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Terrestrial species are predicted to migrate northward under global warming conditions, yet little is
known about the direction and magnitude of change in microbial distribution patterns. In this
continental-scale study with more than 1600 forest soil samples, we verify the existence of core micro-
biota and lump them into a manageable number of eco-clusters based on microbial habitat preferences.
By projecting the abundance differences of eco-clusters between future and current climatic conditions,
we observed the potential warming-driven migration of the core microbiota under warming, partially
verified by a field warming experiment at Southwest China. Specifically, the species that favor low pH
are potentially expanding and moving northward to medium-latitudes (25�–45�N), potentially implying
that warm temperate forest would be under threat of soil acidification with warming. The eco-cluster of
high-pH with high-annual mean temperature (AMT) experienced significant abundance increases at
middle- (35�–45�N) to high-latitudes (> 45�N), especially under Representative Concentration Pathway
(RCP) 8.5, likely resulting in northward expansion. Furthermore, the eco-cluster that favors low-soil
organic carbon (SOC) was projected to increase under warming scenarios at low-latitudes (< 25�N),
potentially an indicator of SOC storage accumulation in warmer areas. Meanwhile, at high-latitudes
(> 45�N) the changes in relative abundance of this eco-cluster is inversely related with the temperature
variation trends, suggesting microbes-mediated soil organic carbon changes are more responsive to
temperature variation in colder areas. These results have vital implications for the migration direction
of microbial communities and its potential ecological consequences in future warming scenarios.

� 2021 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

The interactions between microorganisms and global climate
change have attracted much scientific and social attention:
microorganisms are vital in maintaining ecosystem function [1,2]
and regulating climate change [3,4] and meanwhile the climate
change in turn heavily impacts microbial community composition
and function [5]. Despite of the crucial roles of microorganisms in
determining the ecological response to current and future climate
change [6], their response to climate change is still hard to predict,
and changes in microorganisms are barely in the concerns
of the policy decision makers [5]. One of the reasons could be the
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tremendous microbial diversity in all ecosystems, especially in
soils, that makes it hard to determine the key microorganisms to
put into the earth ecosystem model [7]. Besides, the individual
microbial taxa showed extremely high spatial heterogeneity and
responded to various environmental factors [8–10], making it hard
to determine the ecological roles of individual taxa. Therefore, the
capability to predict and quantify soil microbial responses to future
climate warming has increasingly been challenged [11].

An improved representation of microbial diversity makes it pos-
sible to get a more accurate prediction of microbial response and
their ecological consequences. It was predicted that the low-
temperature adapted species could be replaced by the higher tem-
perature adapted ones in arid soil biocrusts in the coming decades
[12], suggesting it is possible to forecast the responses of microbial
community to climate change. Recently, there are some emerging
evidence that vast soil microbial diversity could be represented
by a short list of most abundant and ubiquitous taxa (termed as
dominant taxa hereafter) [13], with a total of 511 highly abundant
and broadly distributed species displaying very similar patterns in
b-diversity as 25 thousands of microbial species observed globally.
Although the diversity of the entire microbial community could be
represented by 2% of their species, this reduced diversity is still too
large to be included in predictive ecosystemmodels. An alternative
way is to further lump these dominant phylotypes into a manage-
able number of groups. Some trait-based concepts have been pro-
posed in terms of grouping microorganisms, which contribute to
link microbial attributes to their ecological roles, such as
oligotrophy-copiotrophy [14], competitor-stress tolerator-
ruderals (C-S-R) classification, the newly proposed high yield-
resource acquisition-stress tolerance (Y-A-S) strategy [15], as well
as ecological clusters [13]. The ecological clusters are lumping
dominant phylotypes into a limited number of ecologically mean-
ing groups according to the environmental preferences (a kind of
microbial trait defined by the favorable habitat where microbial
abundance peaks), which take into account the fact that microbial
individuals respond differentially to various environmental factors.
Given the vital effects of dominants on ecosystem function [16], we
proposed that abundance changes of eco-clusters induced by
future climate change could be used to forecast environmental
processes and subsequent ecological consequences.

