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Abstract
Zanthoxylum nitidum, known as Liang-Mian-Zhen in China, is a traditional Chinese medicinal plant 
used to treat traumatic injury, rheumatism, paralysis, toothache, stomach ache, and venomous snake 
bites. Two varieties of the species have been described and three morphological types have been reported 
within the original variety. However, taxonomic delimitation and molecular markers for distinguishing 
these varieties and types within this species remain unknown. Since different populations exhibit varying 
chemical compositions, easy identification of intraspecific taxa is crucial. We collected 420 individuals 
from 38 natural populations, 3 samples of standard medicinal material, and 17 folk-medicine samples to 
perform classification and identification within Zanthoxylum nitidum. Four distinct genetic clusters (A, 
B, C, and D) were highly supported by the nuclear barcode. Two distinct chloroplast clusters (A1 and 
A2) were further detected within A, and three others had one-to-one correspondence with the remaining 
nuclear clusters. Molecular identification showed that the 17 folk samples comprised A1, A2, B, and D, 
while the 3 standard samples belonged to A2. The internal transcribed spacer (ITS) region and rbcL gene 
are proposed as barcodes for rapid and accurate identification of the different Liang-Mian-Zhen lineages 
in China. This study highlights the importance of accurate taxonomic delimitation in combination with 
rapid and accurate molecular identification of medicinal plants.
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Introduction

Medicinal plants are widely used in clinical medications, daily chemical products, and 
food and drink products in China, and play an important role in people’s daily life 
(Zhu et al. 1983; Hawkins 2008; Bansal et al. 2018; Lu et al. 2020). With the increase 
in human population and the decrease in natural medicinal resources in recent dec-
ades, the market demand for cultivated medicinal plants has been expanding (Zhou 
and Wu 2006; Hawkins 2008; Techen et al. 2014). Moreover, many substitutes are be-
ing used, although their active ingredients are distinctly different from conventionally 
used substances (Sui et al. 2011; Chao et al. 2014; Dubey and Sawant 2015; Qin et al. 
2019). Generally, the active ingredients of any substance are considered to be related 
to different genetic (or morphological) clusters or species (e.g., Cirak et al. 2007, 2013; 
Chao et al. 2014; Fan et al. 2015). In our previous study, such a phenomenon was ob-
served among strains within the medical plant Zanthoxylum nitidum (Qin et al. 2019). 
Nine populations covering four morphological clusters were compared and significant 
differences among the chemical ingredients (e.g., nitidine chloride) were discovered. 
This suggests that not all Z. nitidum proveniences are equally suitable for medicinal use 
and the identification of intraspecific taxa is crucial.

Zanthoxylum nitidum, known as Liang-Mian-Zhen (两面针) in China, differs from 
congeneric species in terms of the characteristics of its perianth in two series, 4-merous 
flowers, 4-carpelled gynoecia, axillary and terminal inflorescences (thyrsiform) pedicel 
length (rarely reaching 1 cm in fruits), fruit follicles (to 0.9 cm and containing nei-
ther prickles nor trichomes), outer part of pericarp (not wider than endocarp), leaflet 
blades (without oil glands along secondary veins), and leaflet apex retuse (at the tip). 
Besides the typical variety (Z. nitidum var. nitidum), a second variety, Z. nitidum var. 
tomentosum, has been accepted (Hartley 1966; Editorial Committee of Flora 1997; 
Zhang et al. 2008; Chinese Pharmacopoeia Commission 2020). Three morphological 
types have also been proposed for Z. nitidum var. nitidum (Editorial Committee of 
Flora 1997). A recent study reported that morphological boundaries between varieties 
or types within this species should be re-evaluated based on prickle appearance and the 
density of prickles on the trunk (Qin et al. 2019). In total, the morphological taxono-
my of Chinese Liang-Mian-Zhen is disordered owing to the abundance of phenotypic 
variations and the use of different taxonomic methods (Editorial Committee of Flora 
1997; Zhang et al. 2008; Qin et al. 2019). Hence, taxonomic delimitation within the 
medicinal plant Liang-Mian-Zhen in China remains controversial and more work is 
needed to disentangle its intraspecific structure.

