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Tropical and subtropical ecosystems are primarily responsible for 
the large interannual variability in the global carbon land sink1–4.  
In cooler and wetter years in the tropics, carbon uptake by 

tropical vegetation is large and increases the global land sink, whereas 
warmer and drier years reduce this sink5–7 or flip it into a carbon 
source8. The response of tropical vegetation productivity to variability 
in moisture availability probably contributes to these emergent global 
patterns6. A better understanding of the global land sink variability 
therefore requires quantifying the effect of climatic variation on tropi-
cal vegetation productivity. Yet, the sensitivity of key components of 
tropical vegetation productivity, such as woody biomass growth, to 
climate variability is poorly understood. Direct, long-term and tempo-
rally highly resolved measurements of these components are needed 
to reconstruct2, simulate9,10 and forecast the carbon land sink11,12.

In this Article, we evaluate the climate responses of woody biomass 
growth throughout the global tropics (here defined as 30° N–30° S, 
including subtropics). We focus on woody biomass growth in tree 
stems, which constitutes a significant share of net productivity of 
tropical vegetation at local13,14 to continental scales15,16, contributes to 
the main long-term carbon reservoir in tropical biomass17 and deter-
mines the success of forest-based natural climate solutions18. Using 
a compilation of tropical tree-ring data, we test three hypotheses on 
the association between climate and annual woody biomass growth 
of trees (hereafter, ‘tree growth’) across tropical climate zones that 
vary in temperature and precipitation. (1) We expect opposite asso-
ciations of tree growth with precipitation (positive) and temperature 
(negative), consistent with those observed for the land sink5,6. (2) We 
expect the magnitude of these associations to peak in the wet season, 
when photosynthesis19 and woody biomass growth20 in tropical veg-
etation are typically highest. (3) Finally, we expect climate–growth 
associations to amplify with site aridity because semi-arid regions 
exhibit stronger climatic variability1 and contribute more to interan-
nual variability in the land sink1,3,4,21. Hereafter, we will refer to asso-
ciations between climate and tree growth as ‘climate responses’.

We established a network of 415 tree-ring chronologies (time 
series of absolutely dated, population-level average ring width)  
compiled from tropical and subtropical latitudes (Extended Data 
Fig. 1). From this network, we selected 347 chronologies that fulfilled 

quality criteria of sample size, chronology robustness and length 
and that covered recent decades. The chronologies are derived from 
99 tree species on 5 continents and were obtained from co-authors 
(n = 112 chronologies) and the International Tree-Ring Data Bank 
(ITRDB; n = 235).

To facilitate comparative analyses of tree climate responses across 
the network, we re-developed standardized ring-width index (RWI) 
chronologies using a single detrending method. We then assessed 
climate associations by relating the most recent 50 years of all  
RWI chronologies to gridded climate data (Extended Data Table 1).  
We chose to evaluate climate associations with precipitation (PP) 
and maximum temperature (Tmax) instead of commonly used 
drought indices because these climate data are directly measured 
and available for multiple decades and because Tmax is a strong driver 
of tropical woody biomass growth22.

We tested our first two hypotheses using two complementary 
approaches. First, to detect common modes of climate response 
across the network, regardless of biogeographic region, we per-
formed a self-organizing maps (SOMs)23 cluster analysis based on 
RWI responses to monthly PP and Tmax over a 2 yr period during 
and before the year of ring formation. This approach allows for 
detecting idiosyncratic and lagged responses of tree growth to 
monthly climatic conditions24. We present the results based on a 
2 × 2 SOM grid, which resulted in four groups of climate response. 
Second, to evaluate the relative influences of Tmax and PP on tree 
growth during the wet (PP > 100 mm month–1) (ref. 25) and dry 
(PP < 100 mm month–1, preceding ring formation) seasons, we 
conducted a multiple linear regression analysis of RWI for each 
chronology. This more-restrictive analysis included only season-
ally significant (P < 0.05) and additive effects of the two climatic 
variables during a 1 yr period. For both approaches, we tested 
hypothesis 3 by associating climate responses with ambient hydro-
climatic conditions.

Network representativeness
Our network covers a large portion of climatic conditions and 
biomes on tropical land area (Fig. 1a,b and Extended Data Fig. 1).  
The network is climatologically representative for 66% of the  
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pantropical land area with woody vegetation and matches pan-
tropical distributions of precipitation regimes reasonably well 
(Fig. 1b). The network overrepresents Northern Hemisphere sub-
tropical montane regions, where the presence of coniferous species  

facilitates dendrochronology, while it underrepresents humid lowland 
tropical forests, in part because weak climatic seasonality hampers 
chronology development26. We consider these over- and underrepre-
sentations by validation tests and weight-adjusted analyses.
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Fig. 1 | Distribution and climatic representativeness of tropical tree-ring network. a, Geographic distribution of tropical tree-ring chronologies 
(n = 347) on a tree-cover map. Tree-cover percentage from open-source data: MODiS (https://lpdaac.usgs.gov/products/mod44bv006/). b, Climatic 
representativeness of the network can be assessed on the basis of distributions of chronologies (black) and tropical land area with woody vegetation 
(green). Density values are scaled from 0 to 1, with 1 indicating a condition that is most represented in the network (black) or occupies most land area 
(green). Climatic overrepresentation (underrepresentation) of network occurs when black lines are above (below) green lines. c, Geographic distribution 
of four groups of tropical tree growth responses to climatic variation: strong positive pp response, positive pp response, weak positive pp response and 
weak negative pp response (n = 43, 69, 115 and 120 chronologies, respectively). Maps are coloured by CWD for pixels with woody vegetation falling within 
group-specific climate envelopes (MAT versus MAp) or are grey for woody vegetation pixels outside envelopes. Groups are representative of 4%, 48%, 
67% and 46% of woody vegetated tropical land area, respectively.
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Four robust clusters of climate responses
When SOM clustering the chronologies according to their monthly 
climate responses, four distinct groups with characteristic climate 
response modes emerge. Three of the four climate response groups 
are globally distributed, taxonomically diverse and climatologi-
cally representative for 46–67% of global tropical woody vegetation  
(Fig. 1c). One of the groups (strong positive PP response) is 
restricted to North America, is taxonomically poor and has a very 
limited representativeness (4%; Fig. 1c).