Forest has been considered as one of the climate-sensitive soil
ecosystems [4]. Here we analyzed high-throughput sequencing
datasets of 16S rRNA gene from > 1600 soil samples across over
100 forest sites at continental scale. We propose a scheme to build
trait-based continuous distributions to include in the ecosystem
models. By integrating with environmental parameters, we build
continuous biogeographic distributions of eco-clusters for current
climatic condition. Thereafter, we projected the future eco-
cluster-based microbial biogeography in 2050s (average across
2040–2069) and 2080s (average across 2070–2099) under two cli-
mate scenarios: Representative Concentration Pathway (RCP) 2.6
where the global mean temperature rise to 2 �C by 2100 relative
to preindustrial times, and scenario RCP8.5 in which temperature
rises with time. Such projection has successfully predicted the
northward migration of terrestrial species [17–20] and the abun-
dance increase and habitat expansion of major marine cyanobacte-
rial lineages [21] under global warming. The foundation of these
projections is that species occurrence and abundance in future cli-
mate scenarios is linked to similar factors as under current climate
condition. Our major objectives are (i) to predict the direction or
magnitude of changes in soil core microbiota in a warming world;
and (ii) to forecast the potential ecological consequences on the
basis of climate-change-induced shifts in microbial hotspots. Here,
‘‘hotspots” refers to locations where high abundances of an eco-
cluster occur. Our methods and current results provided new
insights on deciphering microorganism-climate change connec-
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tions by bridging the climate-change-induced microbial changes
with potential ongoing environmental processes and ecological
consequences.
2. Materials and methods

2.1. Sampling sites description

A total of 1654 samples collected from 111 sites in China were
initially included in this study, along the 15th standard terrestrial
transect of the International Geosphere-Biosphere Project (Fig. S1
online). This transect is typically heat-driven, crossing more than
30 latitudes and covering various forest types (evergreen broadleaf
forests, evergreen needleleaf forests, broadleaf and needleleaf
mixed forests, deciduous broadleaf forests, and deciduous needle-
leaf forests) and located in different climatic regions (from north to
south: cold humid regions, temperate humid and semi-humid
regions, temperate semi-arid regions, warm temperate humid
and sub-humid regions, north subtropical humid regions, mid-
subtropical humid regions, south subtropical humid regions, and
tropical humid regions).

2.2. Sequencing data collection and analysis

Information about the data sources, formats and pretreatments
were collected and compiled in a summary data file. A subset of
raw reads for 885 samples were collected by the China Soil Micro-
biome Initiative (CSMI) and we also downloaded data which were
generated from forest soils in China through ‘‘SRA Toolkit 2.9.0”
based on their BioProject accession numbers. Only reads that cov-
ered the V4 region (515F-806R) of 16S rRNA gene and were gener-
ated from Illumina MiSeq sequencing platforms were retained (see
Supplementary materials online). After merging and standardizing
process, reads were subjected to regular sequence analysis (Fig. S2
online) by using our in-house Galaxy pipeline (http://mem.rcees.
ac.cn) [22].

2.3. Statistical analysis

Geographic information (latitude, longitude and elevation) and
soil physical and chemical properties (including pH, soil organic
carbon (SOC), total nitrogen (TN), moisture %) were recorded and
measured, respectively. Climatic parameters were obtained from
WorldClim database (version 2.0, http://worldclim.org/version2)
[23]. ordinary least squares (OLS) regression models were per-
formed to examine the latitudinal and environmental associations
to microbial diversity across those individual samples. Microbial
diversities (richness, Shannon, and Faith’s phylogenetic diversity
(PD)) were quadratic fitted to latitudinal gradient determined by
lower Akaike information criterion (AIC) values compared to linear
fit. We also performed principal components analysis (PCA) based
on Unweighted Unifrac distance and Bray-Curtis dissimilarity to
show the community clustering between samples categories or
across environmental gradients. Different beta matrices resulted
in similar results. Canonical correspondence analysis (CCA) was
also performed to determine the most significant environmental
variables shaping the microbial community composition. The vari-
ables selected by CCA were then used in structural equation mod-
eling (SEM)-based analysis.

