

https://doi.org/10.11646/phytotaxa.539.3.3

The case of the missing mushroom: a novel bioluminescent species discovered within *Favolaschia* in southwestern China

THILINA S. NIMALRATHNA^{1,2,6}, SAOWALUCK TIBPROMMA^{3,5,7}, AKIHIRO NAKAMURA^{1,8}, MAHESH C.A. GALAPPATHTHI^{4,9}, JIANCHU XU^{3,10}, PETER E. MORTIMER^{3,11*} & SAMANTHA C. KARUNARATHNA^{3,5,12*} ¹ CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China.

² University of Chinese Academy of Sciences, Beijing, China.

³ Center for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.

⁴ Postgraduate Institute of Science (PGIS), University of Peradeniya, Peradeniya, Sri Lanka.

⁵ Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China

⁶ stnimalrathna@gmail.com; https://orcid.org/0000-0002-2368-042X

⁷ saowaluckfai@gmail.com; ⁶ https://orcid.org/0000-0002-4706-6547

⁸ a.nakamura@xtbg.ac.cn; https://orcid.org/0000-0001-7349-5102

⁹ s mcagalappaththi@gmail.com; ⁹ https://orcid.org/0000-0002-8375-7601

¹⁰] *jxu@mail.kib.ac.cn; https://orcid.org/0000-0002-2485-2254*

¹¹ e peter@mail.kib.ac.cn; https://orcid.org/0000-0003-3188-9327

¹² samanthakarunarathna@gmail.com; ⁶ https://orcid.org/0000-0001-7080-0781

Corresponding authors: Peter E. Mortimer & Samantha C. Karunarathna

Abstract

Seven species of bioluminescent mushrooms belonging to seven genera have been described in the tropical rainforests of China. This study contributes the eighth species, found growing on decaying bamboo in Xishuangbanna Tropical Botanical Garden (XTBG). Morphological characteristics and phylogenetic analyses using internal transcribed spacer (ITS) and ribosomal large subunit (LSU) gene regions placed the species within the genus *Favolaschia*. Comprehensive morphological descriptions, micro and macro photographs, and a phylogenetic tree showing the placement of the new species are provided. This is the second report of bioluminescent *Favolaschia* in China.

Key words: bioluminescent fungi, Favolaschia xtbgensis, macrofungi, Yunnan Province

Introduction

Natural bioluminescence is the emission of visible lights from a living organism due to a chemical reaction (Haddock *et al.* 2010). It is widely found across the ocean and terrestrial environments as well as across diverse groups of organisms, including unicellular algae, bacteria (Tanet *et al.* 2019), multicellular fungi (Karunarathna *et al.* 2020; Mishra & Srivastava 2021) and animals (Mensinger 2011; Li *et al.* 2021). At a deeper level, bioluminescence is currently understood as the oxidization of a light-emitting molecule known as luciferin, which is oxidized by an enzyme called luciferase or photoproteins, resulting in an intermediate high-energy substance after which the intermediate subsequently converts into oxyluciferin (Shimomura 2006; Moline *et al.* 2013).

Among identified terrestrial fungi (totalling ~140,000), approximately 100 species belonging to four distantly related lineages, namely Armillaria, Lucentipes, Mycenoid, and Omphalotus, have been recognized as bioluminescent fungi (Kotlobay *et al.* 2018). When luciferins decompose, bioluminescent fungi release green light (~530 nm) from their fruiting bodies or mycelium. Oliveira *et al.* (2012) have found that a single biochemical process is involved across all four bioluminescent monophyletic lineages due to the shared luciferin compound and luciferase enzyme. Numerous studies have suggested that the ecological function of bioluminescence in fungi is to attract insects for spore dispersal, which may be beneficial for fungi growing on the forest floor where wind flow is low (Oliveira *et al.* 2015).

Favolaschia (Pat.) Pat is a saprobic, generally small, mushroom-like basidiomycetes genus belonging to the family Mycenaceae, which is distributed worldwide with high species diversity. It was reported from a lowland warm-temperate to subtropical and tropical zone (Singer 1974; Johnston *et al.* 2006; Magnago 2013). The name "*Favolaschia*" was first introduced by Patouillard & Lagerheim de (1892) as a section of the genus *Laschia*, and later on it was separated as a new genus. The genus *Favolaschia* comprises 109 species based on existing data in the Species Fungorum (2022) database. Members of this genus are characterised by hymenial pores, a gelatinous trama and consisting of gloeocystidia and acanthocystida (Gillen *et al.* 2012). To date, *F. manipularis* (Corner 1954; Audrey *et al.* 2015) and *F. peziziformis* (Bodensteiner *et al.* 2004) have been reported to have bioluminescence.

There is a long history of macrofungi research in China due to not only their high level of diversity, but also the significance in Chinese food, culture, and traditional medicines (Dai *et al.* 2009; Wu *et al.* 2019). Despite this, only seven bioluminescent mushrooms have been discovered: *Lampteromyces luminescens* M. Zang, *Omphalotus flagelliformis* Zhu L. Yang & B. Feng, *O. mangensis* Jian Z. Li & X.W. Hu, *Filoboletus yunnanensis* P.G. Liu, *Pleurotus Prometheus* (Berk. & M.A. Curtis) Sacc., *Favolaschia manipularis* (Berk.) Teng (Teng 1963) and *Roridomyces viridiluminus* (Dauner *et al.* 2021). In Xishuangbanna Tropical Botanical Garden (XTBG), located in Yunnan Province, southwestern China, there have been several reports of a glowing mushroom in the area, but the species was never sampled or scientifically identified. As a part of our mushroom documentation work in Yunnan Province, we were able to find, collect, and identify this mushroom using morphological and molecular techniques. Our paper introduces this mushroom as a new bioluminescent fungal species belonging to the genus *Favolaschia* from southwest Yunnan Province, which was collected from a dead bamboo stump. This is the second report of the genus *Favolaschia* in China as a bioluminescent fungal genus.