Molecular identification is widely used in the authentication of medicinal plants 
(representing a morphological or genetic cluster) [Guo et al. 2013; Chao et al. 2014; 
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Chen et al. 2015; Osathanunkul et al. 2016; Xin et al. 2018]. Short sequences from 
a standardized position of the genome are aligned and compared with a known DNA 
barcode reference library to identify the taxa to which a sample belongs (Chen et al. 
2015; Liu et al. 2018). In contrast to traditional taxonomy, there are many advantages 
to molecular identification using DNA barcodes, such as objectivity, speed, and ac-
curacy, making it more suitable for forensic applications (Chao et al. 2014; Chen et al. 
2015). Ideally, an unknown sample can be identified as a specific species – usually as a 
genetic cluster or lineage – using its DNA barcode sequences based on a reliable refer-
ence library (Liu et al. 2018). In practice, before DNA barcode reference libraries are 
constructed, initial identification based on morphological traits is presupposed to be 
accurate (Chen et al. 2015). Thus, if taxonomic boundaries of closely related taxa are 
unresolved, inaccurate reference libraries will be produced, thereby impairing unbiased 
identification (Liu et al. 2018). Many case studies have reflected this phenomenon in 
which the taxonomic results based on morphological and molecular evidence are high-
ly inconsistent with traditional taxonomic results (Hu et al. 2015; Su et al. 2015; Lu et 
al. 2021). Thus, genetic classification using short sequences with high discrimination 
power, along with the use of barcodes as critical markers for accurate identification, can 
greatly improve the accuracy of further molecular identification.

Liang-Mian-Zhen is traditionally used in Chinese medicine to treat traumatic in-
jury, rheumatism, paralysis, toothache, stomach ache, and venomous snake bites (Yang 
and Chen 2008; Feng et al. 2011; Chinese Pharmacopoeia Commission 2020). Many 
active ingredients are extracted from this species, including nitidine chloride, cheler-
ythrine, ethoxychelerythrine sanguinarium chloride, allocryptopine, and neoherculin 
(Qin et al. 2019). Owing to its antiviral, anti-inflammatory, analgesic, and antifungal 
effects, Liang-Mian-Zhen is widely used in the production of daily chemical products 
(e.g., toothpaste) and clinical medication (e.g., Sanjiuweitai capsules and Liang-Mian-
Zhen Zhen Tong tablets); as such, a large number of Liang-Mian-Zhen materials are 
consumed every year in China (Yang and Chen 2008; Feng et al. 2011; Lu et al. 
2020; Qin et al. 2020). However, Liang-Mian-Zhen classification is still controversial 
in China. Previous studies have shown that DNA barcodes based on nuclear and chlo-
roplast barcodes have large differentiation between strains within Z. nitidum (Chen et 
al. 2013; Ma et al. 2014). Hence, DNA barcodes should be considered as molecular 
markers to delimit boundaries of different strains within Liang-Mian-Zhen.

In the present study, we conducted extensive sampling of the natural popula-
tions of Liang-Mian-Zhen in China, collected standard samples from China Re-
sources Sanjiu, a large state-owned pharmaceutical company, and visited indigenous 
communities in different geographical regions to obtain folk medicinal samples. 
Our aim was to establish a standard for the resource classification and identification 
of Chinese Liang-Mian-Zhen, which will provide a guide for quality, safety, and 
efficacy during the utilization of medicinal materials. To this end, we asked the fol-
lowing questions: (1) How many genetic clusters can be delimited within this species 
in China based on nuclear and chloroplast barcodes? (2) Which is the most suitable 
taxonomic scenario among those currently available? (3) Which barcodes have high 
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discrimination power and are suitable for intraspecific classification and identifica-
tion of Liang-Mian-Zhen clusters? (4) Which clusters do the Liang-Mian-Zhen used 
by indigenous people belong to?

Material and methods

Sample collection and specimen identification

We consulted the specimen records of Z. nitidum (including two varieties) available in 
the Chinese Virtual Herbarium (CVH, http://www.cvh.ac.cn/) and also examined all 
specimens of this species deposited in GXMI of Guangxi Institute of Chinese Medi-
cine and Pharmaceutical Sciences and IBSC of South China Botanical Garden, CAS. 
Then, we conducted extensive sampling across its whole distribution range in China 
according to the consulted specimen records to collect enough samples for genetic 
analyses. All sampled individuals of the same population were spaced more than 50 m 
apart. Fresh leaves were collected for DNA sequencing and immediately placed in 
plastic sealed bags with sufficient silica gel to avoid DNA degradation. We also took 
photos of the trunks, leaves, branchlets and inflorescence of each individual for initial 
identification. We identified samples of this monophyletic species based on three taxo-
nomic criteria (Figs 1, 2). All voucher specimens and dried leaves for DNA extraction 
were deposited in GXMI. Geographical information for each location was recorded 
using a HOLUX M-241 GPS Track instrument (Technology, Inc., Taiwan, China). 
Finally, 420 individuals from 38 natural populations across the entire distribution in 
China were collected for genetic analyses (Table 1).