SEM was performed to further test direct and indirect effects of
geographic, climatic, edaphic, and plant-related variables on
microbial distribution and diversity. An a priori model was initially
established according to empirical data and literature, which was
then adjusted by removing non-significant links or variables and
adding new links until a lowest v2 value was archived with



Fig. 1. Overall microbial alpha and beta diversity patterns along latitudinal gradient and the direct and indirect driving forces. Latitudinal distributions of shannon (a) and
Faith’s phylogenetic diversity (PD) (b) with second order polynomial regression lines. (c) PCoA plot of microbial community based on unweighted unifrac matrix. This plot
illustrates that similarity of microbial communities were structured by latitudes. The possible reasons revealed by SEM analysis (d) which shows that AMT, followed by
spatial eigenvector, have strong direct effect on microbial community structure.
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P > 0.05 which means the model fits the observed data. PCA was
employed to simplify the vectors subjected to SEM analysis (see
Supplementary materials online). The spatial variable was repre-
sented by PCNM5 (the most significant Principal Coordinates of
Neighbor Matrices (PCNM) eigenvector identified by CCA) and
microbial composition was represented by principle coordination
analysis (PCoA) 1 axis based on Bray-Curtis dissimilarity. In order
to isolate the effect of mean annual temperature (AMT) on micro-
bial community and diversity, it was treated as an independent
variable. Most of the statistical tests and graphics were conducted
with program R (version 3.5.1) [24] and SEM was performed in
Amos 24.0.0 (IBM SPSS Inc, Chicago, USA).
2.4. Identification of core microbiota and ecological clusters

A total of 1411 samples with full environmental parameters
were involved in identifying core microbiota. Dominant phylo-
types were selected based on two criteria [13,25]: high abundance
(phylotypes ranked among top 10% of total abundance) and rela-
tive ubiquity (accounting for > 40% occurrence frequency,
i.e. > 564 samples). The rank-abundance pattern is plotted. Ecolog-
ical clusters were identified following the method used by
Delgado-Baquerizo et al. [13]. Briefly, the dominant phylotypes
2027
were subjected to random forest (RF) analysis to quantify the rela-
tive importance of environmental parameters, and address the
most significant indicator for each phylotype. The best indicator
characterized the environmental preference for a given phylotype
with >30% variation explained by the RF model (Supplementary
materials online). Semi-partial Spearman correlations were calcu-
lated for the selected phylotypes (n = 764) with known environ-
mental preference. These analyses were done in RandomForest
[26] and ppcor packages [27] in R. The dominant phylotypes were
clustered into various ecological groups by using hclust function
(with maximum distance clustered by ward.D2 method) and visu-
alized in a heatmap figure by using pheatmap package in R, only
showing the correlations with a significance of P < 0.001 (Supple-
mentary materials online). Relative abundance of each cluster per
sample was calculated by percentage of sequences belonging to
that cluster to the sum of total sequences in the whole community.
2.5. Cubist model construction and evaluation

Cubist prediction model is a type of regression tree based tool to
explore how to estimate a case’s target value by information on
explanatory covariates [28]. In this study, it is to relate the mea-
sured soil characteristic and current/future climatic data to the
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abundance of each ecological cluster for a given spatial spot (Fig. S3
online). Cubist committee models for each eco-cluster were first
built for 1411 samples, and then predictions for the unsampled
locations with the same predictors were made by using prediction
function based on the created Cubist model fit. The underlying pro-
cedures are as follows: first, identifying the rule or rules that cover
the new location; second, calculating the relative abundance for
that location by the corresponding linear formulas under the rule
(s) and finally averaging those results. Three parameters were used
to evaluate the Cubist model fits: average error magnitude, relative
error magnitude, and correlation coefficient. The relative error
magnitude should be less than 1 if this model is to be considered
as useful. The correlation coefficient indicates the fitness between
the actual relative abundances and those values predicted by the
model. RF regression analysis was also performed to predict the
relative abundances of eco-clusters and the results were signifi-
cantly correlated to Cubist prediction (R2 > 0.5, P < 0.05). For all
the subsequent analyses, only Cubist predictions were used in this
study.

The spatial distributions of ecological clusters under current
conditions were generated and mapped over the forested region
using Kriging interpolation method based on exponential semivar-
iogram (Fig. S3 online). Model construction and map visualization
were done in R 3.5.1 with Cubist, gstat, raster, sp, maptools, and
ggplot2 packages and the spatial distribution maps were redeco-
rated in ArcMap 10.3 (ESRI, RedLands, USA).

