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A B S T R A C T   

Bacterial communities in soil play a key role in carbon (C) and nutrient cycling. Unravelling how bacterial 
community assemble and distribute with soil depth is a prerequisite for understanding microbial functions, 
nutrient cycling and management. Twenty-six rice fields in a typical red soil area in a wet subtropical climate 
were sampled in the topsoil (0–10 and 10–20 cm) and subsoil (20–40 cm). Physico-chemical soil properties, 
quantitative fluorescence PCR and high-throughput sequencing were used to analyse the V4 region of 16S rDNA. 
The rRNA operon copy number and alpha diversity decreased continuously with soil depth because of reduced 
access to carbon, energy, oxygen and nutrients. The relative abundance of the dominant phyla Proteobacteria 
and Actinobacteria decreased with increasing soil depth, whereas the opposite trend was observed for the 
phylum Nitrospirae. The interaction intensity between taxa increased with depth, as limited carbon and nutrients 
in the undisturbed subsoil lead to the cooccurrence of taxa with similar ecological niches that cooperated to 
reduce functional redundancy. The higher modularity of the bacterial network in the topsoil is associated with 
greater environmental perturbations (flooding, fertilization, etc.) to maintain the robustness of the microbial 
community. Bacterial community assembly processes were stochastic up to 40 cm, but ecological drift was the 
predominant process in the topsoil, whereas dispersal limitation was dominant in the subsoil. The contribution of 
abiotic factors (e.g. nutrient and iron contents) and biotic factors (taxa-taxa interactions) as well as dispersal 
limitations to bacterial community assembly was depth specific. Concluding, the basic principles of bacterial 
community assembly were evaluated for the first time for a broad range of paddy soils.   

1. Introduction 

Similar to plant communities, the pattern of microbial community 
assembly processes can be predicted by temporal and spatial variations 
in soil, environmental and management factors (Freedman and Zak, 
2015; Evans et al., 2017; Bay et al., 2020; Li et al., 2020). In addition to 
these factors, the composition of the soil bacterial community depends 
on depth: in deeper soils, nutrients and carbon are more limited (Kautz 
et al., 2013) and oligotrophic phyla occur (Elul et al., 2021). Subsoils 
imply relatively stable environmental conditions and consequently, a 

more stable species composition compared to the topsoils. The extent of 
spatial dissimilarity in microbial community composition and diversity 
at each depth is related to parent material, soil type and fertility, tillage, 
etc. (Sheng et al., 2015; Sun et al., 2015; Gu et al., 2017). It is not clear 
how geographic divergence in bacterial community composition de-
pends on soil depth, which processes underlie community assembly, and 
which are the main factors. 

In general, deterministic processes (selection) versus stochastic 
processes (dispersion and drift) define microbial community assembly 
(Stegen et al., 2012). The bacterial communities will be assembled by 
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deterministic processes such as habitat specialization (Lozupone and 
Knight, 2007), but also stochastic processes may be important (Zhou and 
Ning, 2017). Studies based on quantifying phylogenetic turnover as the 
deviation from a null expectation suggested that subsurface microbial 
community is assembled by domination of deterministic processes 
(Stegen et al., 2012; Wang et al., 2013). Stochastic processes, however, 
refer to probabilistic colonization, random extinction, and random 
dispersal events (Chase and Myers, 2011). The balance between deter-
ministic and stochastic processes could be mediated by pH, redox po-
tential, salinity, temperature, etc. (Tripathi et al., 2018; Zhang et al., 
2019; Jiao and Lu, 2020). Stegen et al. (2012) suggested that deter-
ministic processes could be maximized towards extreme environmental 
variation compared to stochastic factors. Homogeneous selection was 
common for bacterial community formation influenced by pH and land 
use (Barnett et al., 2020). 