DNA extraction, amplification, and sequencing

The genomic DNA of all samples was extracted from approximately 15 mg of silica 
gel-dried leaves using the CTAB method (Doyle and Doyle 1990). The quality and 
concentration of genomic DNA were measured using a NanoDrop 1000 spectropho-
tometer. Qualified DNA was defined as having values of both 260/280 and 260/230 
located in the range 1.6–2.1. Then, each DNA solution was diluted or concentrated to 
approximately 50 ng/µL for PCR amplification.

Owing to its high discrimination power, nuclear internal transcribed spacer (ITS) 
sequence fragments are frequently used for plant classification (CBOL Plant Working 
Group 2011; Pang et al. 2011; Lu et al. 2016), and have been proposed as core bar-
codes (CBOL Plant Working Group 2011). As core chloroplast barcodes (CBOL Plant 
Working Group 2009), matK and rbcL are widely used for most seed plants (Levin 
et al. 2003; Kress and Erickson 2007; Fazekas et al. 2008; Kress et al. 2009; Su et al. 
2015; Amandita et al. 2019). Other chloroplast fragments (e.g., ycf6-trnC and petA-
psbJ) have also been used for phylogenetic studies (Shaw et al. 2007; Liu et al. 2012; 
Sokoloff and Gillespie 2012). Therefore, we used universal primers for the nuclear ITS 

http://www.cvh.ac.cn/
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Figure 1. Geographical distribution of 38 Z. nitidum populations in China and its taxonomic scenarios 
currently used based on the presence of hairy or nearly glabrous leaf and rachis in Zhang et al. (2008) 
(a), the description of the Editorial Committee of Flora (1997) (b), and trunk appearance in Qin et al. 
(2020) (c).
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Figure 2. Maximum likelihood (ML) tree of Zanthoxylum species based on nuclear internal transcribed 
spacer (ITS) sequences.
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fragments and four chloroplast DNA fragments (matK, rbcL, ycf6-trnC, and petA-psbJ) 
to amplify and sequence each of the qualified DNA samples (Table 2). The primers 
were selected based on information from previous studies (White et al. 1990; Kress 
and Erickson 2007; Shaw et al. 2007; Kress et al. 2009; Liu et al. 2012; Amandita et 

Table 1. Sampling and classification information of Zanthoxylum nitidum from natural populations.

Pop. code Location GPS Coordinates Altitude 
(m)

No. of individuals in internal 
transcribed spacer (ITS) cluster/

type

No. of individuals in 
cpDNA lineage/haplotype

01 (ML) Menglun, Yunnan 21.6911, 100.6472 558 2 (A-type5) 2 (A1-H1)
02 (MY) Mengyang,Yunnan 22.1031, 100.7511 753 5 (A-type5) 5 (A2-H2: A2-H3 = 3:2)
03 (DDG) Dadugang,Yunnan 22.2019, 100.8806 761 5 (A-type5) 12 (A2-H2: A2-H3 = 1:11)
04 (XC) Malipo, Yunnan 23.2050, 104.9419 532 2 (A-type6) 5 (A2-H4)
05 (TL) Tianling,Guangxi 24.2600, 106.0457 479 4 (A-type1) 4 (A2-H2)
06 (TEW) Tiane, Guangxi 25.0175, 107.1616 535 6 (A-type1) 8 (A2-H2)
07 (TEL) Tiane, Guangxi 24.9829, 107.1962 260 8 (A-type8:A-type11:A-type12 

= 2:3:3)
18 (A2-H2)

08 (ND) Nandan, Guangxi 24.8437, 107.3397 264 1 (A-type1) 2 (A2-H2)
09 (XL) Daxin, Guangxi 22.9145, 106.7631 269 6 (A-type1) 11 (A2-H3)
10 (LZ) Longzhou, Guangxi 22.3742, 106.6117 241 3 (A-type1:A-type6 = 2:1) 5 (A2-H3)
11 (DZ) Fangcheng, Guangxi 21.6202, 107.5226 261 4 (A-type2:A-type5 = 2:2) 9 (A2-H2)
12 (GT) Guitai, Guangxi 22.0799, 108.2121 101 9 (A-type3) 13 (A2-H2)
13 (NN) Nanning, Guangxi 22.9070, 108.2160 160 9 (A-type1) 16 (A2-H2)
14 (HDZ) Danzhou, Hainan 19.6104, 109.7366 120 8 (A-type2) 14 (A1-H1)
15 (LG) Chengmai, Hainan 19.8144, 110.1064 47 12 (A-type7:A-type9:A-type10 