2.6. Projection under future climate scenarios

A similar approach was taken for quantifying and mapping bio-
geographic patterns of each ecological cluster with the climatic
condition under future climate projections (Fig. S3 online). The rel-
ative abundances of ecological clusters were predicted based on
the previously constructed Cubist model, using climate related
parameters derived from climate projections in the year of 2050s
and 2080s for the two end-members of representative concentra-
tion pathways RCP2.6 and RCP8.5, with soil characteristics con-
stant to current condition. The projected temperature changes for
forested regions in China under RCP2.6 is close to the Paris Agree-
ment’s aim limiting the temperature increase to 1.5 �C [29] with
current condition as baseline, whereas that under RCP8.5 is more
approximate to temperature change inferred from the best model
simulating today’s climate [30]. Future climate projections (same
climatic indices with current condition) under RCP2.6 and RCP8.5
in the year of 2050s and 2080s were derived from climate model
BCC-CSM1.1 (originated from Beijing Climate Center, China) which
was downloaded from the CCAFS-Climate data portal (http://www.
ccafs-climate.org/data_spatial_downscaling/). All the spatial data
were gridded using bilinear interpolation to the same spatial reso-
lution of 0.1�.

In order to show the spatial effects on temporal variations of
biogeographic pattern, we recalculated the overall relative abun-
dances for four latitudinal groups under current and future climate
conditions: high-latitudes (> 45�N), higher mid-latitudes
(35�–45�N), lower mid-latitudes (25�–35�N), and low-latitudes
(< 25�N). Paired t-test analysis of cell-to-cell grid data was used
to show whether significant differences exist between future
projection and current condition for certain latitudinal regions.
Raster calculation function in ArcMap 10.3 was used to calculate
the projected differences between future and current condition
(future-current).

2.7. Field-warming experiment

Global warming induced temporal variations in biogeographic
patterns in terms of ecological clusters were tested by using the
2028
one-site warming experiment. This warming experiment was
established in 2010 at the Ailaoshan Station (24�320N, 101� 010E;
with elevation of 2480 m) in Jingdong County, Yunnan Province,
southwestern China. This station is set up for Subtropical Forest
Ecosystem Studies of the Chinese Ecological Research Network.
Dominant plants at this area contain Lithocarpus xylocarpus,
Lithocarpus hancei, Castanopsis rufescens, Sinarundinaria nitida,
Carex teinogyna, and Pteridium aquilinum var. latiusclum. The
monthly mean temperature ranged from 15. 3 �C in July to 5.1 �C
in January, with annual mean air temperature of 11.0 �C. The aver-
age annual rainfall was 1882 mm, with 85.4% occurring in the rainy
season (May to October) [31]. Surface soils are characterized by
high water permeability and water conservation ability, high
organic carbon content, and relatively low pH of 4.5–5.0 [31]. A
total of 10 plots (5 under warming and 5 under ambient condition)
were set up. An infrared lamp (45 cm in length) and an arch-
shaped heat reflector were fixed at a height of 2.3 m above a glass
chamber (90 cm in length, 90 cm in width, and 50 cm in height) for
each warming plot to achieve a whole ecosystem warming of 2 �C.
The samples from this study were collected after warming for
1.5 years. Under each condition (warming vs. ambient), five sam-
ples were collected. The sequence data from the warming experi-
ments were processed and grouped into eco-clusters like the
data along the latitudinal gradient, but not involved in the Cubist
model construction. Student’s t-tests were performed to assess
differences in defined eco-clusters under warming and ambient
conditions. Response ratio analysis was used to compare the
effects of projected and experimental warming on relative
abundance of high-pH with high-AMT eco-cluster with a 95%
confidence interval.

3. Results and discussion

3.1. Latitudinal biogeographic patterns of microbial diversity

The soil samples from forest ecosystems in China cover most of
the forest types in northern hemisphere with various edaphic and
climate conditions (Fig. S1 and Table S1 online) [32]. Apparent lat-
itudinal patterns were obtained in microbial diversity and struc-
ture (Fig. 1a–c). Unlike the typical latitudinal diversity gradient
(LDG) observed in plants and animals, microbial diversity peaked
around the median latitude of 35� (Fig. 1a, b), which was likely
favored by the neutral soil pH and moderate climate conditions
(Table S1 online). Similar biogeographic pattern has been observed
for bacteria in both terrestrial and marine ecosystems over large
spatial scales [33–35]. The linear regression analysis showed that
soil pH was the most important factor accounting for this variation
in microbial diversity (Fig. S4 online). Latitudinal pattern was also
detected in microbial community structure (Fig. 1c). CCA analysis
showed the variables that had great influence on the
microbial community distribution, including climatic, especially
temperature-associated factors, soil-related and geographic-
related factors (Fig. S5 online), in accordance with previous obser-
vations that these parameters impact soil biodiversity and commu-
nity structure alone or combined [36]. The SEM analysis further
partitioned the direct and indirect effects of multiple factors on
microbial diversity and community structures. Previous studies
showing temperature exerts a direct and indirect effect on soil
microbial community structure, diversity and activity [12,37].
Indeed, AMT had significant direct effects on microbial diversity,
higher on b-diversity (Bray-Curtis index) than a-diversity
(Fig. 1d). In addition, temperature could exert an indirect effect
on microbial community via soil chemistry and aboveground
vegetation (Fig. 1d). Overall, this finding suggests future global
warming will likely be the primary force driving shifts in microbial
composition in forest soils at large geographic spatial scale.
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3.2. Core microbiota and eco-clusters