Tree growth in three of the four groups responds positively to 
PP increases and negatively to Tmax increases, supporting hypothesis 
1, whereas these responses are reversed in the fourth group (weak 
negative PP response; Fig. 2a). Despite differences in response mag-
nitude among the first three groups, the seasonality of the response 
is similar, with the strongest climate responses occurring in the dry 
season (Fig. 2a). This larger importance of dry-season climate con-
trasts with hypothesis 2 and suggests dry-season water availability 
and demand as first-order drivers of interannual variability in tropi-
cal tree growth. The importance of this driver is further supported 
when ranking the groups from strongly positive PP response to 
weakly negative PP response. This ranking coincides with a gradient 
of low to high annual water availability (mean annual precipitation 
(MAP) and cumulative water deficit (CWD); Fig. 2b) and strongly 
to weakly negative water balance (Extended Data Table 2), in accor-
dance with hypothesis 3.

In the geographically restricted ‘strong positive PP response’ 
group, tree growth reacts strongly and positively to higher PP and 
lower Tmax throughout the dry season, with a response peak in the 
mid-dry season (Fig. 2a). At the semi-arid, high-elevation sites in 
this group, the mid-dry season occurs in winter, when PP falls pri-
marily as snow and becomes gradually available as moisture during 
spring when trees resume growth.

Trees in the ‘positive PP response’ and ‘weak positive PP 
response’ groups typically grow at lower elevation, at sites with 
low to medium water availability (Extended Data Table 2). In both 
groups, PP response peaks in the late dry season, but the timing and 
shape of the peaks differ between groups. Finally, the ‘weak nega-
tive PP response’ group occurs at sites with relatively high water 
availability and is the only group with consistently negative PP and 
positive Tmax responses that are somewhat stronger in the wet season 
compared with the dry season.

The two groups with the strongest positive PP responses differ 
from each other not only in mean hydroclimatic conditions, but 
also in the amplitude of interannual PP variation (PP variability) 
(Fig. 2c). Both annual and dry-season PP variability are stronger for 
the strong positive PP response group compared with the positive 
PP response group, indicating that the strongest climate responses 
can be found at dry sites with high PP variability. By contrast, the 
two groups with the weakest climate responses show no significant 
differences in PP variability but differ in their seasonality in pre-
cipitation (PP seasonality) (Fig. 2d). Sites with a weakly positive PP 
response have lower PP seasonality and higher monthly dry-season 
PP than sites with a weakly negative PP response.

Climate response groups also differed in associations with the El 
Niño/Southern Oscillation (ENSO) cycle, a major driver of tropical 
forest productivity8. During El Niño years, tree growth in the strong 
positive PP response group is clearly stimulated, but associations are 
lacking or weak in the other groups (Extended Data Table 2).

The typical climate responses of these four groups are con-
served in cross-validation tests in which a random portion (10%) 
of the overrepresented colder sites (mean annual temperature 
(MAT) < 10 °C) was removed (Extended Data Fig. 2a,b). Validation 
tests in which poorly represented climates (MAP > 2,000 mm) and 
regions (Africa, Indonesia and Australia) were removed yielded high 
levels of correct assignments to climate response groups (Extended 
Data Fig. 2c–e). Region-specific cluster analyses (North America, 

High-mountain Asia and South America) show consistent climate 
responses with the pantropical analysis (Extended Data Fig. 3 and 
Extended Data Table 3). Thus, the climate response groups identi-
fied here are overall robust, unaffected by climatic over-/underrep-
resentation, and manifest themselves at the regional scale.

seasonal climate responses vary with hydroclimate
To evaluate the climatic drivers of tropical tree growth at the sea-
sonal level, we constructed multiple regression models for all indi-
vidual chronologies. In 75% of these 347 regressions, we found at 
least one significant effect of seasonal PP or Tmax. The regression 
coefficients reveal that effects of PP and Tmax on tree growth are 
equally large but mostly have opposite signs (PP, positive; Tmax, nega-
tive; Fig. 3a,b), in agreement with hypothesis 1.

Dry-season conditions were a stronger driver than wet-season 
conditions as indicated by a higher number of significant coef-
ficients (262 dry-season versus 176 wet-season coefficients, dry/
wet ratio of coefficients = 1.5), larger absolute coefficient values  
(Fig. 3c) and higher relative importance values (Fig. 3d) for the dry 
season. Higher proportions of significant dry-season coefficients 
were found for all three positive PP effects groups (dry/wet ratio 
ranging from 1.4 to 3.0). To examine the possible effect of rain-
fall timing during the late dry season, we ran regression models 
that included PP and Tmax during the last two months. While late 
dry-season climate was often significant in these models, the abso-
lute values of coefficients and their importance values were smaller 
than those of the full dry season (Extended Data Fig. 4). Together, 
these results contrast our expectation that tree growth is driven 
mostly by wet-season climate (hypothesis 2).

Hydroclimatic conditions probably modify these seasonal cli-
mate responses. We therefore performed weighted rank correlations 
between regression coefficients and climatic variables. These cor-
relations show that the predominantly negative effect of dry-season 
Tmax on tree growth is stronger at sites that are hotter, are more 
arid or experience a higher PP variability (Fig. 3e–g and Extended 
Data Fig. 5), supporting hypothesis 3. In addition, we also find that 
positive dry-season PP effects are stronger at drier sites (Fig. 3e). 
A notable exception to this general picture is the weaker positive 
dry-season PP response at the warmest sites (Fig. 3g), which may be 
caused by stronger evapotranspiration demand, limiting the posi-
tive effects of a wetter dry season. The results of the unweighted cor-
relation analyses were similar to the weighted analyses for all tested 
climate variables except for MAT (Extended Data Table 4). Thus, 
overall, dry-season climate responses are stronger where water sup-
ply is low and evapotranspiration demand is high.

a dominant role for dry-season climate variability
Combined, our regression and cluster analyses show that tropical 
tree growth variability responds primarily to dry-season climate 
variation and that this response is amplified in regions that are drier, 
are hotter, and experience stronger interannual climate variation. 
The pantropical and multi-decadal scale of our study provides a 
context to short-term or regional field studies that reported stronger 
drought-induced growth reduction at more-arid sites20,27,28 (consis-
tent with our tests of hypothesis 3) or absence of such responses29,30 
(consistent with the weak negative PP response group). The vari-
ability of climate responses revealed by our study calls for caution in 
scaling up results of local or short-term studies27,29.