= 6:3:3)
18 (A1-H1)

16 (HK) Haikou, Hainan 19.9241, 110.2092 120 12 (A-type4) 19 (A1-H1)
17 (MM) Maoming, Guangdong 21.8909, 111.1283 84 10 (A-type4:A-type6:A-type8 = 

6:2:2)
10(A1-H1:A2-H2 = 6:4) 

18 (BY) Laibing, Guangxi 23.9677, 109.1837 290 9 (A-type2:A-type3 = 6:3) 20 (A2-H2)
19 (JX) Jinxiu, Guangxi 24.1147, 110.1915 914 20 (B-type1:B-type2:B-type3:B-

type4 = 7:6:4:3)
28 (B-H5)

20 (TE) Tiane, Guangxi 25.0175, 107.1616 535 15 (C-type1:C-type4:C-type6:C-
type7 = 9:3:2:1)

28 (C-H6:C-H7 = 20:8)

21 (NP) Napo, Guangxi 23.3850, 105.8555 1026 13 (C-type2:C-type3:C-type5 
= 7:4:2)

15 (C-H6)

22 (FL) Fulong, Guangxi 21.8489, 107.8954 369 3 (D-type1) 3 (D-H8)
23 (NW) Qinzhou, Guangxi 21.8856, 108.9255 343 10 (D-type2:D-type5 = 6:4) 13 (D-H8)
24 (BS) Guiping, Guangxi 23.2028, 110.2032 478 10 (D-type1:D-type2:D-type6 

= 3:4:3)
14 (D-H8)

25 (MM) Maoming, Guangdong 21.8909, 111.1283 84 3 (D-type2) 3 (D-H8)
26 (ZQ) Zaoqin, Guangdong 23.4534, 112.2185 384 5 (D-type5:D-type7 = 3:2) 7 (D-H8)
27 (YD) Yingde, Guangdong 24.2411, 113.2146 52 6 (D-type1:D-type2 = 4:2) 10 (D-H8)
28 (GZ) Guangzhou, Guangdong 23.5139, 113.2190 80 2 (D-type6) 2 (D-H8)
29 (SZ) Shengzhen, Guangdong 22.6479, 114.3187 275 6 (D-type2:D-type6 D-type7 = 

3:1:2)
11 (D-H8)

30 (HY) Heyuan, Guangdong 24.1123, 114.7886 136 9 (D-type6:D-type8 = 5:4) 18 (D-H8)
31 (MZ) Meizhou, Guangdong 24.5358, 115.8660 159 7 (D-type1:D-type2:D-type5 = 

3:2:2)
12 (D-H8)

32 (ZZ) Zhangzhou, Fujian 23.7805, 117.6242 10 12 (D-type1:D-type5 = 9:3) 16 (D-H8)
33 (XM) Xiamen, Fujian 24.4993, 118.0951 202 8 (D-type1:D-type2 = 5:3) 15 (D-H8)
34 (FZ) Fuzhou, Fujian 26.1026, 119.3183 65 8 (D-type3:D-type4 = 7:1) 9 (D-H8)
35 (RA) Ruian, Zhejiang 27.4641, 121.0822 44 10 (D-type4) 18 (D-H8)
36 (DSK) Danshuikou, Taiwan 25.1811, 121.4717 5 1 (D-type3) 1 (D-H8)
37 (WH) Wanhua, Taiwan 25.0317, 121.5094 20 4 (D-type3) 4 (D-H8)
38 (NG) Nangang, Taiwan 25.0439, 121.6097 60 2 (D-type4) 2 (D-H8)
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al. 2019). PCR amplification was performed in a 50 µL reaction system with 2 µL of 
the prepared DNA, 5 µL of 10 × PCR buffer, 0.8 µL of dNTPs (2.5 mmol/ml), 4 µL of 
the primer, 0.4 µL of rTaq polymerase, and 41.5 µL of ddH2O. The reaction was pro-
gramed according to the following procedure: initial template denaturation at 94 °C 
for 4 min, followed by 38 cycles of 94 °C for 40 s, 48 °C (petA-psbJ), 52 °C (matK), 
55 °C (rbcL), 59 °C (ycf6-trnC) or 60 °C (ITS) for 45 s, and 72 °C for 1.5 min, and 
final extension at 72 °C for 10 min.