With increasing soil depth, the contributions of dispersion limitation 
to microbial community assembly increased compared to environmental 
filtering (Chen et al., 2020; Li et al., 2020). Dispersion is an important 
factor affecting the natural bacterial community composition (Albright 
and Martiny, 2018). In addition to environmental filtering, interactions 
between groups of the microbiome contribute to assembly processes 
(Sun et al., 2018; Cosetta and Wolfe, 2019). There is a gap in under-
standing i) how the intensities of biotic interactions change with soil 
depth, ii) how these changes affect bacterial community assembly, and 
iii) how environmental factors affect biotic interactions and indirectly 
influence bacterial community assembly. These unknowns are especially 
prominent regarding the bacterial community assembly in paddy soils. 

Rice paddy cultivation mainly occurs in the wet subtropics, with high 
temperature and rainfall, and paddy fields are widespread on various 
soil parent materials (Liu et al., 2021). Most rice roots are located in the 
topsoil (Ap, 0–20 cm depth). However, the subsoil (below 20 cm depth) 
can be an important C sink and key to root and crop growth (Kautz et al., 
2013). Unlike topsoil, which is more exposed to alternating drying and 
flooding, ploughing, fertilization, planting, etc., the subsoil 
physico-chemical properties are more related to the parent material. The 
confined and homogeneous subsoil combined with lower nutrient 
availability recruits bacteria with similar physiological ecotypes, 
resulting in more intense taxa-taxa interactions, whereas species 
dispersal is more limited. There is a gap in knowledge of the spatial 
distribution pattern of the subsurface bacterial communities and their 
assembly processes. We hypothesized that 1) the dissimilarity in the 
bacterial community increases due to variation in soil properties and 
dispersal limitation; 2) bacterial community assembly is more stochastic 
in the topsoil due to greater exposure to anthropogenic perturbations 
and environmental fluctuations, while by contrast in the subsoil 
nutrient-limitations leads to increased associations between bacterial 
species. 

2. Materials and methods 

2.1. Soil sampling 

Soils were sampled in late December 2017 from typical areas of red 
paddy soils (Hydrargic Anthrosols) in Yujiang County, Jiangxi Province, 
China (Fig. S1, Table S1). The paddy fields were ploughed to a depth of 
10–17 cm and agronomic practices such as irrigation and fertilization 
were almost the same in the fields in recent years. Fertilizer applications 
were about 300 kg N ha− 1 yr− 1, 66 kg P ha− 1 yr− 1 and 250 kg K ha− 1 

yr− 1, coupled with complete return of straw to the field. The cropping 
system is double cropping of rice (Oryza sativa L.) (i.e., early and late 
rice). We randomly selected 26 sites considering the parent material and 
cropping background. A well-managed plot was selected at each site, 
where five 40 cm deep soil cores (diameter 6 cm) were randomly taken 
from the bulk soil and divided into three depth intervals: 0–10 cm, 
10–20 cm and 20–40 cm. At the end, 78 soil samples (26 sites × three 
soil depths) were taken for subsequent analysis. The samples were 
refrigerated at 4 ◦C and transported to the Soil Biochemistry Laboratory 
in Nanjing, Institute of Soil Science. The subsamples for physical and 
chemical properties were air-dried, ground, and sieved through a 2-mm 
sieve. Subsamples for microbial properties were stored at − 40 ◦C. 

2.2. Analysis of soil physical and chemical properties 

Soil chemical properties were measured using routine methods 
described by Lu (1999). Soil pH was determined using a pH metre (FE30, 
Mettler-Toledo, CH) with a 1:2.5 soil-water suspension. Soil organic C 
(SOC) was determined by K2Cr2O7–H2SO4 oxidation. Total and available 
N were measured as Kjeldahl-N; total P and available P were determined 
by HF–HClO4 digestion and sodium bicarbonate extraction (molybde-
num blue method), respectively; total K and exchangeable K were 
determined by HF–HClO4 digestion and ammonium acetate extraction 
(flame photometer), respectively. The hydrometer method was used to 
analyse the soil texture. 