Our finding of opposite and additive effects of PP and Tmax sug-
gests a dominant role of tree water balance (uptake from precipita-
tion minus loss by transpiration) in driving tropical tree growth. 
This is further supported by increased strength of PP and Tmax 
effects at more arid sites. The importance of tree water balance can 
be understood from the basic biology of xylem cell formation and 
enlargement31 and their strong dependence on xylem turgor pres-
sure32. Xylem growth is promoted by high soil water availability but  
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diminished by Tmax-induced increase in vapour-pressure deficit and 
transpiration27. Alternative mechanisms explaining the negative tem-
perature effects on growth include Tmax-induced reduction in pho-
tosynthesis and increase in respiration14, but their contribution is 
probably small because Tmax at our sites only rarely exceeds the ther-
mal optimum for photosynthesis (Supplementary Fig. 1) and because 
negative Tmax effects occur across a wide range of MAT values (Fig. 3g).

We find that interannual variability in tropical tree growth is 
explained mostly by climatic variation during the dry season. This 
result contradicts our second hypothesis that at water-limited sites, 
wet-season climate drives annual tree growth and hence its interan-
nual variability. How can the climate response of tree growth peak 
during the dry season when the bulk of productivity of tropical 

trees growing in water-limited sites takes place during the wet sea-
son20,27,33–36? We hypothesize that dry-season climate is more impor-
tant than wet-season climate because it is more variable (dry-season 
PP variability = 30.9; wet-season PP variability = 16.5, averaged 
across network) and because drier months within the dry season 
lead to direct reduction in tree available water, while the effect of 
such months during the wet season is probably buffered by soil 
water reserves19. We further hypothesize that climate conditions 
during the dry season constrain the magnitude of tree growth tak-
ing place during the following wet season because climatologically 
benign dry seasons advance leaf flushing and xylem growth20,27, thus 
extending the growing season. Detailed field studies are needed to 
quantify the physiological and phenological processes responsible 
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for the observed strong dry-season effects and to improve their rep-
resentation in process-based global vegetation models37,38.

In addition to mean water availability as a first-order driver, cli-
mate responses of tropical tree growth are also modulated by the 
variability and seasonality in water availability. The effect of inter-
annual variability in precipitation on the climate response of tree 
growth (Fig. 2c) is consistent with the larger contribution of arid 
regions to the interannual variation of the global carbon land sink1,3. 
Yet, the modifying role of PP seasonality on climate responses of 
tropical tree growth is poorly understood. The stronger PP season-
ality in the weak negative PP response group (Fig. 2d) may occur if 
very low moisture availability during the dry season hampers pho-
tosynthesis and xylem growth, but also if root access to (deep) soil 
water during the dry season causes stem growth to be effectively 
insensitive to dry-season precipitation39.

The positive Tmax effects and negative PP effects on tree growth in 
the weak negative PP response group (Fig. 2a) are probably explained 
by two distinct mechanisms. At high-elevation sites (>3,000 m 
above sea level (a.s.l.), 40% of the group), low growing-season tem-
perature may override water availability as the primary constraint 
of tree growth40, while at low-elevation sites (<1,500 m a.s.l., 25%), 
negative PP responses may reflect radiation limitation of photo-
synthesis19,20. Yet, the minimum MAP (2,000 mm) at which radia-
tion limitation is thought to occur19,20 is not reached by 83% of the 
low-elevation sites in this group, suggesting that local soil and ter-
rain conditions may alter this generic climatic threshold19.

aggravated drought responses under climate change
What shifts in interannual variability of tropical tree growth can 
be expected under anthropogenic climate change? Global circula-
tion models predict an average 0.5–0.7 °C warming per decade until 
2100 for our sites (Extended Data Table 5), probably resulting in 
stronger water deficits for most of the sites. Drawing from the cli-
matic variation in our network and the shifts in climate responses 
with MAT, CWD and PP variability, we expect continued climate 
change and increased PP variability41 to aggravate negative effects of 
hotter dry seasons and drier wet seasons on (regional) tree growth 
(Fig. 3e–g and Extended Data Fig. 5). This stronger sensitivity may 
elevate tree mortality42,43, reduce tree longevity44, and increase the 
frequency of years that tropical vegetation flips from being a net 
carbon sink to a net source8,15,16.

The climate responses of tropical tree growth revealed here may 
aid the interpretation of interannual variability in the tropical land 
sink3,6,10 as they provide field-based and region-specific insights into 
the climatic drivers of an important component of tropical vegeta-
tion productivity.
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Methods
Tree-ring network. We established our tropical tree-ring network (https://
tropicaltreeringnetwork.org/) by compiling published ring-width chronologies 
from naturally regenerating tree populations in tropical and subtropical vegetation 
(30° N to 30° S; excluding mangroves and flooded forests). For this purpose, we 
compiled raw ring-width data from the ITRDB (https://www.ncdc.noaa.gov/
data-access/paleoclimatology-data/datasets/tree-ring; 241 chronologies). To 
increase representation of wetter tropical regions45,25, we complemented this 
dataset with 174 chronologies derived from published tree-ring studies (mainly 
low-latitude sites; Extended Data Fig. 1).

Chronology selection. From the initial 415 chronologies, we selected those 
with a minimum length of 50 years, based on at least 5 trees and ending 
after 1975. The 1975 cut-off date is a compromise between the low quality of 
early-twentieth-century gridded climate data and the sharp recent decline in 
tree-ring data46. In addition, we selected chronologies with a mean inter-series 
correlation (Rbar) greater than 0.3 over the 50 yr period. Low or non-significant 
Rbar values may indicate poor dating quality, a lack of common environmental 
drivers of growth26,47 or both and are expected in wetter climates. By introducing 
an Rbar threshold, which removed 9% of chronologies, we sought a compromise 
between ensuring chronology quality and being overly selective towards highly 
climate-sensitive chronologies.

Our selection procedure removed 68 chronologies (6 ITRDB and 62 
contributed). The resulting network includes 347 chronologies (235 from ITRDB, 
112 from contributors) and is based on 7,751 trees and 14,032 series from 99 
species (56 genera, 24 families; metadata in Supplementary Data). Species are 
represented by 1–49 chronologies (average = 3.4) and by an average of 21.5 trees.