Materials and methods

Sample collection and herbarium specimen preparation

The fungal fruit bodies of *Favolaschia* were collected from Xishuangbanna Tropical Botanical Garden, Yunnan Province, China during the month of July, 2021. The fruit bodies of *Favolaschia* were observed growing on dead bamboo (*Bambusa polymorpha* Munro) stumps about 5 cm to 30 cm above the ground. The fruit bodies were photographed *in situ* using a Canon 70D camera mounted with a Canon EF 100mm f/2.8L IS USM Macro lens. Two photographs were taken at night with (F=2.8, ISO=3200, shutter speed=1/250 Secs) and without flashlight (F=2.8, ISO=800, shutter speed=107 Secs) to show the physical characteristics of the bioluminescence. After the photographs were taken, fruit bodies were collected and taken to the laboratory in a plastic box and dried in an electric oven at 45 °C until no moisture remained. The dried fruit bodies were stored inside a plastic container and sent to the Kunming Institute of Botany (KIB), Chinese Academy of Sciences for micromorphology and phylogenetic analyses. All dried fruit bodies were deposited in the Kunming Institute of Botany (KIB), Chinese Academy of Sciences for micromorphology and phylogenetic analyses. All dried fruit bodies were deposited in the Kunming Institute of Botany Herbarium (HKAS). Index Fungorum (IF) number was obtained, as explained in Index Fungorum (2022).

Morphological study

Macro-morphological characteristics were described using the terminology of Largent *et al.* (1977), and colours were observed and classified following the protocol of Ridgeway (1912). The conventions of Vellinga (1988) were used to describe the microscopic characteristics. Free-hand sections were made and taken from the dried fruit bodies under a dissecting microscope (OLYMPUS SZ61). The sections were then mounted on a glass slide in 3–5% KOH using 1–3% Congo red for highlighting tissues (Kreisel & Schauer 1987). Microscopic photographs were taken with a Nikon ECLIPSE Ni compound microscope (Nikon, Tokyo, Japan) with a Canon EOS 600D (Tokyo, Japan) DSLR camera fitted on the top. Basidiospores, basidia, cystidia, stipitipellis, and other microscopic structures were photographed, and measurements were taken using the Tarosoft® Image Framework program v. 0.9.7. The size and shape of basidiospores (Miettinen & Larsson 2006). Scanning electron microscope (SEM) photography was carried out by sectioning lamellae from dried fruit bodies and mounting them on aluminum stubs with double-sided adhesive tape, coating them with gold palladium alloy, and observing the basidiospores under the SEM (Hitachi S4800) (Cook *et al.* 1997). The photographs were edited in Adobe Photoshop v. 21.0.2.

DNA extraction, PCR amplification, and sequencing

Dried internal tissues of the fruit bodies were used for DNA extraction. Total DNA was extracted using the Biospin Fungus Genomic DNA Extraction Kit (BioFlux®). The ITS and LSU loci were amplified by Polymerase Chain Reaction (PCR). The PCR amplifications were performed in a total volume of 25 µL of PCR mixtures containing 9.5 µL ddH2O, 12.5 µL of PCR master mix, 1 µL of DNA template, and 1 µL of each primer (10 µM). PCR amplification was performed using primer pairs ITS5/ITS4 for internal transcribed spacer rDNA region (ITS1, 5.8S rDNA and ITS2), LROR/LR5 for the nuclear ribosomal large subunit 28S rDNA gene (LSU) (Vilgalys & Hester 1990; White *et al.* 1990; Liu *et al.* 1999). The PCR cycling amplification conditions incorporated slight modifications, such as a hot start of 3 min at 94°C, followed by 35 cycles of 95 °C for 30 s, 55 °C for 1 min, 72 °C for 1 min, and a final extension step at 72 °C for 10 min for both ITS and LSU regions. The sequencing of purified PCR products was carried out by Sangon Biotech (Shanghai) Co., Ltd., Shanghai, China.