2.3. Illumina sequencing analysis of 16S rRNA gene amplicons 

Total genomic DNA was extracted from 0.5 g of fresh soil samples 
using a FastDNA™SPIN kit (MP Biomedicals, Santa Ana, CA, USA) ac-
cording to the manufacturer’s protocol. DNA concentration and purity 
were monitored on 1% agarose gels. Depending on the concentration, 
DNA was diluted to 1 ng μl− 1 with sterile water. The V4 region of the 16S 
rRNA gene was PCR-amplified using primers 515F and 806R with the 
barcode, and sequencing was performed on an Illumina HiSeq platform, 
generating 250 bp paired-end reads. The HiSeq sequences were depos-
ited in GenBank with the BioProject accession number PRJNA726344. 

Paired-end reads from the original DNA fragments were merged 

Glossary box 

Microbial community assembly: The sum of all processes involved in shaping microbial community composition (Vellend, 2010). 

Dispersal: Movement of organisms across space (Vellend, 2010). 

Drift: Stochastic variation in the relative abundance of species in a community over time (Vellend, 2010). 

Environmental filtering: Direct and indirect impacts of abiotic factors that follow geographic patterns and restrict the distributions of or-
ganisms (Nemergut et al., 2013). 

Networks: Mathematical representations of communities, in which nodes represent 

individual taxa and edges represent observed correlations in abundances among taxa, from which interactions may be inferred (Barberan et al., 
2012). 

Modularity: Tightly knit groups in a network (Newman, 2006).  
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using FLASH (Magoc and Salzberg, 2011) and then assigned to each 
sample using unique barcodes. Sequences were analysed using the 
Quantitative Insights Into Microbial Ecology (QIIME) software package 
(Caporaso et al., 2010), and in-house Perl scripts were used to analyse 
alpha (within samples) and beta (between samples) diversity. First, the 
reads were filtered using QIIME quality filters. Then, we used pick_-
de_novo_otus.py to select operational taxonomic units (OTUs) by 
creating the OTU table. Sequences with ≥97% similarity were assigned 
to the same OTUs. We chose a representative sequence for each OTU and 
with reference to a subset of the SILVA 119 database (http://www. 
arb-silva.de/download/archive/qiime/) to annotate the taxonomic in-
formation for each representative sequence (7.2% unclassified at the 
level phylum). After removing singletons and resampling with 19666 
sequences per sample, 12520 OTUs were obtained for all 78 soil samples 
(26 sites × three soil depths) and used in downstream analysis. Shannon 
index was calculated using the alpha_diversity.py script in QIIME. 

The Shannon index was used to estimate the alpha diversity of the 
bacterial community within each soil sample. Using QIIME we calcu-
lated the Bray-Curtis measures of bacterial community dissimilarity 
with soil depth and visualized the results using nonmetric multidimen-
sional scaling (NMDS) analysis. To obtain robust test results on the beta 
diversity of differences between soil layers, a significance test was per-
formed using statistical analysis methods, including ANOSIM, MRPP and 
Adonis. 

2.4. Quantitative PCR 

The 16S rRNA gene was analysed by high-throughput qPCR on an 
ABI ViiA 7 Real Time qPCR platform (Applied Biosystems) according to 
the procedures described by Schmittgen et al. (2008). There were 78 
DNA samples in total, and each DNA sample was amplified by PCR in 
triplicate. 

2.5. Cooccurrence network analysis 

A taxon-taxon cooccurrence network was constructed to examine 
associations between taxa within each soil depth. It was derived using 
the Spearman correlation matrix created with the ‘WGCNA’ package 
(Langfelder and Horvath, 2012). We selected phyla with a mean relative 
abundance greater than 1% within each soil layer, and OTUs with 
relative abundances greater than 0.01% were selected for Spearman 
correlation calculation. All p-values were adjusted using the false dis-
covery rate (FDR) control procedure of Benjamini and Hochberg (Ben-
jamini et al., 2006). The cut-off for FDR-adjusted p-values was set to 
0.001. The cut-off for correlation coefficients was set to 0.72 using 
random matrix theory-based methods (Luo et al., 2006). Finally, the 
modified random matrix was used to construct the network. It was 
visualized using Gephi (http://gephi.github.io/). A total of 78 samples 
were divided into three groups along the soil depth gradients. Network 
properties were calculated using the ‘igraph’ package (http://igraph. 
org) in R (ver. 3.6.2). Taxon-environment networks were calculated 
using the same procedure. 