The selected chronologies were originally developed for various purposes, 
including climate reconstructions, ecological studies and timber yield evaluations. 
Dendroclimatic reconstructions are usually conducted in marginal habitats in arid 
and high montane regions48, which may introduce a ‘macro-site selection bias’ in 
tree-ring networks. Such bias can be strong (for instance, in the arid Southwest 
of the United States49) but was not found to exist when ITRDB chronologies were 
compared with independent reference networks (fig. S7 in ref. 24 and fig. 3 in 
ref. 50). We accommodated possible macro-site selection bias in our network by 
calculating and accounting for the climatic representativeness of sites (Network 
representativeness)49.

Chronology building and quality control. To ascertain homogeneous data 
treatment across trees and sites, we applied the same detrending method to 
all individual raw ring-width series to develop tree-ring chronologies rather 
than using the published chronologies. We tested various detrending methods 
that account for ontogeny, remove low-frequency variation and retain the 
high-frequency (annual) variation we study here. We selected a flexible spline 
detrending with a 50% frequency cut-off at 30 years to emphasize the interannual 
variation in ring width. We developed mean chronologies of RWI from the 
detrended series using a bi-weight robust mean, and the most recent 50 years of 
each chronology were selected for analysis. We ensured that dating of all tree-ring 
series from the Southern Hemisphere followed the Schulman convention51, such 
that the calendar year assigned to the ring is that during which ring formation 
started. An exception was made for the Southern Hemisphere chronologies in the 
Brazilian Caatinga biome, where the growth season occurs between March and 
July52 and thus coincides with the Northern Hemisphere’s growth season, making 
the Shulman shift redundant. Detrending and chronology building were conducted 
in R (ref. 53) using the dplR package54.

Woody vegetation and elevation data. To relate climate responses to tree cover, 
we obtained MODIS- (moderate-resolution imaging spectroradiometer) derived 
tree-cover percentages for all sites (‘Percent_Tree_Cover’, MOD44B version 6; 
https://lpdaac.usgs.gov/products/mod44bv006/). We also used this data product to 
mask out areas with <10% tree cover of tropical land area.

Climate data. We used three types of gridded climate data. We used Worldclim 
version 2 (worldclim.org)55 to obtain 30 yr (1970–2000) mean annual and 
monthly climate conditions at 1 km spatial resolution. This yielded data on mean 
monthly PP, total dry-season precipitation (DSP, in millimetres), total wet-season 
precipitation (WSP, in millimetres), MAP (in millimetres), MAT (in °C) and PP 
seasonality (unitless; this is the coefficient of variation of monthly PP (ref. 55)).  
In addition, we calculated the monthly climatic water balance (CWB) as the 
difference between monthly precipitation and potential evapotranspiration 
(PP-PET). PET was estimated from monthly Worldclim climate parameters using 
the Penman–Monteith equation implemented in the SPEI package in R (ref. 56).  
From these data, we derived, per site, annual CWD (in millimetres; always 
negative) as the sum of all negative monthly CWDs, annual CWB (in millimetres) 
as the sum of all monthly CWBs, and maximum monthly water deficit (MMWD, 
in millimetres) as the lowest (most negative) value of monthly CWBs. This set of 
variables was used to characterize climatic site conditions for all chronologies.

We further used Worldclim to obtain CMIP6 downscaled future climate 
projections for periods 2041–2060 and 2061–2080 (compared with 1970–2000) 

for all sites. We used two shared socioeconomic pathways (370 and 585) and nine 
global circulation models, of which we calculated an ensemble (arithmetic) mean 
across sites and models.

Third, we used Climate Research Unit TS4.02 (ref. 57) climate data to conduct 
climate–growth analyses based on monthly time series at a coarser spatial 
resolution (0.5°) for the most recent 50 years of each chronology in our network. 
Such broader-resolution gridded data do not optimally capture elevational 
climate gradients, but they provide the homogeneity and long time series needed 
to establish climate–growth relations in our cluster and regression analyses. All 
climate–growth analyses were conducted for daily Tmax (averaged per month or 
season) and PP (sum per month or season). We chose to use Tmax as it is related to 
atmospheric drought (vapour-pressure deficit) and thus to the tree water balance, 
which we hypothesized to be an important driver of tropical tree growth. Climate 
Research Unit data were also used to obtain a metric of PP variability for all sites 
and for all tropical land with woody vegetation. PP variability was calculated as 
the coefficient of variation of the PP time series over the 50 years covered by the 
tree-ring chronologies.

Season definitions. The multiple regression models (Multiple regression analysis) 
were constructed for seasonal (wet and dry season) PP and Tmax. We tested various 
season definitions based on PP and CWB: seasons based on a monthly PP cut-off 
of 50 and 100 mm (ref. 25) and based on CWB calculated using the Thornthwaite 
and the Penman–Monteith equations. Seasonal boundaries were very similar for 
100 mm PP and CWB (Penman–Monteith) definitions, and we thus selected the 
100 mm cut-off definition for its simplicity and because variables such as wind 
speed required for CWB are associated with large uncertainties in gridded data. 
The dry season was thus defined as all months with less than 100 mm precipitation 
preceding the wet season of the year of ring formation.

Frequency of hot months. To estimate to what extent Tmax may limit tree growth 
through decreased photosynthesis, we calculated per site the percentage of months 
during which Tmax exceeded 30 °C, when leaves in sun-exposed crowns can reach 
temperatures >32 °C and reduce photosynthesis58,59. If a large proportion of sites 
frequently experience such high Tmax values, this suggests an important role of 
temperature-driven photosynthetic limitation in tropical tree growth. If that 
proportion is small, it suggests that negative effects of Tmax on tropical tree growth 
are resulting mainly from increased transpiration.

Network representativeness. We evaluated the climatic representativeness of our 
network in two ways. First, we used Worldclim average climate data for all sites 
to define the climate space of our network and the four climate response groups 
(Cluster analysis) using a convex hull that encompasses 99% of the network’s 
MAP and MAT range (to minimize edge effects). Grid cells with MAP–MAT 
combinations outside this contour shape are not represented by our network and 
masked from CWD maps (Fig. 1c). Climatic representativeness was estimated 
by calculating the percentage of pixels of tropical land area with >10% woody 
vegetation (49,870,418 km2) within the convex hull.