All PCR products were examined by agarose gel electrophoresis and photographed 
using a UV transilluminator. The products were purified using a TIANquick Midi Pu-
rification Kit (TIANGEN, Beijing, China) and the reaction mixtures were sequenced 
on an ABI 3130xl automated sequencer (Applied Biosystems, Foster City, California, 
USA). For DNA products that failed direct sequencing, we repeated the extraction, 
amplification, or sequencing experiment at least three times.

Genetic classification of natural Liang-Mian-Zhen resources in China

We aligned and manually corrected nuclear ITS sequences and chloroplast sequences 
using MEGA 5 (Tamura et al. 2011). We first analyzed the haplotype relationship 
using NETWORK 10.0, based on the Median-Join method, for single-barcode and 
four-chloroplast fragments combined (Bandelt et al. 1999). Owing to the presence 
of some heterozygous sites in the nuclear ITS dataset, we phased these sequences us-
ing DnaSP v5 with default parameters (Librado and Rozas 2009). In addition, we 
constructed an ML tree of the Zanthoxylum species based on ITS sequences down-
loaded from NCBI (https://www.ncbi.nlm.nih.gov/), using MEGA 5 (Tamura et al. 
2011) to further demonstrate the distinctiveness of Z. nitidum to the congeneric 
species. We further identified operational taxonomic units (OTUs) based on DNA 
barcodes using the Automatic Barcode Gap Discovery (ABGD) method (Puillandre 
et al. 2012). Indels or heterozygous sites of each fragment were deleted. The ABGD 
analysis was conducted based on information available online (https://bioinfo.mnhn.
fr/abi/public/asap/asapweb.html). We used the Kimura (K80) ts/tv model and set 
X = 1.5 as the relative barcode gap width. The remaining parameters were retained as 
the default parameters.

Table 2. Primers used in this study.

Primer Primer sequence Tm (˚C) Reference
ITS4 TCCTCCGCTTATTGATATGC 52 White et al. 1990
ITS5 GGAAGTAAAAGTCGTAACAAGG White et al. 1990
matK3F CGTACAGTACTTTTGTGTTTACGAG 52 Amandita et al. 2019
matK1R ACCCAGTCCATCTGGAAATCTTGGTTC Amandita et al. 2019
rbcLF ATGTCACCACAAACAGAGACTAAAGC 55 Kress and Erickson 2007
rbcLR GTAAAATCAAGTCCACCRCG Kress et al. 2009
psbJF ATAGGTACTGTARCYGGTATT 48 Shaw et al. 2007
petAR AACARTTYGARAAGGTTCAATT Shaw et al. 2007
trnCF CCAGTTCRAATCYGGGTG 59 Liu et al. 2012
ycf6R GCCCAAGCRAGACTTACTATATCCAT Liu et al. 2012

https://www.ncbi.nlm.nih.gov/
https://bioinfo.mnhn.fr/abi/public/asap/asapweb.html
https://bioinfo.mnhn.fr/abi/public/asap/asapweb.html
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Molecular identification of Liang-Mian-Zhen samples

After genetic classification, we used the barcodes of each nuclear cluster or chloroplast 
cluster as references for subsequent molecular identification. The Liang-Mian-Zhen 
used by China Resources Sanjiu was treated as the standard reference because it has a 
rapid growth rate, a high level of nitidine chloride (Han et al. 2013; Qin et al. 2019), 
and is widely cultivated. We then visited 10 indigenous individuals who sold Liang-
Mian-Zhen in different folk markets in Hainan, Guangxi, and Guangdong, with 1–4 
samples obtained from each. We collected only a small number of broken leaves and 
voucher specimens without the trunk from both China Resources Sanjiu and the in-
digenous individuals, thereby making visual identification difficult. In total, 20 Liang-
Mian-Zhen samples, including 3 standard samples and 17 samples of folk medicinal 
materials, were used for molecular classification and identification (Table 3). Total 
DNA was extracted, amplified, and sequenced according to the methods described 
above. For rapid identification, we directly used the aligned consistent sequences to 
construct ML trees using MEGA 5 (Tamura et al. 2011). The closely related species 
Zanthoxylum armatum was chosen as an outgroup for phylogenetic analyses within 
Z. nitidum (Accession numbers: MW362848 and MN080708; Chen et al. 2013; Ap-
pelhans et al. 2018). Finally, we classified and identified the samples using the nuclear 
ITS barcode and four chloroplast barcodes.