2.6. Bacterial community assembly analysis 

The relative importance of deterministic processes and stochastic 
processes in bacterial community assembly was evaluated using null 
model-based methods. These methods were conducted following the 
analytical framework analyses of standard phylogenetic beta diversity 
and taxonomic beta diversity (Stegen et al., 2013). First, a null distri-
bution of the β-mean-nearest taxon distance (βMNTD) was generated 
among samples within each soil depth by re-dominating the taxa labels 
of the phylogenetic tree 999 times. Then, the β-nearest taxon index 
(βNTI) was calculated by comparing the difference between the 
observed βMNTD values and the mean of the null distribution of βMNTD 
normalized by its standard deviation. A βNTI value < -2 means 

significantly lower than the expected phylogenetic turnover rate, 
whereas a βNTI value > 2 indicates significantly higher than the ex-
pected phylogenetic turnover rate. When |βNTI| < 2, it means that this is 
not the determining process. It should be dispersion-limited (very low 
dispersion rates), homogeneously dispersed (very high dispersion rates), 
or not dominated by a single dominant process (i.e., it is “undomi-
nated”). To disentangle these cases, a further calculation based on the 
Bray-Curtis-based Raup-Crick metric (RCbray) as described by Stegen 
et al. (2013) on the relative contribution to the assembly process with |β 
NTI| <2. The relative contribution of dispersion constraints was esti-
mated in terms of percentages of paired comparisons with |βNTI| <2 and 
RCbray >0.95. The contribution of relative homogenized dispersion was 
estimated in terms of percentages of paired comparisons with |βNTI| <2 
and RCbray < -0.95. In contrast, not belonging to any of these categories 
suggested that neither single process dominated community assembly 
(Stegen et al., 2013). 

2.7. Data analysis 

To assess the effect of depth, we performed one-way repeated mea-
sures ANOVA on soil properties, 16S gene copies and relative abundance 
of phyla using the General Linear Model option in IBMSPSS (version 
22.0, Chicago, IL, USA). The Bonferroni’s post-hoc test was used to 
compare the three depths. Multiple bacterial genera were compared 
between soil depths by pairwise tests in STAMP (Parks et al., 2014). 

The slopes of the distance-decay relationships of the microbial 
community were calculated at three soil depths: 0–10 cm, 10–20 cm, 
and 20–40 cm. The slope coefficient at each depth was calculated based 
on the equation below:  

Ln (S) = Ln (a) + z × Ln (G/E)                                                              

where S is the community dissimilarity, G/E is the geographic distance 
or environmental dissimilarity, a is an intercept parameter and z is the 
slope coefficient of the distance-decay curve (Martiny et al., 2011). The 
geographic distance was calculated with the R package ‘geosphere’ 
(Hijmans, 2019). 

Piecewise SEM was used to evaluate the effects of environmental 
factors, spatial distance, taxa associations and their indirect effects on 
betaNTI. Piecewise SEM was performed using the ‘piecewise SEM’ 
package in R (ver. 3.6.2). 

To examine the relative importance of biotic associations and habitat 
filtering in determining phylogenetic turnover within each soil layer, 
variance partitioning of phylogenetic beta diversity was manipulated 
based on multiple regression of a distance matrix (Swenson, 2014). 
BetaNTI was used as the dependent variable, and the independent var-
iables included environmental and biotic variables, with the calculation 
of Euclidean distance. The environmental variables included physico-
chemical soil properties. The distance matrix of biotic variables was 
calculated based on the taxa associations in each soil sample. Piecewise 
SEM was tested to confirm that the model structure was robust, and a 
separate piecewise SEM analysis was performed for each soil layer. 