Sequence alignment and phylogenetic analyses

The genetic sequences obtained from PCR were entered into a standard BLAST search in the GenBank database in order to verify the primary identity of the novel fungus. The other sequences used in the phylogenetic analyses were obtained from GenBank, and another BLAST search was used to identify sequences with high similarity indices and sequences identified in recently published data (Cortés-Pérez et al. 2019; Karunarathna et al. 2020). Two strains of Mycena abramsii (HMJAU43523 and HMJAU43606) were used as the outgroup taxa. The sequences and their GenBank numbers are listed in Table 1. Sequences were aligned with MAFFT online server (Katoh & Standley 2013) and manually adjusted using BioEdit v. 7.2.5 (Hall 1999). Gaps were treated as missing data. Clade results from Maximum likelihood (ML) analyses were assessed with 1,000 replicates and were executed on the CIPRES web portal (Miller et al. 2011) using RAxML-HPC2 on XSEDE v.8.2.8 (Stamatakis 2014) and raxmlGUI v.1.3.1 (Silvestro & Michalak, 2011). The best-fitting substitution model for each single gene partition was determined in MrModeltest v.2.3 (Nylander 2004). Bayesian inference posterior probabilities (PP) with the GTR+I+G model was used for each partition. Bayesian Markov Chain Monte Carlo (MCMC) analyses were conducted in MrBayes v.3.2.2 (Huelsenbeck & Ronguist 2001). The number of generations was set at 1,000,000 with trees sampled every 1000th generations. Based on the tracer analysis, the first-sampled topologies representing 25% of trees were discarded in the burn-in phase. The remaining trees were then used to calculate posterior probabilities (PP) in the majority rule consensus tree (Larget & Simon 1999). Phylogenetic trees and data files were figured in FigTree v.1.4.0 (Rambaut 2012) and edited using Microsoft Office PowerPoint 2009 and Adobe Photoshop v. 21.0.2. Maximum Likelihood bootstrap values (MLBS $\geq 60\%$) and posterior probabilities values for BI (PP ≥ 0.9) are given above each branch.

Taxa names	Culture collection/ Voucher	GeneBank access	ion numbers
	number	LSU	ITS
Favolaschia andina	KG0025	HM246679	HM246678
Favolaschia aurantiaca	FK2047	-	JX987670
Favolaschia auriscalpium	Isolate 5	-	KY649461
Favolaschia austrocyatheae	PDD: 75609	-	NR132809
Favolaschia austrocyatheae	PDD:112220	-	MH578516
Favolaschia brevibasidiata	Cui 6573	-	MZ661794
Favolaschia brevistipitata	Dai 19780	MZ661742	MZ661772
Favolaschia brevistipitata	Dai 19855	MZ661743	MZ661773
Favolaschia brevistipitata	Dai 19856	MZ661744	MZ661774
Favolaschia calocera	BCC36684	MN128539	MN128538
Favolaschia cf. calocera	JM98/186	AF261418	-
Favolaschia cinnabarina	PDD:103392	-	KF727415
Favolaschia cinnabarina	RVPR82	AF261416	-
Favolaschia claudopus	Dai 18656	MZ661735	MZ661775
			continued on the next page

TABLE 1. Names, strain numbers and GenBank accession numbers used in the phylogenetic analyses (new taxon is indicated in bold black).

TABLE 1. (Continued)

Taxa names	Culture collection/ Voucher	GeneBank accession nu	mbers
	number	LSU	ITS
Favolaschia cyatheae	PDD75316	-	DQ026256
Favolaschia dealbata	KG0015	HM246677	-
Favolaschia heliconiae	KG0026	HM246680	-
Favolaschia longistipitata	Dai 19799	MZ661739	MZ661784
Favolaschia longistipitata	Dai 19893	MZ661740	MZ661785
Favolaschia longistipitata	Dai 20019	MZ661741	MZ661786
Favolaschia luteoaurantiaca	SP445750	-	NR_132874
Favolaschia macropora	KG0027	HM246682	HM246681
Favolaschia manipularis	Dai 20612	-	MZ801776
Favolaschia manipularis	Dai 20653	-	MZ801777
Favolaschia minima	PDD75430	-	DQ026258
Favolaschia minutissima	Dai 20085	MZ661736	MZ661791
Favolaschia minutissima	Dai 20086	MZ661737	MZ661792
Favolaschia minutissima	Dai 20088	MZ661738	MZ661793
Favolaschia peziziformis	ICMP15757	AY572008	DQ026255
Favolaschia pustulosa	Dai 19892	MT293227	MT292326
Favolaschia sp.	BCC18686	MN093317	MN093316
Favolaschia sp.	4550	-	JX987668
Favolaschia sp.	DUKE3195	-	DQ026236
Favolaschia sp.	DUKE2708	-	DQ026234
Favolaschia sp.	DUKE2876	-	DQ026235
Favolaschia sp.	TH1018	-	DQ026241
Favolaschia sprucei	TH6418	-	DQ026246
Favolaschia tonkinensis	JM98229	-	DQ026247
Favolaschia varariotecta	DUKE4038	-	DQ026244
Favolaschia xtbgensis	HKAS 121667	OL413044	OL413048
Favolaschia xtbgensis	HKAS 121975	OL413035	OL413036
Mycena abramsii	HMJAU43523	MK629350	MH396628
Mycena abramsii	HMJAU43606	MK629355	MH396629

Results

Phylogenetic analyses

The phylogenetic analyses were inferred from ML analyses using a combined ITS and LSU ribosomal DNA data set. For the ITS and LSU regions, 44 taxa distributed in the genus *Favolaschia* with two outgroup taxa in the genus *Mycena*, were aligned and their ends trimmed to create a data set of 1746 (including gaps) base pairs.

In the combined tree (Fig. 2), the final alignment contained 44 strains, with *Mycena abramsii* HMJAU43523 and HMJAU43606 as outgroup taxa. Tree topology of the ML analysis was similar to the BI. The matrix had distinct alignment patterns, with a final ML optimization likelihood value of -6732.817711 (ln). All free model parameters were estimated by the RAxML model, with 529 distinct alignment patterns and 38.84% undetermined characters or gaps. Estimated base frequencies were as follows: A = 0.241693, C = 0.207448, G = 0.253528, T = 0.297330; substitution rates AC = 1.454680, AG = 2.974125, AT = 1.921702, CG = 0.804913, CT = 5.523918, GT = 1.000000; gamma distribution shape parameter alpha = 0.603839; and Tree-Length = 1.072009.