Second, we quantified the representativeness of our network for tropical 
vegetation by comparing the probability density distributions of geographic 
and climatic variables (CWD, MAP, PP seasonality, PP variability, MAT) across 
our sites with those of all tropical land area that supports woody vegetation 
(>10% tree cover). We scaled both sets of distributions (sites and land area) by 
dividing them by their maximum values. Thus, a scaled value of 0 implies that 
the corresponding climatic condition is not represented by sites or tropical land 
area; a value of 1 implies that the climatic condition has the highest representation 
of sites or land area. When the scaled distributions of the network (black lines in 
Fig. 1b) and tropical land area (green lines) are similar, overall representativeness 
is good (for example, MAT, PP variability; Fig. 1b); if they are dissimilar, overall 
representativeness is limited (for example, MAT). For each climatic variable, 
a higher value of the network compared with the tropical land area indicates 
overrepresentation in the network, while the reverse indicates underrepresentation. 
We use the scaled distributions of land area for weighted correlations in our 
analysis of shifts in climate responses along climatic gradients (Climate responses 
versus climatic conditions). In two-dimensional space (Fig. 1b), distributions were 
calculated using bivariate kernel density estimation (GenKern package60).

Cluster analysis. Seasonal climate–growth analyses can miss subtle, idiosyncratic 
responses of tree species to climatic conditions during specific months or with 
a lag period. To accommodate such responses, we conducted monthly climate–
growth analyses (simple Pearson correlations) for a 24 month period (full year of 
ring formation, plus full previous year) and used these as a basis for clustering. 
For Northern Hemisphere sites, the 24 month period starts in January of the year 
before ring formation and ends in December of the year of ring formation. For 
Southern Hemisphere sites, this period is lagged by six months (running from 
1 July to June). We identified distinct groups of sites with a coherent climate 
response using SOMs23. SOMs are an artificial neural network-based method of 
dimension reduction that assigns observations (chronologies) to a set of clusters 
(or ‘nodes’) on the basis of Euclidian distance. In an iterative process, the optimal 
node assignment is determined in an unsupervised manner to best represent the 
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dataset’s variance. Nodes are then arranged in a grid of definable size and shape; 
closer nodes in this grid are more similar, distant nodes are dissimilar. This feature 
greatly facilitates the visualization and interpretation of nodes, as has previously 
been shown in regional- and continental-scale tree-ring studies61,62.

We calculated SOMs on the basis of the monthly climate correlations. The 
algorithm was presented with 24 Tmax correlations and 24 PP correlations per site, 
but no other information (for example, site location or climate). We tested square 
SOM grids of increasing size (2 × 2, 3 × 3 and so on) to visualize increasingly 
nuanced differences in climate response between the nodes. Then, we calculated 
bootstrapped means (1,000 replicates) and 95% confidence intervals of the climate 
correlations from all sites (Fig. 2a) or of geographic sub-regions (Extended Data 
Fig. 4) that were assigned to a given node. We present the results based on the 
2 × 2 SOM grid (four climate response groups). Further subdivision did not 
result in additional modes of climate response but merely in minimally differing 
variants of the four main groups. While SOM clustering uses all subtleties of 
site-specific responses of RWI to monthly climate conditions, the resulting 
climate responses are an average across all sites within a cluster and may therefore 
differ from site-specific correlation patterns. Despite this possible discrepancy, 
SOM clustering optimizes the representation of idiosyncratic and subtle climate 
responses of tree growth.

One challenge associated with SOMs is that their initiation is random, which 
leads to minor differences in site assignments. To overcome this challenge, we 
stabilized the grouping iteratively in 10,000 consecutive SOM runs. In each run, the 
codebook vectors (representing the mean climate correlations within a node) were 
reassigned to an existing node with the most-similar codebook vector based on all 
previous runs. This codebook vector was then updated with the new vector. For the 
final site assignment, we considered only the last 1,000 runs, when the codebook 
vectors did not change much anymore. The percentage of those runs when a site 
was assigned to a given node (for example, site X was assigned to Node1 in 900 out 
of 1,000 runs = 90%) was used as a quality measure for the clustering. Percentage 
assignments were high: 93 ± 10% (mean ± 1 s.d.) across the entire network and 
ranging from 85% to 97% (means) per cluster. These analyses were performed 
using the kohonen63 and boot64 packages in R.

To compare climate and geographic characteristics of the four climate response 
groups, we performed non-parametric analyses of variance (Kruskal–Wallis rank 
sum test) followed by a Wilcoxon rank sum post hoc test.

Validation tests of cluster analysis results. To evaluate the robustness of our 
cluster results regarding the over- and underrepresentation of climatic conditions 
and regions, we performed four sets of validation tests. In these ‘leave-several-out 
cross-validation’ tests, we removed a number of chronologies from the network: (1) 
a random subset to test overall robustness (10%, repeated 10 times); (2) all ‘cold’ 
sites (<10 °C MAT) to test whether clustering is strongly driven by high-elevation 
sites that are overrepresented in our network; (3) all ‘wet’ sites (>2,000 mm MAP) 
and (4) all sites in underrepresented regions (Africa, Indonesia and Australia), 
with the goal to verify whether low representation of climates or regions affects 
the assignment of chronologies to climate response groups. After removing the 
sites, we reconducted the cluster analyses (as described in Cluster analysis) for 
the remaining chronologies. Each of the removed sites was then ‘assigned’ to 
one of the four clusters by calculating monthly climate-growth correlations with 
all four clusters and assigning it to the cluster with the most-similar climate 
correlation patterns (smallest average difference in monthly correlations). We then 
calculated the percentage of correct assignments (to the same cluster as in the 
original clustering approach) and compared monthly climate correlation patterns 
(Extended Data Fig. 2) with those of the main analysis (Fig. 2a). Clustering results 
were considered robust if correlation patterns remained similar and the percentage 
of correct assignments was high.