3. Results 

3.1. Soil nutrients and texture depending on depth 

Soil organic carbon (SOC) and nutrients decreased dramatically with 
depth; SOC was 2.6 times higher in the top 10 cm than in the subsoil, 
while available phosphorus and available nitrogen were 4.4 times and 
2.2 times higher, respectively (Fig. 1). The C:N, C:P and N:P ratios were 
higher in the top 10 cm than in 20–40 cm (p < 0.05). Flooding and 
fertilization practices during the rice growing season led to the down-
ward migration of iron and a decrease in pH (Fig. 1). The soil texture of 
top 10 cm had a slightly higher silt content and a lower clay content 
compared to 20–40 cm (p < 0.05). 
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Fig. 1. Nutrient contents (mean ± SE, N = 26) and pH depending on soil depth. The blue square, red circle and green triangle in each subplot represent the soil layers 
0–10 cm, 10–20 cm and 20–40 cm respectively. Letters indicate significant differences (p < 0.05). The line between the two dots is present only when they are 
significantly different and absent when they are not. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 2. Bacterial abundance (A) and 
alpha diversity of bacterial communities 
(B) depending on soil depth. The boxes 
in blue, red and green in each subplot 
represent the soil layers 0–10 cm, 10–20 
cm and 20–40 cm respectively. Letters 
indicate significant differences (p <

0.05). In the box plots, the upper 
boundary of each box indicates the 25th 
percentile, the horizontal line inside 
each box marks the median, and the 
lower boundary of the box indicates the 
75th percentile. (For interpretation of 
the references to colour in this figure 
legend, the reader is referred to the Web 
version of this article.)   
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3.2. Dissimilarity in alpha- and beta-diversity of bacterial communities 
depending on soil depth 

The median bacterial quantity expressed as copies per g of dry soil 
was similar in the top two layers but decreased in the subsoil (Fig. 2A). 
The bacterial diversity (Shannon) in the topsoil was also higher than that 
in the subsoil (Fig. 2B). The phyla Proteobacteria, Acidobacteria, 
Chloroflexi, Nitrospirae and Actinobacteria were predominant in the 
bacterial community in the soil (Fig. 3A). The phyla Proteobacteria and 
Actinobacteria decreased with increasing soil depth, while the phyla 
Chloroflexi and Nitrospirae showed the opposite tendency (Fig. 4). 
There were differences in the bacterial community profile between any 
two soil layers, with the greatest difference between the top 10 cm and 
the subsoil (Fig. 3B, Table S2). 

3.3. Trends in taxon-taxon and taxon-environment networks with soil 
depth 

Linkage density, average degree, edges, and average clustering co-
efficient increased with soil depth, indicating that the taxon-taxon 
cooccurrence network became more complex and associations were 
more connected (Fig. 5A, C). Compared to the relatively isolated con-
ditions of the subsoil, the topsoil was more exposed to environmental 
perturbations, which corresponded to a higher modularity of the bac-
terial community, which was important for maintaining the robustness 
of the bacterial community composition (Fig. 5C). Soil pH and texture 
were the most important factors strongly associated with bacterial taxa 
in the topsoil. In the subsoil (20–40 cm), however, SOC, total and 
available N were more strongly associated with taxa (Fig. 5B). 

3.4. Bacterial community assembly depending on soil depth 

Dissimilarity in the bacterial community among sampling sites 
within each depth increased with geographic distance and dissimilarity 
in environmental properties (Figs. S4A and B). This result suggested that 
a significant phylogenetic signal occurred within each soil depth. The 
proportions of absolute phylogenetic turnover (βNTI) values < 2 in the 
three soil layers 0–10 cm, 10–20 cm, and 20–40 cm were ~73%, ~87%, 
and ~70%, respectively (Fig. 6A). The proportions of absolute taxo-
nomic turnover (RCbray) values < 0.95 in the three soil layers were 
44%, 47%, and 19%, respectively (Fig. 6B). The role of stochastic pro-
cesses, especially drift, was important for bacterial community assembly 
in the topsoil, whereas dispersal limitation was important for bacterial 
assembly in the subsoil (Figs. 6C and 7). 

