
	KC	97.5	89.7	89.74	+ + +
	N_6	100	100	100	+ + +
	Р	100	72	76	+
	B_5	75.56	0	0	-

自 1974 年 Pierik^[1]首次培养红掌取得成功以来,国内外对红掌愈伤组织诱导的绝大多数的研究报 最快需 60~80 d^[6],而我们的试验结果是,未展开叶的叶柄作外植体,一个月后愈伤组织诱导率为 100%, 49 d 后愈伤组织分化出丛芽, 比前人的结果提前了 11~31 d。

本试验结果表明,叶背向下,光照有利于愈伤组织的诱导,叶背向上光照对愈伤组织诱导率没有 影响,这可能与叶片的结构和功能有关。

叶片和叶柄培养在不同氨盐含量的培养基 B5〔(NH4)2SO4134 mg/L〕和 MS(NH4NO31680 mg/L) 中,愈伤组织诱导率较低。前人的研究结果表明、低浓度的氨盐对很多红掌愈伤组织诱导有利,206 ~ 825 mg/L 较为合适,大于 825 mg/L 或小于 206 mg/L 将不利于愈伤组织的诱导^[2]。本试验结果与前

人的相似。芽的分化及再生植株照片见插页 4。

参考文献:

1期

- 1 Pierik R L M, Steegmans H H M, Van Der meys J A J. Plantlet formation in callus tissues Anthurium andraeanum Lind. Scientia Horticulturae, 1974, 2: 193 ~ 198
- 2 Pierik R L M. Anthurium andraeanum plantlets produced from cultivated in vitro. Physiol. Plant, 1976, 37: 80 ~ 82
- 3 Kuehnle A R, Sugii N. Callus induction plantlet regeneration in tissue cultures of havaiian anthuriums. Hortscience, 26 (7): 919~921
- 4 苓益群,蒋如敏,邓志龙,等.安祖花离体增殖的形态发生与理化因子效应.园艺学报,1993,20(2):187~192
- 5 浩仁塔本,余伟莅.安祖花的组织培养和快速繁殖.植物生理学通讯,1991,(6):432
- 6 杨 涛,陈德海,吴荔萍.安祖花的组织培养及其细胞和叶绿体发育过程的电镜观察.亚热带植物通讯,1998,27 (1):1~7

The Callus Induction of Anthurium andraeanum Linden and Bud Differentiation

Lan Qinying¹, Li Qiren², He Huiying¹, Zhang Yanjun¹, and Xie Xingyun³ (¹ Xishuangbanna Tropic Botanical Garden, The Academy of Sciences, Mengla 666303, China; ² Department of Biology Technology, Kunming 650091, China; ³ Tea Reserch Institute of Yunnan Province, Menghai 666201, China)

Abstract : The factors that influence the callus induction and bud differentiation of *Anthurium andraeanum* Linden were studied. Petiole showed significantly better results than blade in callus induction , bud differentiation and duration for bud formation. The callus induction on blade was influenced by the way of placement on medium and period for lighting , and the highest percentage (100 % and 97 %) for callus induction were recorded under the condition that the downside of blade were against the medium and with 24 h/ d and 10 h/ d light. Differnet light treatments did not affect the callus induction of petiole significantly. However , the 24 h/ d and 10 h/ d light treatment obviously improved the bud differentiation compared to the treatment with no light. Promising results among several mediums tested were recorded : N₆ , KC and 1/2 MS for petiole and P , N₆ and 1/2 MS for blade , respectively. The time from explant to bud differentiation were 49 d , which was 11 - 31 d earlier than time previously reported.

Key words: Anthurium andraeanum Linden; Inducing of callus; Differentiating bud

欢迎购阅下列新书

 4-1《花卉无土栽培》23元 4-2《花卉组织培养》23元 4-3《花卉贮藏保鲜》23元 4-4《花卉贮藏保鲜》23元 4-5《月季》27元 4-6《菊花》29元 4-7《香石竹》31元 4-8《球根类》37元 4-9《多浆花卉》48元 	 4-14《中国果树志 枣卷》56元 4-15《中国果树志 李卷》100元 4-16《中国果树志 核桃卷》76元 4-17《中国果树志 山楂卷》56元 4-18《中国果树志 荔枝卷》67元 4-19《中国果树志 龙眼、枇杷卷》80元 4-21《中国果树志 苹果卷》134元 4-22《中国果树志 桃卷》110元 4-23《中国木本植物种子》200元 	 4 - 27《苹果树整形修剪和病虫防治技术》(第二版) 16元 4 - 28《枣树丰产栽培管理技术》(第二版) 21元 5 - 1《中国蔬菜病虫原色图谱》(第三版,上、下) 150元 5 - 3《中国果树病虫原色图谱》60元 5 - 4《中国花卉病虫原色图鉴》(上、下) 158元 5 - 5《中国果树病虫原色图谱》(第二版) 101元
4 - 10《宿根花卉》44 元 4 - 11《温室花卉》52 元	4-24《新型芽苗菜-体芽菜生产技术图 册》40元	*《园艺学报》2000 增刊 10 元
 4 - 12《藤蔓花卉》37元 4 - 13《中小型苗圃林果苗木繁育实用技术 手册》25元 	 4-25《室内观赏植物(装饰、养护、欣赏)》76元 4-26《室内观赏植物及装饰》(第二版) 21元 	*《园艺学报》2001 增刊 10 元 *《园艺学报》2002 增刊 10 元
	局汇款至北京中关村南大街 12 号《园艺学报》	〉编辑部,邮编:100081。

插页4

刘玉平等:试管芋诱导的研究

Liu Yuping, et al. Induction of in Vitro Corms of Taro (Colocasia esculenta Schott.)

图版说明:

- 1. 芋茎尖诱导的丛芽:
- 2.试管芋的诱导;
- 3.诱导的试管芋:
- 4. 试管芋(IV)与常规芋(N)田间生长对照。 Explanation of plates:
- 1. Planlets induced from one taro bud;
- 2. Inducing in vitro corm from planlet;
- 3. In vitro corms induced from planlets;
- Field growth comparison between in vitro corm plants (IV) and normal corm plants(N).

兰芹英等: 红掌愈伤组织诱导和芽的分化

Lan Qinying, et al. The Callus Induction of Anihurrium andraeanum Linden and Bud Differentiation

图版说明: 1.叶柄愈伤组织上分化不定芽: 2.芽的分化和生长: 3.再生植株。 Explanation of plates: 1. Adventitious shoots differentiated from petiole callus: 2. Differentiation and growth of shoots; 3. Regenerated plantlets.