Despite this AMT-determined latitudinal biogeographic pattern,
the enormous diversity of microorganisms hindered the process to
obtain generalizable predictions for spatiotemporal distribution
under climate change. To tackle this barrier, we first narrowed
down the vast number of phylotypes (OTUs) to a short list of dom-
inant taxa that were both abundant and ubiquitous (Figs. S3 and S6
online). A small number of dominant taxa (827 phylotypes, core
microbiota) represented a large fraction of the community (~40%
of sequencing reads) and closely mirrored the whole community
(Fig. S7 online). Hence, instead of understanding the entire vast
diversity of taxa in soils, a handful of species could paint a picture
of the community, in agreement with the observations from other
ecosystems at global scale [13,38]. Highly abundant taxa have a
large impact on community and ecosystem function [16] especially
on the broad function such as community-level respiration [39]. To
better understand the ecological roles of microbial taxa, we
lumped those core microbiota into a number of manageable but
meaningful groups by using RF modeling and clustering analysis
based on semi-partial spearman correlations. Six well-defined
groups have been identified based on habitat preference: high pH
with high AMT, high pH with low sand and clay content, high
pH, low pH, low pH with high precipitation of wettest month
(PWM), and low SOC (Fig. 2a and Fig. S8 online). We found that
the relative abundances of phylotypes in eco-clusters dependent
on pH alone were monotonically increasing (high pH eco-cluster,
peaked around pH = 6–7) or decreasing (low pH eco-cluster,
peaked around pH = 3–4) with pH, whereas when combined with
other factors, the variation as a function of pH became unimodal
and the optimum pH corresponding to the peaked abundance were
deviated (peaked around pH = 5–6 for high pH related eco-cluster
and pH = 4–5 for low pH related eco-cluster) (Fig. 2a).

To understand if habitat preference was predictable by the phy-
logeny alone, the taxonomic affiliations in eco-clusters were deter-
mined. Even at coarse phylogenetic level (class level for
Proteobacteria and phylum for others), each of eco-clusters har-
bored diverse lineages (Fig. 2b). Some lineages have been reported
with apparent life strategies (i.e., oligotrophy-copiotrophy) and
could be taken as ecological indicator for nutrient status. [40].
Accordingly, we found Betaproteobacteria and Bacteroidetes
(mainly class Sphingobacteriia), following copiotrophic lifestyle,
which inhabit soils rich in nutrients [14] peaked only in high-pH
(around pH 6.0) with low-clay and low-sand eco-cluster (Fig. 2b).
In contrast, Verrucomicrobia (mainly Spartobacteria and Subdivi-
sion3), typically oligotroph which dominate nutrient-limited envi-
ronments [14] were abundant in low SOC eco-cluster (Fig. 2b).
However, not all the taxa within a single phylum could be simply
classified as oligotrophic or copiotrophic [14] such as for Acidobac-
teria habitat preference could be only tracked at a fine phyloge-
netic level. Indeed, genera Gp1, Gp2, and Gp3 following
oligotrophy were abundant in acid and low SOC soils (i.e., low
pH eco-cluster, low-pH with high-PWM eco-cluster and low SOC
eco-cluster), whereas Gp4 and Gp6 exhibiting copiotrophic life-
style were abundant in high pH eco-cluster and high-pH with
high-AMT eco-cluster (Fig. 2b). Collectively, these findings indi-
cated habitat preferences are conserved at differential phyloge-
netic depths and not predictable from coarse taxonomic
information alone [8,13] and the eco-clusters with habitat prefer-
ences together with life strategies provided more comprehensive
ecological characteristics besides nutrient availability.