In the top 10 cm, the soil properties (N:P ratio, pH, mineral N, and 
sand content) and spatial distance between sampling sites were signifi-
cant factors affecting phylogenetic turnover (βNTI). The C:P and N:P 

ratios and iron and sand contents were crucial factors directly defining 
taxonomic associations in the topsoil (Fig. 8A). For the 10-20-cm layer, 
the soil properties (SOC, available N, iron, and clay content) and taxo-
nomic associations directly influenced βNTI. SOC, available N, available 
P, C:N, and pH influenced taxonomic associations and indirectly influ-
enced βNTI (Fig. 8B). For the 20-40-cm layer, iron and spatial distance 
were more important for βNTI; available P was important for taxonomic 
associations (Fig. 8C). 

4. Discussion 

4.1. Dissimilarity in bacterial communities within soil profiles 

The relative abundance of Nitrospirae increased with depth by 95%, 
whereas that of Proteobacteria decreased by 24% (Fig. 4). Proteobac-
teria are better adapted to the high C input from root exudates (Her-
nandez et al., 2015), while Nitrospirae survive better under the low air 
permeability conditions common in paddies below 20 cm (Elul et al., 
2021). The sharp decrease in soil nutrients with increasing depth, 
especially the 81% decrease in the phosphorus availability (Fig. 1) 
shapes the bacterial community. A low ratio of Proteobacteria or 
α-Proteobacteria to Acidobacteria is common in oligotrophic soils. The 
autotrophic nitrifying bacteria Nitrospira occupy the ecological habitat 
of the subsoil (Hayatsu et al., 2008). Further analysis revealed that the 
relative abundance of Geobacter was higher in the subsoil than in the 
topsoil (Fig. S3), where it belongs to the class Deltaproteobacteria and is 
crucial for anaerobically oxidize aromatic hydrocarbons (Lovley et al., 
2011). All these results clearly show that nutrient (especially N and P) 
availability in the soil is an important explanatory factor affecting the 
distribution of bacterial communities with depth (Li et al., 2017). 

Consistent with the 1st hypothesis, dissimilarity in the bacterial 
community composition between soil layers and the beta diversity 
within each layer increased with depth. We also found the largest 
number of genera with significant differences between the upper 10 cm 
and the subsoil (Fig. S3). The same pattern was common in other agri-
cultural systems (Li et al., 2019; Hao et al., 2021). Although parent 
material was crucial for the establishment of the soil bacterial commu-
nity (Sheng et al., 2015), long-term rice cultivation buffered the effects 
of parent material in the plough horizon (Ap, 0–20 cm) (Shahbaz et al., 
2017). Below the Ap horizon, exposure to external environmental dis-
turbances decreased sharply, and the dissimilarity of the microbial 
community due to dispersal limitations was closely related to the parent 
material. 

Fig. 3. Relative abundance of phyla present greater than 1% (A) and sample dissimilarity in the bacterial community (B) based on NMDS analysis with soil depth.  
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4.2. Shifts in taxon-taxon and taxon-environment associations with soil 
depth 