The combined ITS and LSU phylogenetic analyses reveal that the new species, *Favolaschia xtbgensis*, differs from the closely related *Favolaschia* sp. BCC 18686 with strong statistical support values (94% BS and 0.98 PP), confirming it as a distinct taxon.

Taxonomy

Favolaschia xtbgensis Karunarathna & Nimalrathna sp. nov. Figs. 1,3

Index Fungorum number: IF559348

Etymology: The species epithet "xtbgensis" refers to the place "Xishuangbanna Tropical Botanical Garden" where the type species was collected.

Holotype:—HKAS121667

Diagnosis:—This new species can be distinguished from other taxa in the genus *Favolaschia* by white to grayish lilac, translucent, smooth and spongy pileus; 1×2 mm size 180–200 pores in hymenophore; $8.2-10.4 \times 6.1-8.2 \mu$ m size basidiospores; $30-44 \times 10-13 \mu$ m size basidia and the absence of cheilocystidia and pleurocystidia.

Pileus 5–12 mm diam., plano-convex, surface white to grayish lilac, translucent, smooth, spongy, margin not entire. *Hymenophore* poroid, outermost pores close to the margin are smaller than the center, mostly hexagonal, pores 1×2 mm in size, 180–200 in number/hymenophore. *Stipe* concolorous with pileus, short, 2–4 mm long, 1–2 mm in diameter, lateral, eccentric, cylindric, surface smooth. *Context* white and thin. Spore print white.

Luminescence. Emitting soft green light in the fruit bodies, spore print and the mycelium of the fruit bodies (Fig. 1B).

Basidiospores 8.2–10.4 × 6.1–8.2 µm (Q =1.27, total number of spores examined = 50), subglobose, white, spore surface rough, large oil drop inside. *Basidia* (Fig. 3A) 30–44 × 10–13 µm, clavate, 4 spored, sterigmata 6–7 × 1–2µm. *Hymenophore edge* fertile, cheilocystidia and pleurocystidia absent. Gloeocystidia and Acanthocystida absent. *Pileal trama* (Fig. 3B) composed of thin-walled, gelatinized, filamentous hyphae, 7–10 µm in diameter, branched. Clamp-connections present.

Ecology and distribution:—Caespitose, growing up to 20–30 fruit bodies, Southwest China (Yunnan Province, Menglun City), June to September.

Material examined:—CHINA. Yunnan Province, Menglun City, 26°54'50.58"N 99°46'50.76"E, elev. 550 m, on dead bamboo, 21 July 2021, Thilina Nimalrathna (HKAS121667, **holotype**).

Additional specimen examined:—CHINA. Yunnan Province, Menglun City, 26°54'50.58"N 99°46'50.76"E, elev. 550 m, on dead bamboo, 22 July 2021, Thilina Nimalrathna (HKAS 121975, **paratype**).

FIGURE 1. Fruit bodies of *Favolaschia xtbgensis* in the field, at night. A. Photographed with the aid of a flashlight. B. Photographed in complete darkness. Scale bars: A, B=10 mm.

FIGURE 2. Maximum Likelihood tree generated using RAxML based on combined ITS and LSU sequence data. MLBS Bootstrap support values for maximum likelihood ($\geq 60\%$) and posterior probability values (PP) for BI (≥ 0.90 PP) are given above each branch. The new species is shown in bold blue. The tree is rooted to *Mycena abramsii* (HMJAU43606, HMJAU43523).

FIGURE 3. Microscopic structures of *Favolaschia xtbgensis* (HKAS121667, holotype). A. Hyphae at edge of pores showing basidia. B. Hyphae of pileus cortex. C. Basidiospores under SEM. D. Upper view of a basidium with sterigmata and young basidiospores under SEM. Scale bars: A=20 μm; C, D=10 μm.

Discussion

Since most of the species in the genus *Favolaschia* lack sequence data in GenBank, we compared the species described in the monograph of Singer (1945) with our new species, and found that *Favolaschia tonkinensis* is morphologically similar to our new species.

Favolaschia xtbgensis sp. nov. is a look alike with *F. tonkinensis* (Singer1945; Krishnendu *et al.* 2014; Zhang & Dai 2021), in having a pileus of similar diameter (*F. xtbgensis* = 5–12 mm, *F. tonkinensis* = 7.5–9 mm) and a white to grayish lilac, translucent, smooth and spongy surface. Moreover, both have smaller outermost pores closer to the margin than center, but *F. tonkinensis* has smaller pores that are 0.8 mm in size and higher (200–250) in number/hymenophore (Krishnendu *et al.* 2014). However, the size of basidiospores is slightly larger in *F. tonkinensis* (8–12.5 × 7–10.5µm) (Singer 1945; Johnston *et al.* 2006), with subglobose, white spores, and moreover, *F. tonkinensis* contains a smooth spore surface versus the rough spore surface of *F. xtbgensis. Favolaschia xtbgensis* is similar to *F. tonkinensis* with its 4-spored basidia, but *F. tonkinensis* has smaller basidia (35.7–39.6 × 7.88–8.27 µm) and larger sterigmata (7.88–8.27 × 3.15–3.55 µm). Furthermore, *F. xtbgensis* is phylogenetically distinct from *F. tonkinensis* (Fig. 2). A synopsis table showing the characteristics of *Favolaschia* species reported from China is shown below in Table 1.