Results

Genetic classification

We obtained 269 ITS sequences from 420 individuals across 38 natural populations 
of Z. nitidum in China (Fig. 1, Table 1). We recovered 31 different ITS types, and 
the aligned sequences were 658 bp in length (Table 1). Four genetic clusters (A, B, C, 
and D) were detected based on the network analysis of these ITS sequences (Fig. 3a). 
Cluster D was widely distributed across Guangxi, Guangdong, Zhejiang, Fujian, and 
Taiwan. Cluster C was distributed in North and Southwest Guangxi. Cluster B was 
narrowly distributed in northeastern Guangxi. Cluster A was widely distributed across 
Yunnan, Guangxi, Hainan, and Guangdong, and its distribution partially overlapped 
with that of clusters C and D (Figs 1c, 3a). These genetic classification results are con-
sistent with the third taxonomic scenario based on trunk appearance (Fig. 1c). Phylo-
genetic analysis confirmed that Liang-Mian-Zhen formed a clade distinct to congeners 
as the downloaded ITS sequences covered approximately a quarter of the Zanthoxylum 
species (Fig. 2).

After sequencing all four chloroplast barcodes (matK, rbcL, ycf6-trnC, and petA-psbJ), 
the aligned sequences of these barcodes were 703, 533, 600, and 1040 bp in length, 
respectively. In total, 33 substitutions were detected across the 4 chloroplast barcodes. 
Only 8 cpDNA haplotypes were recovered from the 420 individuals across 38 natural 
populations, and these haplotypes were divided into 5 clusters (A1, A2, B, C, and D; 

http://www.ncbi.nlm.nih.gov/nuccore/MW362848
http://www.ncbi.nlm.nih.gov/nuccore/MN080708
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Fig. 4, Table 1). All five chloroplast clusters were distributed across different geographical 
regions. Chloroplast clusters B, C, and D corresponded to the three nuclear clusters B, C, 
and D, respectively. However, two different chloroplast clusters (A1 and A2) were found 
within A. A1 was mainly found in Hainan and partially extended to southern Guangdong. 
In addition, it was also found in a preserved individual (coded as pop 1 in table 1) in the 
Xishuangbanna Tropical Botanical Garden (XTBG; Menglun, Yunnan). A2 was found in 
the remaining populations within A. We did not find distinct morphological differences 
between A1 and A2 from voucher specimens based on leaf shape and size, trunk 
appearance, and flowers. Accession numbers of all nuclear and chloroplast sequences are 
from MZ769312 to MZ769362 and from MZ773282 to MZ773393, respectively.

Figure 3. Network analysis of each barcode. Circle size is proportional to the haplotype frequency. Differ-
ent colors indicate different clusters. The four clusters correspond to four morphological clusters in Fig. 1c.

http://www.ncbi.nlm.nih.gov/nuccore/MZ769312
http://www.ncbi.nlm.nih.gov/nuccore/MZ769362
http://www.ncbi.nlm.nih.gov/nuccore/MZ773282
http://www.ncbi.nlm.nih.gov/nuccore/MZ773393
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Additionally, the four OTUs recognized by the ABGD analysis were consistent 
with four clusters based on the network analysis (Figs 3a, 5), the results of which 
were highly inconsistent with the two past taxonomic scenarios (Fig. 1a, b) but highly 
consistent with the recent taxonomic scenario based on trunk appearance (Fig. 1c). 
For the combined four-chloroplast fragments, the five unveiled chloroplast clusters 
based on the network analysis were also revealed by the ABGD method (Figs 4, 6). 
The single chloroplast barcode, rbcL, produced the same result as the four fragments 
combined (Figs 3b, 4). The matK gene only distinguished C from a group comprising 
the remaining nuclear or chloroplast clusters. Additionally, the other two chloroplast 
barcodes (ycf6-trnC and petA-psbJ) similarly classified this species into two groups: one 
represented by B, and the other comprising the remaining clusters.