3.3. Specific spatial distributions of eco-clusters at present-day

To further predict and quantify the magnitude of changes of
eco-cluster-based microbiota in a warming world, we tracked the
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prevalence and biogeographic patterns of six eco-clusters under
current and future (2050s and 2080s) conditions (Fig. 3). A
predictive-oriented model Cubist was used to predict the relative
abundance of eco-clusters and good model fit was obtained
(Table S3 online). Patched distribution patterns reflected distribu-
tion heterogeneity in taxa composition and selection of ecological
niches (Fig. 3a), partially due to distinct climate conditions and soil
and forest types. For example, current hotspots of low pH eco-
cluster (Fig. 3a) that was colored as blue patches, mostly occupied
acid soils in south of China (< 25�N). Besides, the low-pH with
high-PWM eco-cluster dominated acid soils in north of China
(> 45�N). Both of these two eco-clusters roughly matched typical
low pH regions in China [41], but were geographically located in
the warm-moist and cold-moist climatic zones, respectively. Fur-
thermore, the distribution patterns of eco-clusters (Fig. 3a) were
more complex than species diversity which peaked around mid-
latitudes (Fig. 1a, b). It has been reported that loss of dominants
has more impacts on ecosystem function and community structure
[16]. Taken together, stacking of trait-based (i.e., eco-cluster-
based) and species-diversity-based biogeographic maps should
be more efficient in refining the conservation regions than micro-
bial diversity alone.

3.4. Potential changes in distributions of eco-clusters under warming
conditions and the ecological implications

Eco-clusters contained highly abundant and highly impacted
species and thus changes in their abundances could be an early
indicator of changes in community and related ecosystem func-
tioning [16]. Each eco-cluster harbored geographic regions that
experienced fewer and greater changes in abundance (the differ-
ences between future and current, Fig. 4). Less change may suggest
more buffering capacity of soils or less adaptability of microbes
against warming [42,43]. Great changes may indicate poor adapta-
tion (loss in abundance) or well adaptation (gain in abundance) to
warming, to some extent dependent on the surrounding commu-
nity diversity and composition [44]. Paired t-test of cell-to-cell grid
data demonstrated significant changes of abundance occurred for
each latitudinal region in future scenarios compared to present
(P < 0.01, Table S4 online).

The hotspots of low pH eco-cluster remained in low latitudinal
areas (< 25�N), but the average relative abundances in mid-
latitudinal areas (25–45�N), covering most of the forested regions
(Fig. 4b blue color) were projected to increase under warming con-
ditions (Fig. 3b-II), suggesting it will slightly expand northward in
future climate warming. This increase potentially indicates that
forest ecosystems across China are under threat of soil acidification
caused by the deposition of atmospheric nitrogen and sulfur
[41,45]. Similarly, high-pH (peak around pH 6) with high-AMT
eco-cluster is the only ecological cluster directly related to temper-
ature, so it was supposed to experience the greatest changes in a
warmer world, especially at higher latitudes which suffered higher
temperature increasing amplitude [20]. As expected, this eco-
cluster experienced significant abundance increases at middle-
(35�–45�N) to high-latitudes (> 45�N), especially under RCP8.5
(Fig. 3b-VI and Fig. 4f blue color), likely resulting in northward
expansion of hotspots by 2080s. Simultaneously, relative abun-
dance in low-pH (peak around pH 4�5) with high-PWM eco-
cluster significantly decreased at high-latitudes (> 45�N) by
2080s under RCP8.5 (Fig. 3b-III and Fig. 4c red color). Together,
these changes indicated microbial succession to those preferring
relatively higher pH at high-latitudes (> 45�N) in a warming condi-
tion. In fact, previous study has shown that afforestation in north-
eastern China (located at high latitudes) to some extent neutralizes
pH from initial acidic condition [46]. This soil pH change well cor-
responds to our prediction. Collectively, the shift or expansion of