Reference	Zhang & Dai (2021)	Zhang & Dai (2021)	the next page
Pileipellis/	Pileipellis comprising a palisade of acanthocysts and gloeocystidia. Hyphae in stipe parallel along stipe, slightly thick-walled, some inflated, 3–6(–11) µm in diameter. Clamp connections absent.	Pileipellis comprising a palisade of acanthocysts and gloeocystidia. Hyphae in stipe parallel along stipe, slightly thick-walled, some slightly inflated, $2-4(-7)$ µm in diameter.	continued on
Cystidia	Gloeocystidia present at the edges of pores, in hymenium and pileipellis, slightly thick-walled, smooth, contents dense and yellow-orange, those in hymenium clavate to ventricose, $25-36 \times 10-18$ µm; those at the pore edges more or less the same size as those in pileipellis, clavate, cylindrical or subglobose, $13-36 \times 10-22$ µm. Acanthocysts at the edges of pores and in pileipellis, slightly thick-walled, contents dense and yellow-orange, clavate, short vesiculose to pyriform-elongated, $15-47 \times 9-12$ µm.	Gloeocystidia present at the edges of pores, in hymenium and pileipellis, slightly thickwalled, smooth, contents dense and yellow-orange, those in hymenium pyriform, $25-45 \times 10-12$ µm; those at pore edges more or less the same size as those in pileipellis, subglobose or ventricose, $20-40 \times 6-21$ µm. A canthocysts at the edges of pores and in pileipellis, slightly thick-walled, contents dense and yellow-orange, elongated to irregular shaped, $16-42 \times 5-13$ µm.	
Basidiospores	10–12(–13.5) × 6– 7.8(–8) µm, L = 11.33 µm, W = 6.9 µm, Q = 1.64 (n = 30/1), ellipsoid to broadly ellipsoid, hyaline, thin-walled, smooth, with some guttules, faintly IK1+, CB–.	$(9-)9.8-13 \times 6-8 \mu m,$ L = 11.31 $\mu m, W =$ $6.72 \mu m, Q = 1.62-$ 1.74 (n = 120/4), hyaline, thin-walled, smooth, with some guttules, faintly IKI+, CB	
Basidia	23–30 × 8–10 µm, few fusoid, cylindric or clavate, contain some guttules, 2–spored, sterigmata 1.5–4 µm long; basidioles in shape similar to basidia, but slightly smaller.	32–47 × 9–13 µm, cylindric or clavate, few fusoid, contain some guttules, 2– spored, sterigmata 4– 6 µm long; basidioles in shape similar to basidia, but slightly smaller	
Trama	Hyphae subparallel along tubes, partly branched, strongly gelatinized, hyaline, thin-walled, some slightly inflated, 2–4(–6) µm in diameter.	Hyphae subparallel along tubes, strongly gelatinized, partly branched, hyaline, thin-walled, some slightly inflated, $2-4(-6) \mu m$ in diameter. Pileipellis comprising a palisade of acanthocysts and gloeocystidia. Hyphae in stipe parallel along stipe, slightly thick-walled, some slightly inflated, $2-4(-7) \mu m$ in diameter.	
Stipe	Stipe obvious, laterally attached, concolorous with pileus, cylindrical or tapered to a slightly wider base, sometimes curved, very finely velutinate under a lens, 2–8 mm long.	Stipe obvious, laterally attached, concolorous with pileus, cylindrical or tapered to a slightly wider base, sometimes curved, very finely velutinate under a lens, 4–12 mm long.	
Pileus	Pileus 2–7 × 1.5–4 mm, apricot- orange when fresh, orbicular, cream buff when dry; pileal surface slightly undulated in a reticulate pattern matching the pores below, sometimes faintly pruinose when dry.	Pileus 2–12 × 1.5–8 mm, flabelliform to subcircular, lemon- chrome when fresh, becoming curry yellow when dry; pileal surface slightly undulated in a reticulate pattern matching the pores below, sometimes faintly pruinose when dry.	
Taxon name	Favolaschia brevibasidiata Q.Y. Zhang & Y.C. Dai	Favolaschia longistipitata Q.Y. Zhang & Y.C. Dai	