Evaluating sensitivity of climate responses to quality of gridded climate data. 
To evaluate possible biases introduced by spatially varying quality of gridded 
climate data, we performed two analyses using distance of sites to the nearest 
meteorological station (from https://climexp.knmi.nl) as a proxy for the quality 
of gridded data. For the majority of sites, proximal meteorological stations exist: 
distances between sites and stations ranged from 0 to 243 km (median: 63 km) and 
were >100 km for 93 sites (27%). For analysis 1, we evaluated associations between 
the seasonal climate response and the distance to the nearest station. Because 
climate responses are driven by mean climate, we performed this analysis within 
two-way climate bins of MAP (300 mm wide) and MAT (3 °C wide). Within each 
climate bin that contained at least ten sites, we associated the climate response 
(the P value of the Pearson correlation of RWI with PP or Tmax during dry or wet 
season) with distance to the nearest meteorological station using Spearman rank 
correlation. Positive Spearman correlations indicate that correlation strength is 
higher when meteorological station density is higher (Extended Data Table 1a). 
For analysis 2, to verify the extent to which climate responses in our four clusters 
are modulated by the density of meteorological stations, we used t tests to find 
differences in correlation coefficients of RWI and monthly climate (PP and Tmax) 
between sites located <100 km and >100 km from meteorological stations. We 
conducted tests for the two climate response groups with a sufficiently large 
number (n > 10) of sites at >100 km from meteorological stations and for the 
24 month period used in our cluster analysis (Extended Data Table 1b).

Multiple regression analysis. For each chronology, we ran a multiple regression 
model to evaluate additive effects on RWI of interannual variability in seasonal 
Tmax and PP, which typically co-vary. This approach allows for controlling for 
one variable while testing the effect of another and yields additive effects in case 
multiple variables are included. To prevent model overfitting, we limited the 
number of explanatory variables (summed PP and average Tmax) and conducted 
seasonal (rather than monthly) analyses. The maximum number of climate 
variables in the models is thus 4 for a fixed chronology length of 50 years. We used 
the leaps algorithm for model selection, an all-subset model comparison65 that is 
more robust than stepwise methods. We scaled climate variables; their effects on 
tree growth are therefore directly comparable and unaffected by season length. 
We checked for collinearity between PP and Tmax and found significant, mostly 
negative, associations in 73% (wet) and 59% (dry) of cases. We therefore checked 
variance inflation factors in all models and found these to be lower than 2.2. To 
compare the relative strengths of PP and Tmax effects on tree growth, we calculated 
relative importance values of significant climate variables. These are reported only 
for models with >1 significant coefficient.

To examine whether dry-season effects were mostly driven by PP over the 
entire dry season or in the transitional months from dry to wet season (the 
‘Late dry season’), we also ran all regression models with two additional climate 
variables, summed PP and average Tmax, over the two last months of the dry season 
and then compared number of significant coefficients, absolute coefficient values 
and relative importance values of full versus late dry season (Extended Data Fig. 4). 
Analyses were conducted in R using packages leaps66, bestglm67 and relaimpo68.

Climate responses versus climatic conditions. To evaluate whether seasonal 
climate responses of tree growth are associated with site hydroclimate, we correlated 
significant regression coefficients with site climatic conditions: CWD, MAP, MAT, PP 
variability and PP seasonality. We performed ordinary as well as weighted Spearman 
rank correlations to account for climate representativeness of sites. We weighted 
data points by the relative density of tropical land area with woody vegetation for 
each climate variable (the green lines in Fig. 1b; Network representativeness). Thus, 
low-MAT sites (overrepresented in network) received a lower weight than high-MAT 
sites. Analyses were conducted in R using package expss69.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this paper.

Data availability
The 50-year mean RWI time series of all 347 chronologies used in this study and 
all relevant metadata of these chronologies are included in Supplementary Data. 
Raw tree-ring-width data of 98 out of the 112 contributed chronologies used 
in the analyses have been uploaded to the ITRDB (https://www.ncdc.noaa.gov/
data-access/paleoclimatology-data/datasets/tree-ring).

code availability
R-code used for chronology construction and statistical analyses will be made 
available upon request from the corresponding author.
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Extended Data Fig. 1 | Distribution and characteristics of the 415 chronologies in the network. a, Spatial distribution of tree-ring chronologies from two 
sources (iTrDB and contributors) selected to be included in this study (“in”, n = 347) or not (“out”, n = 68). b, Chronology distribution in climate space and 
across tropical biomes following Whittaker biome classification70. c, Distribution of the most recent 50 years of selected chronologies in time and across 
Koeppen climate classes71. The red line indicates the average midpoint of all 347 selected chronologies. Vegetation background in a from open source data: 
Natural Earth (www.naturalearthdata.com).
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Extended Data Fig. 2 | cross validation test of cluster analysis reveals robustness of climate response groups. results of cross validation tests in 
which selections of sites were left out of the network to test robustness of climate response patterns and correctness of site assignment. Four sets of 
tests were conducted: removal of a random 10% of the sites (a, repeated 10 times), of overrepresented climates (b, cold sites), of underrepresented 
climates (c, wet sites) and of poorly represented regions (d-e). Line graphs per climate response group are similar to those in Fig. 2 and show mean 
pearson r correlation coefficients of 50-year rWi series with monthly Tmax (red) or pp (blue) for a 24-month period that covers the year of ring formation 
(months 1-12) and that prior to ring formation (months 13-24). Bar graphs show the percentage of correct and incorrect assignments of the left out sites 
to climate response groups.
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Extended Data Fig. 3 | Globally identified climate response groups are maintained at regional level. Left panels: Spatial distribution for climate response 
groups in well-represented sections of the network: North America (n = 119), High-mountain Asia (n = 92) and South America (n = 65). in North America, 
climate response groups are geographically segregated and the ‘Strong positive pp response’ and ‘positive pp response’ groups are characterized by the 
lowest water availability (MAp; Extended Data Table 3). Furthermore, these climate response groups differ in pp variability, whereas the groups with 
the weakest (positive and negative) precipitation responses differ in pp seasonality. High-mountain Asia and South America portions of the network are 
dominated by climate response groups with weak (positive and negative) precipitation response. As in the full network, these groups do not differ in pp 
variability (Extended Data Table 3). right panels: responses of ring-width index (rWi) to interannual variation in monthly Tmax (red) and pp (blue) of four 
climate response groups. Correlation coefficients (pearson r, mean and 95% confidence intervals) are shown for a 24-month period including the year 
prior to ring formation and that of ring formation. Elevation data for left panels from open source data: ETOpO5, NOAA (https://www.ngdc.noaa.gov/mgg/
global/etopo5.HTML).
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Extended Data Fig. 4 | evaluating the roles of full vs. late dry season on tropical tree growth. a,c, Density plots of significant regression coefficients of 
pp (blue, a) and Tmax (red, c) for dry season (all dry months prior to onset of wet season), late dry season (last 2 months before onset of wet season), 
and wet season. Density plots are based on 279 multiple regression models that included at least one significant seasonal climate effect. Letters 
denote significant differences between groups for either pp or Tmax based on Wilcoxon rank test (P < 0.05, n = 581 coefficients; dry-season n = 243; late 
dry-season n = 161; wet-season n = 177). Horizonal lines represent medians. b,d, As panels a and c but for relative importance (only for models with >1 
significant coefficient, n = 487).
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Extended Data Fig. 5 | results of multiple regression analyses for dry and wet seasons. a-c, Association of regression coefficients for wet-season pp 
(blue, n = 92) and Tmax (red, n = 84) with three site-specific hydroclimate variables. All hydroclimatic variables are ordered from arid (left) to humid (right). 
d-g, Association of regression coefficients for seasonal pp (blue) and Tmax (red) with pp variability and pp seasonality. Symbol size is proportional to scaled 
representativeness of sites (‘Density’) for climate variable on X-axis (Extended Data Fig. 2). Multiple regression models are based on the most recent 50 
years of each chronology. Significant correlations (P < 0.05; Spearman rank correlation, weighted for density; Extended Data Table 4) are indicated; lines 
are shown for illustration only.
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Extended Data Table 1 | climate responses are robust to among-site variation in quality of gridded climate data