Fig. 2. Abundance and composition of identified ecological clusters. (a) Relationship between relative abundance of phylotypes (percentage of sequences in whole
community)within each ecological cluster and primary environmental factor. (b) Taxonomic compositions (percentage of OTUs within each cluster) for eco-clusters at class
level. ‘‘Verr” is short for Verrumicrobia and ‘‘Bacter” for Bacteroidetes. Different labels on each bar indicate the taxa with specific lifestyles (oligotrophy or copiotrophy).
Specifically, ‘‘a” represents Subdivision3 and Spartobacteria in phylum Verrumicrobia, which are typical oligotroph; ‘‘b” and ‘‘c” represent oliogotrophic (Gp1, Gp2, and Gp3)
and copiotrophic (Gp4 and Gp6) genera in Acidobacteria, respectively; ‘‘d” and ‘‘e” are for Bacteriodetes (mainly Sphingobacteriia) and Betaproteobacteria, respecitively, and
both of them are copiotrophic.
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Fig. 3. Biogeographic distributions for present-day and latitudinal variation in average abundance for current and future climatic conditions. (a) Maps showing biogeographic
distributions of eco-clusters in present-day. Hotspots for each eco-cluster represented by blue patches were not overlapped. (b) Projected average abundances from low to
high-latitudes for current and projected future climatic conditions. The abundance was averaged from the grid cells within each latitudinal range. Large standard deviation
was observed due to heterogeneous variation in abundances. However, paired t-tests of cell-to-cell gridded data (future scenarios vs. current condition) have shown
significant changes (P < 0.001).
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eco-cluster hotspots under projected future climate conditions
indicates the potential warming-driving changes in microbial bio-
geography (Fig. 3b and Fig. 4), which may have profound implica-
tions for ongoing environmental process and the eventual
ecological consequences.

The fluctuation in abundance of low SOC eco-cluster is the
reflection of abundance changes in nutrient-limited preferring
microorganisms (i.e., oligotroph). Most importantly, the relative
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abundance changes of dominants could infer the changes in broad
ecosystem function, such as community-level respiration [39].
Abundance changes in low SOC eco-cluster differed at high-
(> 45�N) and low-latitudes (< 25�N) (Fig. 3b-I), possibly suggesting
regionally variable responses in soil respiration. At high-latitudes,
average abundance initially decreased (from 8.71% in present to
8.33% by 2050s) and subsequently increased (to 9.44% by 2080s)
under RCP2.6, but continuous decrease (8.71% to 8.62% to 8.09%)



Fig. 4. Projected differences (2080 vs. current) in abundance (DRA, %) for identified ecological clusters under two climate scenarios. (a) eco-cluster low SOC; (b) low pH; (c)
low pH with high PWM; (d) high pH with low clay content; (e) high pH; (f) high pH with high temperature, respectively. Sub-figures in the first column are for projected
differences under RCP2.6 and those in the second column are for projected differences under RCP8.5. Projected increase was colored by light blue-dark blue and decrease by
light orange-red.
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Fig. 5. Cross-validation by using field-warming experiment. (a) Observed abundance variation in the corresponding ecological cluster between warming and ambient
conditions for Ailaoshan warming experiment site. Student’s t-test showed marginally significant changes in high pH high AMT eco-cluster (P < 0.05). (b) Response ratio (RR)
at 95% confidence interval for high-pH with high-AMT cluster for both experimental and modeled data. Values of response ratio greater than zero with confidence interval not
crossing zero indicate projected (future scenarios vs. present-day) or experimental (warming vs. ambient) warming significantly (P < 0.05) increase the relative abundance of
microorganisms belonging to high-pH with high-AMT eco-cluster at this site. Modeled data were obtained from 53 nearest grid cells around warming experiment site (Global
Positioning System (GPS): 101.0167�E/ 24.5333�N).
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occurred under RCP8.5 (Fig. 3b-I). We found these changes were
exactly opposite to temperature variation trends (Fig. S9 online),
suggesting microbes in colder regions were more responsive to
temperature changes [42]. However, average abundance of this
eco-cluster increases under both scenarios compared to current
condition at low-latitudes (8.05% vs. 8.93% vs. 8.58% for present,
2050s and 2080s, respectively under RCP2.6, while 8.05% vs.
8.70% vs. 8.70% under RCP8.5) (Fig. 3b-I). This increase may repre-
sent low-SOC preferring microbes well adapted to rising tempera-
ture at warmer regions. Given the physiology of oligotrophs, low
carbon turnover (that is, limited decomposition), more oligotrophs
indicate lower emission of CO2 and higher carbon sequestration
[3]. On the basis of this, increasing abundance of low SOC favorable
microorganisms at low-latitudes under warming indicated limited
decomposition, which may eventually lead to increase in SOC stor-
age in the coming decades [47]. However, decline in abundance of
low-SOC eco-cluster for high-latitudes under RCP8.5 inferred the
losses in SOC storage at high-latitudes under warming, probably
induced by accelerated decomposition outpacing potential carbon
input. These results partially supported previous findings regard-
ing to latitudinal limits of soil carbon losses under warming
[47,48] and that soil carbon storage at higher latitudes are more
vulnerable to warming [49].