	Reference	Teng (1963)	(2021) (2021)	the next page
	Pileipellis/ Stipitipellis	Pileipellis hyphae 5–16 µm wide, clamped, with diverticulate terminal cells.	Pileipellis comprising a palisade of acanthocysts and gloeocystidia. Hyphae in stipe parallel along stipe, slightly thick-walled, some slightly inflated, $2-4(-7)$ µm in diameter.	continued on
	Cystidia	Cheilocystidia 51–75 × 7–13 µm, sterile lamella edge, lageniform, subcylindrical or subclavate, mostly diverticulate or irregularly branched in the apex, simple lageniform with more or less developed neck. Pleurocystidia not visible. Pileocystidia 15– 34 × 8–11 µm, abundant, irregularly shaped, lageniform to subclavate, with excrescences. Caulocystidia 24–39 × 6–8 µm, abundant, irregularly shaped.	Gloeocystidia present at the edges of pores, in hymenium and pileipellis, slightly thick-walled, smooth, contents dense and yellow-orange, those in hymenium clavate to vesiculose, $30-42 \times$ 10-12.5 µm; those at the pore edges more or less the same size as those in pileipellis, pyriform, subglobose or ventricose, $20-48 \times 10-26$ µm. Acanthocysts at the edges of pores, in hymenium and pileipellis, slightly thick-walled, contents dense and yellow-orange, clavate to oblong, $9-45 \times$ 7-12 µm.	
	Basidiospores	Basidiospores $6-8$ $\times 4-5 \mu m$, $Q =$ 1.2-1.6, smooth, white, ellipsoid to broadly ellipsoid and amyloid.	(6-)7.5-11(-11.5) $\times (4.8-)5-7.2(-7.8)$ $\mu m, L = 9.16 \mu m,$ $W = 6.10 \mu m, Q =$ 1.46-1.56 (n = 90/3), broadly ellipsoid to ovoid, hyaline, thin- walled, smooth, with some guttules, faintly IKJ+, CB-	
	Basidia	Basidia 16–18 × 6–8 µm, narrowly clavate, clamped, with up to 6 µm long sterigmata.	$25-37 \times 7-9.5$ µm, clavate, few fusoid, contain some guttules, 2-spored, sterigmata $5-7$ µm long; basidioles in shape similar to basidia, but slightly smaller	
	Trama	Hyphae of the cortical layer of the stipe 3–8 µm wide, clamped, with diverticulate terminal cells.	Hyphae subparallel along tubes, strongly gelatinized, partly branched, hyaline, thin-walled, some slightly inflated, $2-4(-6) \mu m$ in diameter. Pileipellis comprises a palisade of acanthocysts and gloeocystidia. Hyphae in stipe parallel along stipe, slightly thick-walled, some slightly inflated, $2-4(-7) \mu m$ in diameter.	
	Stipe	Stipe 20–65 × 0.5–3 mm, hollow, hyaline to white, pruinose, cylindrical, thickened in the base.	Stipe often scarcely developed, laterally attached, concolorous with pileus, short and curved, cylindric, very finely velutinate under a lens, 0.5–4 mm long.	
intinued)	Pileus	Pileus 0.3–2.5 cm in diam., conico- campanulate to convex with conical umbo, translucently reticulate, hygrophanous, white pruinose, whitish, greyish to hyaline when moist, purely white to yellowish when dried up.	Pileus $2-4 \times 1-3$ mm, reniform to suborbicular, apricot-orange when fresh, becoming cream buff when dry; pileal surface slightly undulated in a reticulate pattern matching the pores below, sometimes faintly pruinose when dry.	
TABLE 2. (Co	Taxon name	Favolaschia manipularis	Favolaschia minutissima Q.Y.C.Dai Y.C. Dai	

(pa	C time	Tuama	Dacidia	Decidioenovae	Custidia	Dilainallie/	Dafawanaa
	be	Irama	Basidia	basidiospores	Cysuala	Prierpeniis/ Stipitipellis	Kererence
Stij 0.8 0.8 0.8 0.8 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ze 1.2–15 × -2.5 mm, rally attached, indrical or ered to a thtly wider e, sometimes ved depending position fuit body substrate, teolorous with aus, glabrous, netimes faintly inose when		Basidia 28–35 × 6–10 µm, obclavate, tapered slightly towards the base, 2-spored, sterigmata 8.5–14 µm long.	Spores 9–12.5 × 6.5–8.5 μ m, broadly ovoid, bilaterally symmetrical in face view, asymmetrical in side view, apex broadly rounded, base broadly rounded or broadly rounded or broadly orical, hilum truncate or obtuse, excentrally oriented, wall smooth, hyaline,	Gloeocystidia cylindric to clavate, walls slightly thickened, contents dense and yellow-orange; those amongst the basidia cylindric, 8.5–12.5 µm, those on the pore edges and in the pileipellis broad- clavate, 11–25 µm diam. Acanthocysts on edges of pores and in pileipellis, 35–52 × 8.5–14 µm, cylindric to subclavate, apex rounded or broadly rounded, typically tapering to a narrow base, wall hyaline, with numerous	Pileipellis comprises a palisade of acanthocysts and gloeocystidia. Clamp connections lacking.	Johnston <i>et</i> al. (2006)
Sti abs 5×5 cor pillac my	pe present or sent, when sent up to 1–6 mm, ached laterally, ncolorous with eus, glabrous, king basal celium		Basidia 25–35 × 5.5–8 µm, 4-spored, obclavate, tapered towards the obtuse base, sterigmata 3–6 µm long.	Spores 7.5–10 × 5–7 µm, broadly ellipsoidal, apex broadly rounded, base broadly rounded or broadly conical with distinct hilar appendage, wall smooth, hyaline, amyloid. Cortex of hyaline, loosely interwoven hyphae 5–10 µm diam., widely spaced in gelatinous matrix; gloeoporous hyphae lacking		Pileipellis barely differentiated from cortex, hyphae slightly more densely interwoven and a few with free ends; edges of pores similar in structure, sterile, barely differentiated from trama	Johnston <i>et</i> al. (2006)
Stij ses in c late cyl smo	oe almost sile, 2 1 mm liameter, aral, eccentric, indric, surface ooth.	Pileal trama composed of thin- walled filamentous hyphae, 11.82 3.94 µm, embedded in thick gelatinous matrix, inamyloid. Clamp-connexions and	Basidia 35.7– 39.6 7.88–8.27 µm, cylindro clavate, 4 spored, tetrasterigmatic, sterigmata 7.88–8.27 3.15–3.55 µm.	Spores (7.88–)9.45– 9.85(–10.24) (7.09–)7.88–8.67(–9.85) μ m [Q =1.09, total number of spores examined=30], subglobose, white, smooth, amyloid, granular contents present	Cheliocystidia and pleurocystidia absent.		Krishnendu <i>et al.</i> (2014), Zhang & Dai (2021)