Consistent with the 2nd hypothesis, network analysis showed that 
the complexity of the bacterial community networks and the intensity of 
taxa-taxa interactions increased with soil depth. The drastic decrease in 
nutrients with depth and greater anoxia allow taxa with similar physi-
ological ecotypes to cooccur, resulting in higher taxa-taxa associations 
in the subsoil to reduce functional redundancy (Kuzyakov et al., 2009). 
Land use intensification decreased the network density and reduced the 
average number of neighbours (Creamer et al., 2016). This result sup-
ports that paddy cultivation in our study resulted in lower beta diversity 
and fewer biotic associations in the topsoil than in the subsoil. More-
over, the modularity of the bacterial network was higher in the topsoil 
(Fig. 5C), which indirectly indicated the resistance of bacteria to envi-
ronmental filters (flooding, fertilization, tillage, etc.). In microbial 
ecology, module means a demarcation of microbial groups, with species 
within the module closely related to each other and less to species 
outside the module, typically due to differentiation in ecological niches 

and/or divergent selection (Olesen et al., 2007). Therefore, one module 
has little or no influence on another module, and the effects of envi-
ronmental perturbations within one module are unlikely to be trans-
mitted to the other, reducing the impact of environmental perturbations 
on the microbial community as a whole (Kitano, 2004). Therefore, high 
modularity of bacterial network in the topsoil is associated with greater 
environmental perturbations to maintain the robustness of the microbial 
community composition. 

In this study, the taxon-environment network analysis showed that 
soil texture and pH were more strongly correlated with bacterial taxa in 
the topsoil (0–20 cm), while soil nutrients were more important for the 
bacterial community in the subsoil. Based on extensive research, soil 
texture and pH are important factors determining the geographic dis-
tribution patterns of microorganisms in the topsoil (Karimi et al., 2018; 
Xia et al., 2020). The texture in the nutrient-rich Ap horizon indirectly 
influences bacterial abundance by affecting the flow of nutrients, water, 
and air, which are the main factors needed for microbial growth. 
Consistent with our study, the enriched OTUs in the topsoil were the 
genus Ohtaekwangia involved in the transformation of plant C, while the 

Fig. 4. Dissimilarity in the relative abundance of phyla (means ± SE, N = 26) greater than 1% with soil depth. The blue square, red circle and green triangle in each 
subplot represent the soil layers 0–10 cm, 10–20 cm and 20–40 cm respectively. Letters indicate significant differences (p < 0.05). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version of this article.) 
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enriched OTUs in the subsoil were the Subdivision 3 genera incertae 
sedis involved in the transformation of N and P due to nutrient limitation 
(Gu et al., 2017). 

4.3. Effects of soil depth on bacterial community assembly processes 

In subtropical paddy soil, stochastic processes were predominant in 
bacterial community assembly up to 40 cm. Inconsistent with our re-
sults, higher contributions of deterministic over stochastic processes 
were common up to 60 cm across three sodicity/salinity gradients (Xu 
et al., 2021). Under extreme environmental conditions, the process of 
bacterial community assembly is deterministic, and this process is 
magnified in proportion (Stegen et al., 2012). In contrast, rice 

cultivation at the regional level, where climatic conditions and cropping 
background are relatively uniform (Table S1) (Liu et al., 2021), is not 
dominated by the influence of human disturbance on bacterial com-
munity assembly. Bacterial community assembly at a regional scale was 
driven by dispersal from regional species pools and local selection 
depending on pH and other soil properties affected by land use (Barnett 
et al., 2020). 

Inconsistent with the 2nd hypothesis, the bacterial community as-
sembly was more stochastic at 10–20 cm because paddy cultivation 
mixed this layer with the top 10 cm. The soil in the 10–20 cm depth, 
however, was isolated from the direct influence of environmental 
filtering factors such as alternate flooding and drying, and were less 
affected by diurnal temperature dynamics. Bacteria from the top 10 cm 

Fig. 5. Taxon-taxon networks (A), taxon-environment networks (B) and statistics for taxon-taxon networks (C) in the three soil layers. In panels A and B, the 
connection indicates a strong and significant (p < 0.001) correlation; the nodes represent unique sequences in the data sets; the size of each node is proportional to 
the relative abundance. In panel C, the blue square, red circle and green triangle in each subplot represent the soil layers 0–10 cm, 10–20 cm and 20–40 cm 
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

W. Li et al.                                                                                                                                                                                                                                       



Soil Biology and Biochemistry 165 (2022) 108517

8

layer could migrate into the 10–20 cm via soil porosity (Xu et al., 2021), 
which explained why homogeneous dispersal accounted for a greater 
proportion of the bacterial community assembly processes in this layer. 
All of the above factors may contribute to a rather stochastic structure of 
the bacterial community at the 10–20 cm depth. 