a. result of spearman’s rank correlation: Dry-season: Wet-season:

PP Tmax PP Tmax

Non-significant (P ≥ 0.05) 8 10 8 11

Significantly negative (P < 0.05) 0 0 0 0

Significantly positive (P < 0.05) 4 2 1 0

Total number of tests (grand total = 46) 12 12 11 11

b. result of t-test: ‘Weak positive PP response’ 
group

‘Weak negative PP response’ 
group

PP Tmax PP Tmax

Non-significant (P ≥ 0.05) 19 20 20 21

Stronger correlation for sites closer to meteorological station (P < 0.05) 3 2 3 0

Stronger correlation for sites further away from meteorological station (P < 0.05) 2 2 1 3

Total number of tests (grand total = 96) 24 24 24 24

a, results of Spearman rank correlations between P-values of seasonal climate responses (pearson correlations of rWi vs. seasonal pp and Tmax) and distance to the nearest meteorological station (a quality 
proxy for gridded climate data). rank correlations were conducted for MAp-MAT climate bins (bin size of 300 mm MAp by 3 °C MAT) that contained at least 10 sites. Only 15% of the correlations were 
significantly positive, suggesting a minor effect of data quality on the climate responses. b, results of t-tests that compare monthly climate responses (pearson correlation coefficients of rWi vs. monthly 
pp and Tmax) for sites close to (<100 km) or further away from (>100 km) a meteorological station. Tests were conducted for the 24-months period used in SOM-clustering analysis, and for two climate 
response groups with >10 sites at >100 km from meteorological stations. Significantly stronger climate response for sites closer to meteorological stations were found in just 8% of the cases, and the 
reverse was found for a similar proportion (7%). Thus, climate growth responses were consistent for sites located close to or far away from meteorological stations.
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Extended Data Table 2 | characteristics of four climate response groups

climate response group

strong positive 
PP response

Positive PP 
response

Weak positive 
PP response

Weak negative 
PP response

Basic information #Chronologies 43 69 115 120

#Countries 3 11 26 30

% Woody vegetation area represented 3.5 47.7 67.2 46.3

Standard deviation 0.23 a 0.21 a 0.21 a 0.18 b

1-yr autocorrelation -0.01 d 0.13 c 0.18 b 0.28 a

rbar 0.67 a 0.54 b 0.50 c 0.49 c

Geography Latitude (° N or S) 25.4 a 20.1 ab 14.6 b 26.8 a

Elevation (m a.s.l.) 2314 a 1300 b 1238 b 2685 a

Mean climate MAT (°C) 11.8 c 20.1a 19.3a 16.1b

MAp (mm) 803 b 999 a 1125 a 1094 a

CWD (mm) -757 c -524 b -422 a -381 a

CWB (mm) -728 c -241 b -244 b -74 a

MMWD (mm) -127 d -114 c -90 b -75 a

# Wet months 3 a 4 b 5 b 4 b

climate variability pp variability (-) 20.9 a 16.2 b 14.6 b 13.2 c

DSp variability (-) 40.7 a 31.7 b 27.4 c 30.5 c

climate seasonality pp seasonality (-) 90.0 ab 83.0 bc 82.9 c 89.5 a

precipitation Concentration index (pCi) 14.7 ab 13.7 bc 13.7 c 14.8 a

DSp (mm/month) 38.2 ab 34.9 ab 45.9 a 33.7 b

DSp (mm/season) 347 a 263 c 323 b 254 c

WSp (mm/month) 168 NS 163 NS 159 NS 175 NS

WSp (mm/season) 515 b 744 a 786 a 815 a

eNso responses pearson correlation with MEi (Multi-variate 
ENSO index) in current year

0.37 a -0.12 c -0.002 c 0.08 b

species composition #Species 8 22 61 50

#Genera 4 9 37 28

#plant families 2 5 16 14

#Angiosperm species 1 5 34 26

#Angiosperm chronologies 1 22 55 40

representa-tiveness Latitude 0.62 0.67 0.69 0.66

Elevation 0.06 0.34 0.31 0.16

MAT 0.06 0.36 0.30 0.19

MAp 0.91 0.87 0.89 0.87

CWD 0.24 0.39 0.46 0.50

pp variability 0.41 0.66 0.71 0.77

pp seasonality 0.80 0.81 0.82 0.78

Shown are counts (for variables starting with ‘#’) and medians (all other variables) per climate response group. Different letters denote climate response groups with significantly different median values in 
a post-hoc test (Wilcoxon rank sum test; P < 0.05; NS = not significant). representativeness of geographic and climatic variables is shown as the mean of the scaled density of all sites in a climate response 
group for the climatic variable of interest. rbar: mean inter-series correlation; MAT: mean annual temperature; MAp: mean annual precipitation; CWD: annual climatic water deficit; CWB: cumulative water 
balance; MMWD: maximum monthly water deficit; pp seasonality: seasonality of monthly precipitation; pp variability: inter annual variation in annual precipitation; DSp variability: inter annual variation in 
dry-season precipitation; pp seasonality: precipitation seasonality; DSp: dry-season precipitation; WSp: wet-season precipitation; ENSO: El Niño Southern Oscillation.
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Extended Data Table 3 | regional differences of climate response groups