Acknowledgements

Saowaluck Tibpromma thanks the International Postdoctoral Exchange Fellowship Program (number Y9180822S1), CAS President's International Fellowship Initiative (PIFI) (number 2020PC0009), China Postdoctoral Science Foundation and the Yunnan Human Resources, and Social Security Department Foundation for funding her postdoctoral research. Samantha C. Karunarathna thanks CAS President's International Fellowship Initiative (PIFI) young staff under the grant number: 2020FYC0002 and the National Science Foundation of China (NSFC) for funding this research work under project code 31750110478. Peter E. Mortimer thanks the 'High-End Foreign Experts' in the High-Level Talent Recruitment Plan of Yunnan Province, 2021, for support. Austin Smith at World Agroforestry (ICRAF), Kunming Institute of Botany, China, is thanked for English editing.

References

- Audrey, L.C.C., Desjardin, D.E., Tan, Y., Musa, M.Y. & Sabaratnam, V. (2015) Bioluminescent fungi from Peninsular Malaysia-a taxonomic and phylogenetic overview. *Fungal Diversity* 70 (1): 149–187. https://doi.org/10.1007/s13225-014-0302-9
- Bodensteiner, P., Binder, M., Moncalvo, J.M., Agerer, R. & Hibbett, D.S. (2004) Phylogenetic relationships of cyphelloid homobasidiomycetes. *Molecular Phylogenetics and Evolution* 33: 501–515. https://doi.org/10.1016/j.ympev.2004.06.007
- Cook, R., Inman, A. & Billings, C. (1997) Identification and classification of powdery mildew anamorphs using light and scanning electron microscopy and host range data. *Mycological Research* 101: 975–573. https://doi.org/10.1017/S095375629700364X
- Corner, E.J.H. (1954) Further descriptions of luminous agarics. *Transactions of the British Mycological Society* 37 (3): 256. https://doi.org/10.1016/S0007-1536(54)80009-X
- Cortés-Pérez, A., Desjardin, D.E., Perry, B.A., Ramírez-Cruz, V., Ramírez-Guillén, F., Villalobos-Arámbula, A.R. & Rockefeller, A. (2019) New species and records of bioluminescent *Mycena* from Mexico. *Mycologia* 111 (2): 319–338. https://doi.org/10.1080/00275514.2018.1554172
- Dai, Y.C., Yang, Z.L., Cui, B.K., Yu, C.J. & Zhou, L.W. (2009) Species diversity and utilization of medicinal mushrooms and fungi in china (Review). *International Journal of Medicinal Mushrooms* 11 (3): 287–302. https://doi.org/10.1615/IntJMedMushr.v11.i3.80
- Dauner, L.A.P., Karunarathna, S.C., Tibpromma, S., Xu, J. & Mortimer, P.E. (2021) Bioluminescent fungus *Roridomyces viridiluminus* sp. nov. and the first Chinese record of the genus *Roridomyces*, from Southwestern China. *Phytotaxa* 487 (3): 233–250. https://doi.org/10.11646/phytotaxa.487.3.4
- Gillen, K., Læssøe, T., Kirschner, R. & Piepenbring, M. (2012) Favolaschia species (Agaricales, Basidiomycota) from Ecuador and Panama. Nova Hedwigia 96 (1–2): 117–165. https://doi.org/10.1127/0029-5035/2012/0070
- Haddock, S.H., Moline, M.A. & Case, J.F. (2010) Bioluminescence in the sea. *Annual review of marine science* 2: 443–493. https://doi.org/10.1146/annurev-marine-120308-081028
- Hall, T.A. (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41: 95–98.
- Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. *Bioinformatics* 17 (8): 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
- Johnston, P.R., Whitton, S.R., Buchanan, P.K., Park, D., Pennycook, S.R., Johnson, J.E. & Moncalvo, J.M. (2006) The basidiomycete genus *Favolaschia* in New Zealand. *New Zealand Journal of Botany* 44 (1): 65–87. https://doi.org/10.1080/0028825X.2006.9513007
- Karunarathna, S.C., Mortimer, P.E., Tibpromma, S., Dutta, A.K., Paloi, S., Hu, Y., Baurah, G., Axford, S., Marciniak, C., Luangharn, T., Madawala, S., Lin, C., Chen, J.Z., Acharya, K., Kobmoo, N., Samarakoon, M.C., Karunarathna, A., Gao, S., Xu, J. & Lumyong, S. (2020) *Roridomyces phyllostachydis* (Agaricales, Mycenaceae), a new bioluminescent fungus from Northeast India. *Phytotaxa* 459 (2): 155–167.

https://doi.org/10.11646/phytotaxa.459.2.6

Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular biology and evolution* 30 (4): 772–780. https://doi.org/10.1093/molbev/mst010