Molecular identification

Molecular identification was determined via phylogenetic analyses. During identifica-
tion, each sample was delimited into the closest cluster. Four nuclear clusters (A, B, C, 
and D) and five chloroplast clusters (A1, A2, B, C, and D) were strongly supported 
by phylogenetic analyses (Fig. 7). The three standard Liang-Mian-Zhen samples from 
China Resources Sanjiu were identified as cluster A based on the nuclear ITS barcode 
and as A2 based on the four chloroplast fragments. However, for the 17 folk medicinal 
samples, three clusters (A, B, and D) were identified based on the nuclear ITS barcode. 
Four chloroplast clusters (A1, A2, B, and D) were identified based on the four chlo-
roplast fragments. Interestingly, the molecular identification results for the folk me-
dicinal samples were related to the natural distribution of Z. nitidum based on nuclear 
and chloroplast barcodes (Figs 1, 7, Table 1). For example, two folk Liang-Mian-Zhen 

Figure 4. Distribution and network of five chloroplast lineages recovered from Zanthoxylum nitidum in 
China. Dotted lines of different colors indicate different nuclear clusters. Circle size is proportional to the 
haplotype frequency. Different colored circles indicate different chloroplast clusters.
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samples from Jinxiu (Guangxi) were identified as cluster B based on their nuclear ITS 
sequences and cluster B based on four chloroplast fragments. Similarly, folk Liang-
Mian-Zhen samples collected from Guangdong were assigned to nuclear clusters A or 
D and chloroplast clusters A2 or D. Folk samples collected from southern Guangxi 
were identified as A or D and A2 or D, and folk samples from Hainan were identified 
as clusters A and A1. In addition, all folk Liang-Mian-Zhen samples shared chloroplast 
haplotypes with nearby natural populations (Table 1 and Table 3).

Discussion

Three well-delimited clusters

In this study, we examined the intraspecific delimitation of the commercial medicinal 
plant Z. nitidum using 5 DNA barcodes based on samples from 38 natural popula-
tions (Fig. 1). The nuclear ITS sequences classified the species into four distinct genetic 
clusters (A, B, C, and D; Figs 3a, 5). This finding is consistent with a recent taxonomic 
scenario based on trunk appearance (Editorial Committee of Flora 1997; Zhang et 
al. 2008; Qin et al. 2019). However, chloroplast delimitation based on 4 fragments 

Figure 5. Genetic classification based on nuclear internal transcribed spacer (ITS) sequences using the 
Automatic Barcode Gap Discovery (ABGD) method.
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classified the 38 natural populations of this species into 5 clusters (A1, A2, B, C, and 
D; Figs 4, 6). The chloroplast clusters B, C, and D correspond one-to-one to the three 
nuclear clusters B, C, and D. In addition, they also correspond to three different geo-
graphical groups. Previous empirical studies have suggested that morphological taxono-
my can be supported by molecular evidence (Su et al. 2015; Lu et al. 2021). According 

Table 3. Sampling information and molecular identification results of folk and standard Liang-Mian-
Zhen samples.

Code Location Internal transcribed spacer (ITS) cluster 
and No. of individuals

cpDNA lineage/haplotype and No. of 
individuals

Folk-DX Dongxing, Guangxi 2 (A:D = 1:1) 2 (A2-H2:D-H8 = 1:1)
Folk-JX Jingxi, Guangxi 1 (A) 1 (A2-H3)
Folk-NM Ningming, Guangxi 1 (A) 1 (A2-H3)
Folk-PX-1 Pingxiang, Guangxi 1 (A) 1 (A2-H3)
Folk-PX-2 Pingxiang, Guangxi 1 (A) 1 (A2-H3)
Folk-LZ Longzhou, Guangxi 1 (A) 1 (A2-H3
Folk-DY Dayaoshan, Guangxi 2 (B) 2 (B-H5)
Folk-MM-1 Maoming, Guangdong 4 (A:D = 3:1) 4 (A1-H1:D-H8 = 3:1)
Folk-MM-2 Maoming, Guangdong 2 (D) 2 (D-H8)
Folk-HK-1 Haikou, Hainan 2 (A) 2 (A1-H1)
CRS-standard China resources Sanjiu 3 (A) 3 (A2-H3)

Figure 6. Genetic classification based on four chloroplast barcodes combined using the Automatic Bar-
code Gap Discovery (ABGD) method.
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to the integrative taxonomic method (Su et al. 2015; Lu et al. 2021; Parker et al. 2021), 
taxonomic boundaries for clusters B, C, and D were demarcated based on the above evi-
dence and form three well-delimited clusters. However, cluster A identified by nuclear 
barcode is split into two distinct chloroplast clusters, A1 and A2 (Fig. 4).