North america climate response group

strong positive PP 
response

strong positive PP 
response

strong positive PP 
response

strong positive PP 
response

Basic info #Chronologies 42 46 16 15

Geography Elevation (m a.s.l.) 2332 a 1685 b 47 c 2500 ab

Mean climate MAT (°C) 11.7 c 19.3 b 21.9 a 12.1 c

MAp (mm) 803 b 856 ab 1255 a 966 ab

CWD (mm) -764 b -646 a -503 b -549 ab

climate variability pp variability (-) 20.9 a 17.7 b 15.3 b 18.3 ab

DSp variability (-) 40.6 a 30.4 b 30.6 b 39.2 a

climate seasonality pp seasonality (-) 90.1 ab 83.0 ab 61.3 b 95.7 a

DSp (mm/month) 37.9 NS 35.8 NS 47.4 NS 30.9 NS

WSp (mm/month) 168 NS 150 NS 169 NS 178 NS

High-mountain asia

Basic info #Chronologies 3 34 58

Geography Elevation (m a.s.l.) 3100 b 3284 a

Mean climate MAT (°C) 9.0 NS 11.0 NS

MAp (mm) 841 NS 1094 NS

CWD (mm) -273 NS -310 NS

climate variability pp variability (-) 12.5 NS 12.6 NS

DSp variability (-) 20.2 NS 26.7 NS

climate seasonality pp seasonality (-) 84.2 b 94.2 a

DSp (mm/month) 32.4 a 34.4 b

WSp (mm/month) 170 b 196 a

south america

Basic info #Chronologies 38 27

Geography Elevation (m a.s.l.) 590 NS 1600 NS

Mean climate MAT (°C) 21.8 NS 18.5 NS

MAp (mm) 1140 NS 899 NS

CWD (mm) -491 NS -178 NS

climate variability pp variability (-) 17.0 NS 16.8 NS

DSp variability (-) 24.0 b 28.5 a

climate seasonality pp seasonality (-) 62.1 NS 83.8 NS

DSp (mm/month) 48.2 NS 38.0 NS

WSp (mm/month) 154.9 NS 151.3 NS

Shown are counts (for variables starting with ‘#’) and medians (all other variables) per climate response group and for each of three well-represented regions. Different letters denote groups with 
significantly different median values in a post-hoc test (Wilcoxon rank sum test; P < 0.05; NS = not significant). Only groups represented by >10 sites were tested. MAT: mean annual temperature; MAp: 
mean annual precipitation; CWD: annual climatic water deficit; pp seasonality: seasonality of monthly precipitation; pp variability: inter annual variation in annual precipitation; DSp variability: inter annual 
variation in dry-season precipitation; pp seasonality: precipitation seasonality; DSp: dry-season precipitation; WSp: wet-season precipitation.
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Extended Data Table 4 | correlations of seasonal regression coefficients and site climate conditions

a. Dry season

cWD MaP MaT PP variability PP seasonality

uW W uW W uW W uW W uW W

PP Tmax -0.259 -0.232 -0.088 -0.002 0.002 -0.367 0.232 0.232 0.070 0.053

pp ** ** NS NS NS *** ** * NS NS

Tmax Tmax 0.425 0.390 0.317 0.307 0.050 -0.312 -0.341 -0.336 0.015 -0.005

pp *** *** *** *** NS *** *** *** NS NS

b. Wet season

CWD MAp MAT pp variability pp seasonality

UW W UW W UW W UW W UW W

PP Tmax -0.158 -0.077 -0.049 -0.019 0.362 0.181 0.467 0.332 -0.273 -0.328

pp NS NS NS NS *** NS *** ** ** **

Tmax Tmax 0.027 0.066 0.046 0.102 -0.126 0.110 0.104 0.039 -0.010 -0.047

pp NS NS NS NS NS NS NS NS NS NS

results of unweighted (UW) and weighted (W) Spearman rank correlations between site climate variables (CWD, MAp, MAT, pp variability, and pp seasonality) and significant regression coefficients for 
pp and Tmax during dry (a) or wet (b) season. The weighted correlation analysis accounts for the under- and over-representation of climatic conditions in our network by weighing data points by the relative 
density of tropical woody vegetation for the value of the climate variable under consideration (green lines in Extended Data Fig. 2). A total of 438 significant regression coefficients were obtained from 260 
multiple regression models that contained at least one significant effect (out of the 347 models conducted for all chronologies). Significance levels: *: 0.01 < P < 0.05; **: 0.001 < P < 0.01; ***: P < 0.001. 
Sample sizes dry season: pp, n = 130; Tmax, n = 132; wet season: pp, n = 92; Tmax, n = 84.
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Extended Data Table 5 | Predicted warming at network sites

Predicted increase in: ssP 2021-2040 2041-2060 2061-2080 2081-2100

Tmax (°c) 370 1.32 ± 1.24 2.21 ± 1.27 3.21 ± 1.31 4.35 ± 1.37

585 1.49 ± 1.25 2.58 ± 1.26 3.95 ± 1.32 5.59 ± 1.41

Tmin (°c) 370 1.25 ± 1.2 2.11 ± 1.23 3.08 ± 1.26 4.18 ± 1.33

585 1.37 ± 1.21 2.44 ± 1.23 3.77 ± 1.3 5.36 ± 1.42

Tmean(°c) 370 1.29 ± 1.14 2.16 ± 1.17 3.15 ± 1.2 4.27 ± 1.26

585 1.43 ± 1.14 2.51 ± 1.16 3.86 ± 1.22 5.47 ± 1.32

predicted maximum (Tmax), minimum (Tmin), and mean (Tmean = Tmax - Tmin) warming, averaged across all 347 sites until 2100, and relative to 1970-2000 values. For each site, predictions of 9 GCMs were 
averaged, and then site-specific values were averaged, and their SD calculated. predictions are shown for two Shared Socio-economic pathways (SSps).
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