Only 5–17% of the variance in phylogenetic turnover of the bacterial 
community was explained by environmental factors, spatial distance, 
and interspecies interactions (Fig. 8). This result thus confirmed that the 
bacterial community assembly is dominated by stochastic processes. 
Consistent with our study, spatial distance and soil properties together 
explained 16% of the variance in phylogenetic turnover of the bacterial 
community within islands (Wang et al., 2020). Numerous studies have 
shown that the large portion of variation in microbial communities is not 
truly explained by environmental and distance effects (Zhou et al., 2008; 
Caruso et al., 2011; Stegen et al., 2012). The main reason is that there 

are many stochastic processes (ecological drift, dispersal limitation) that 
influence community assembly. 

A set of soil properties has been determined, but the gradient of 
abiotic factors along soil depth, such as temperature, are important for 
bacterial community composition. The network approach has been 
widely used in microbial ecology to calculate the intensity of taxa-taxa 
associations. Further validation, such as co-culture methods, is neces-
sary to confirm true bacterial interactions in environmental samples 
(Wang et al., 2017). Finally, as in numerous previous studies (Zhang 
et al., 2018; Chalmandrier et al., 2019), piecewise structural equation 
modelling was used to disentangle the contributions of spatial distance 
and environmental factors to bacterial community assembly (Fig. 8). 
However, because spatial distance is associated with environmental 
changes and dispersal limitations, it is difficult to thoroughly disen-
tangle them. 

Fig. 6. Distribution of standardized phylogenetic turnover (βNTI; panel A) and taxonomic turnover (RCbray; panel B) and the percentages of the four assembly 
processes (panel C). The vertical dashed lines mark the positions of − 2 and 2 in panel A and − 0.95 and 0.95 in panel B. The four assembly processes are VS: variable 
selection; HD: homogenizing dispersal; DL: dispersal limitation; and Drift. 

Fig. 7. Concept of the effects of soil depth on bacterial community assembly processes: Dispersal limitation, Drift, Homogenizing dispersal and Variable selection (see 
Fig. 6C for details). The corresponding dominance of the three main bacterial groups, the interactions and the effects of soil properties with depth are presented at 
the right. 
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5. Conclusions 

Bacterial community composition and mechanisms of its assembly 
were evaluated in soils of 26 rice fields in subtropics up to 40 cm depth. 
Nutrient contents strongly decline from topsoil to subsoil, in particular 
available phosphorus content (81% decline). The topsoil harboured 
more of the dominant phyla Proteobacteria and Actinobacteria, but less 
phylum Nitrospirae. Network complexity and taxa-taxa interactions of 
the bacterial communities increased with soil depth. Stratified bacterial 
community characteristics were strongly coupled with soil nutrients 
(available N and P) and pH. More severe environmental disturbances 
(flooding, diurnal temperature dynamics etc.) and anthropogenic effects 
(fertilization, tillage) in the topsoil lead to high network modularity, 
that is responsible for the robustness of the bacterial community 
composition. The processes of bacterial community assembly were more 
random in the topsoil than in the subsoil because of more dispersion. In 
addition to altered microbial community composition and biotic in-
teractions, paddy cultivation increased the differences of physico- 
chemical properties between topsoil and subsoil, all of which influ-
enced bacterial community assembly. This is the first study evaluating 
the networks and assemblages of bacterial communities depending on 
soil depths at a large geographical scale. The understanding of the 
mechanisms of bacterial community diversity formation is a prerequisite 
to recognize microbial functions of C and nutrient cycles in agricultural 
ecosystems. This study challenges future proves of the basic macro-
ecology principles of organism’s distribution at the level of micro-
ecology in soil. 
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