The projected changes in the identified eco-clusters were par-
tially cross-validated by the one-site warming experiment at
Ailaoshan Mountain located in Yunnan, southwestern China
(< 25�N) (Fig. 5). The significant difference between experimental
warming and ambient conditions was only observed in the high-
pH with high-AMT eco-cluster (Fig. 5a), suggesting the sensitive
regions for other eco-clusters differ from this. Response ratio anal-
ysis evidenced a significant increase in the high-pH with high-AMT
eco-cluster with warming when compared experimental warming
to ambient conditions, as well as projected warming to present
conditions (Fig. 5b). In addition, we observed low pH eco-cluster
decreased under warming conditions (Fig. 5a), similar to the pro-
jection result at low-latitudes (< 25�N) (Fig. 3b).

Understanding how soil microbes respond and adapt to chang-
ing climates is a critical question in climate-change-microbes
interaction study. Predicting the abundance variation of the eco-
clusters to changing climate will also gain important insights into
the adaptability of microorganisms to relatively harsh environ-
ments (e.g., low pH and oligotrophic conditions) under warming.
It has been documented that rate of growth under constant envi-
ronments and the ability to adapt to changing environments deter-
mine the success and evolution of microbes in different ecosystems
[50]. Despite greater growth rate was observed at higher tempera-
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ture [51], our findings of latitudinal-dependent changes in eco-
clusters indicated that the adaptability of microbes within differ-
ent eco-clusters differed and varied with geographic regions under
warming. For example, the abundance increase in the low-pH eco-
cluster at mid-latitudinal areas (25�–45�N) indicates that warming
promotes the adaptability of low-pH favoring microbes in subtrop-
ical and warm-temperate climatic zones, but the situation is differ-
ent at high-latitudes (> 45�N).

One limitation in this study is that model results does not fol-
low closely with the field-warming experiment. A possible reason
is the relatively short-warming duration. Previous study has
proved discrepancy results from short-term and long-term warm-
ing experiments. Another reason is that we only included the dom-
inants in this study, but a number of studies have emphasized the
importance of rare biosphere in ecosystem functioning [52]. There-
fore, further efforts are needed to address these uncertainties.
Additionally, the warming cross-validation is just from single
warming site located at subtropical zone, but the coldest regions
were more sensitive to climate change according to our projection,
so we are eager to call for new studies related to such efforts from
different climatic zones, especially in high-latitude regions. A
quantitative methodology for assessing the relative response rate
of different groups of microorganisms to climate change was pro-
posed in this study. We highlighted the microbial roles in future
SOC changes. To confirm this change, one of the promising method
is to directly investigate the microbial contribution to SOC by trac-
ing microbial necromass [53] given the importance of microbial
anabolism to SOC [54]. Furthermore, we believe this procedure
could be applied to other ecosystems, such as grassland and agri-
culture soils. Since the grassland soils were more sensitive to tem-
perature elevation than forest soils [55], we could propose more
intense changes in grassland ecosystem induced by microbes than
forest under future climate change conditions.
4. Conclusion

In this study, our prediction indeed paves a new path for quan-
tifying the direction of microbial response to global warming and
for the first time projected the eco-cluster-based biogeography in
future climate conditions. The latitudinal-dependent changes in
eco-clusters under rising temperature potentially indicate that
the adaptability of soil microbes to warming was regionally vari-
able. Particularly, regions experienced great projected anomalies
(future vs. current) highlight areas that require particular attention
under ongoing global climate change, providing valuable informa-
tion for identifying ecological vulnerable regions in ecological
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conservation and environmental management. The shifts or expan-
sion in hotspots induced by climate change could be potentially
referred as meaningful ‘‘ecological indicators” to inform ongoing
environmental processes and potential ecological consequences,
like soil acidification due to sulfur and nitrogen deposition at
mid-latitudes and carbon storage changes at high-latitudes which
are useful for decision-making regarding climate change mitiga-
tion on ecosystem functions and biodiversity conservation. Collec-
tively, our results provided new insights into deciphering
microorganisms-climate change connections by bridging the
climate-change-induced microbial changes with potential ongoing
environmental processes and ecological consequences.
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