- Kotlobay, A.A., Sarkisyan, K.S., Mokrushina, Y.A., Marcet-Houben, M., Serebrovskaya, E.O., Markina, N.M., Somermeyer, L.G., Gorokhovatsky, A.Y., Vvedensky, A., Purtov, K.V. & Petushkov, V.N. (2018) Genetically encodable bioluminescent system from fungi. *Proceedings of the National Academy of Sciences* 115 (50): 12728–12732. https://doi.org/10.1073/pnas.1803615115
- Kreisel, H. & Schauer, F. (1987) Methoden des mykologischen Laboratoriums, pp. 103-104. Gustav Fischer Verlag, Stuttgart, Germany
- Krishnendu, A., Prakash, P., Sherpa, N.L. & Dutta, A.K. (2014) Favolaschia-a new fungal genus record for Eastern India. Indian Forester 140 (6): 639–640.
- Largent, D.L., Johnson, D. & Watling, R. (1977) How to identify mushrooms to genus III: microscopic features. Eureka: Mad River Press.
- Li, Y.D., Kundrata, R., Tihelka, E., Liu, Z., Huang, D. & Cai, C. (2021) Cretophengodidae, a new Cretaceous beetle family, sheds light on the evolution of bioluminescence. *Proceedings of the Royal Society B: Biological Sciences* 288 (1943): 20202730. https://doi.org/10.1098/rspb.2020.2730
- Magnago, A. (2013) Contributions towards the knowledge of *Favolaschia* (Mycenaceae, Agaricomycetes) from Brazil. *Mycosphere* 4 (6): 1071–1078.

https://doi.org/10.5943/mycosphere/4/6/5

- Mensinger, A.F. (2011) *THE SKIN* | *Bioluminescence in Fishes. Encyclopedia of Fish Physiology*. Elsevier, USA, pp. 497–503. https://doi.org/10.1016/B978-0-12-374553-8.00160-X
- Miettinen, O. & Larsson, K.H. (2006) Trechispora elongata species nova from North Europe. Mycotaxon 96: 193-198.
- Miller, M.A., Pfeiffer, W. & Schwartz, T. (2011) The CIPRES science gateway: a community resource for phylogenetic analyses. *In: Proceedings of the 2011 TeraGrid Conference: extreme digital discovery.* pp. 1–8. https://doi.org/10.1145/2016741.2016785
- Mishra, M. & Srivastava, D. (2021) Bioluminescent fungi: reviewing nature's riddle!. *Journal of Mycopathology Research* 59 (3): 199–206.
- Moline, M.A., Oliver, M.J., Orrico, C., Zaneveld, R. & Shulman, I. (2013) Bioluminescence in the sea. In: Subsea Optics and Imaging. Elsevier, pp. 134–170.

https://doi.org/10.1533/9780857093523.2.134

- Nylander, J.A.A. (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University
- Oliveira, A.G., Desjardin, D.E., Perry, B.A. & Stevani, C.V. (2012) Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages. *Photochemical & Photobiological Sciences* 11 (5): 848–852. https://doi.org/10.1039/c2pp25032b
- Oliveira, A.G., Stevani, C.V., Waldenmaier, H.E., Viviani, V., Emerson, J.M., Loros, J.J. & Dunlap, J.C. (2015) Circadian control sheds light on fungal bioluminescence. *Current Biology* 25 (7): 964–968. https://doi.org/10.1016/j.cub.2015.02.021
- Patouillard, N.T & Lagerheim de, N.G. (1892) Champignons de l'eiquateur. Pugillus II. *Bulletin de la Société mycologique de France* 8: 113–140.
- Ridgway, R. (1912) *Color Standards and Color Nomenclature. 2nd ed.* Washington DC: published by Author. https://doi.org/10.5962/bhl.title.144788
- Shimomura, O. (2006) *Bioluminescence: chemical principles and methods*. World Scientific Publishing Company, USA, 500 pp. https://doi.org/10.1142/6102
- Silvestro, D. & Michalak, I. (2012) raxmlGUI: a graphical front-end for RAxML. *Organisms Diversity & Evolution* 12 (4): 335–337. https://doi.org/10.1007/s13127-011-0056-0
- Singer, R. (1974) A monograph of Favolaschia. Beihefte Nova Hedwigia 50: 1-108.
- Species Fungorum (2022) Favolaschia. Available from: http://www.speciesfungorum.org/Names/Names.asp (accessed 5 January 2022)
- Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30 (9): 1312–1313.

https://doi.org/10.1093/bioinformatics/btu033

- Tanet, L., Tamburini, C., Baumas, C., Garel, M., Simon, G. & Casalot, L. (2019) Bacterial bioluminescence: light emission in photobacterium phosphoreum is not under quorum-sensing control. *Frontiers in Microbiology* 10: 1–9.
 - https://doi.org/10.3389/fmicb.2019.00365

Teng, S.C. (1963) Zhong Guo De Zhen Jun [Fungi of China]. 808 pp.

- Vellinga, E.C. (1988) Glossary. In: Bas, C., Kuyper, T.W., Noordeloos, M.E. & Vellinga, E.C. (eds.) Flora Agaricina Neerlandica 1. Rotterdam: AA Balkema. pp. 54–64.
- Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several

Cryptococcus species. *Journal of bacteriology* 172 (8): 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990

- White, T.J., Bruns, T., Lee, S.J.W.T. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR protocols: a guide to methods and applications* 18 (1): 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Wu, F., Zhou, L.W., Yang, Z.L., Bau, T., Li, T.H. & Dai, Y.C. (2019) Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. *Fungal Diversity* 98 (1): 1–76. https://doi.org/10.1007/s13225-019-00432-7
- Zhang, Q.Y. & Dai, Y.C. (2021) Taxonomy and phylogeny of the *Favolaschia calocera* complex (Mycenaceae) with descriptions of four new species. *Forests* 12: 1397. https://doi.org/10.3390/f12101397