Figure 7. Molecular identification of the Liang-Mian-Zhen samples using Maximum likelihood (ML) 
trees based on nuclear internal transcribed spacer (ITS) barcodes (a) and four chloroplast fragments com-
bined (b). Red stars indicate the standard samples obtained from China Resources Sanjiu and black dots 
indicate folk medicinal samples collected from indigenous individuals in different geographical regions.
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Chloroplast cluster A2 is phylogenetically and geographically closer to D, which is 
a possible indicator for introgression from D to A (Arnold 1997; 2006; Abbott 2017; 
Lu et al. 2021). However, morphological differences between A1 and A2 were not rec-
ognized based on leaf shape and size, trunk appearance, and flowers. Thus, the conflict 
between nuclear and chloroplast barcodes may be the consequence of cryptic evolution-
ary units and/or historical chloroplast introgression. Nevertheless, incomplete lineage 
sorting cannot be completely ruled out as an explanation for this phenomenon (Hol-
lingsworth et al. 2011; Lu et al. 2016; Hu et al. 2019). In fact, the three well-delimited 
clusters (B, C, and D) can be directly distinguished from each other and from A based 
on the trunk appearance, while the other two morphological taxonomic scenarios failed 
in doing this (Fig. 1). However, none of these three scenarios could recognize the two 
chloroplast clusters (A1 and A2) within A. Hence, the third taxonomic scenario based 
on the trunk appearance (Fig. 1c) is better than the other two (Fig. 1a, b).

Discrimination power and taxonomic implications

Usually, hybrid introgression and incomplete lineage sorting can induce a low discrimi-
nation power for DNA barcodes (Su et al. 2015; Lu et al. 2016, 2021). Nuclear ITS 
barcodes have shown strong discrimination power in many empirical studies (Pang et 
al. 2011; Wang et al. 2011; Su et al. 2015; Lu et al. 2016). In this study, both the nu-
clear ITS barcodes and the four chloroplast fragments combined showed high intraspe-
cific discrimination power, although historical introgression between strains A and D 
might have occurred (Figs 3, 4, 7). However, a large discrepancy in the discrimination 
power of different chloroplast fragments was observed (Fig. 3b). For example, only 
rbcL could distinguish all chloroplast clusters, while the other three barcodes could 
only distinguish one from the remaining chloroplast clusters. Unsurprisingly, using 
DNA fragments with low discrimination power (e.g., matK, ycf6-trnC, and petA-psbJ) 
to delimit clusters within this species did not yield accurate identification.

In consideration of the large differentiations based on both trunk appearance and 
molecular markers, whether the clusters in Fig. 1c and Fig. 7a should be treated as 
separate species or subspecies of Liang-Mian-Zhen remains to be evaluated with more 
substantial evidence based on genomic data, phenotypic traits, and crossing experi-
ments. Regardless, ITS sequences and rbcL are proposed as barcodes for rapid and 
accurate identification of the different Liang-Mian-Zhen lineages in China.

Molecular identification

Discrepancies in the safety and quality of medicinal materials from different species (or ge-
netic clusters) have been demonstrated in many empirical studies (Bansal et al. 2018; Xin 
et al. 2018). In the present study, folk Liang-Mian-Zhen samples were shown to comprise 
several nuclear or chloroplast clusters with regional differences (Figs 3, 4, 7, Tables 1, 3), 
whereas cultivated Liang-Mian-Zhen material from a state-owned holding pharmaceuti-
cal listed company belong to just one of the clusters, suggesting the need to scientifically 
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evaluate the safety and quality for different Liang-Mian-Zhen clusters or lineages. This 
study is the first to successfully reconcile nuclear molecular evidence (chloroplast conflict 
exists merely within cluster A) with the morphological taxonomy at the population level 
and to present accurate resource classification and molecular identification of Liang-Mi-
an-Zhen in China. In summary, there are three major reasons for our accurate molecular 
identification within this species. First, barcodes with a high level of discrimination power 
were used to conduct taxonomic delimitation, and to carry out molecular identification. 
Second, extensive sampling helped to account for overlooked morphological variations 
and promoted the accuracy of taxonomic delimitation (Linck et al. 2019; Lu et al. 2021). 
Third, and most importantly, morphological classification or initial identification based 
on trunk appearance was further supported by integrating evidence from DNA barcodes 
and geographical distribution. In summary, accurate taxonomic delimitation is the basis 
for accurate and rapid molecular identification of closely related medicinal plants.
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