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Abstract
Aim: The aim was to understand the representativeness and accuracy of expert 
range maps and to explore alternative methods for mapping species distributions 
accurately.
Location: Global.
Time period: Contemporary.
Major taxa studied: Terrestrial vertebrates and Odonata.
Methods: We analysed the biases in 50,768 animal International Union for 
Conservation of Nature, Global Assessment of Reptile Distributions and BirdLife spe-
cies maps and assessed the links between these maps and existing political bound-
aries and various non- ecological boundaries to assess their accuracy for certain 
types of analyses. We cross- referenced each species map with data from the Global 
Biodiversity Information Facility to assess whether maps captured the whole range 
of a species and what percentage of occurrence points fell within the assessed range 
of the species. In addition, we used a number of different methods to map diversity 
patterns and compared these with high- resolution models of distribution patterns.
Results: On average, 20– 30% of the non- coastal range boundaries of species over-
lapped with administrative national boundaries. In total, 60% of areas with the high-
est spatial turnover in species (high densities of species range boundaries marking 
high levels of shift in the community of species present) occurred at political bounda-
ries, which was especially common in Southeast Asia. Different biases existed for 
different taxa, with gridded analysis in reptiles, river basins in Odonata (except the 
Americas) and county boundaries for amphibians in the USA. On average, up to half 
(25– 46%) of the recorded range points of species fell outside their mapped distribu-
tions. Filtered minimum convex polygons performed better than expert range maps 
in reproducing modelled diversity patterns.
Main conclusions: Expert range maps showed high bias at administrative borders in 
all taxa, but this was highest at the transition from tropical to subtropical regions. 
The methods used were inconsistent across space, time and taxa, and the ranges 
mapped did not match species distribution data. Alternative approaches can recon-
struct patterns of distribution better than expert maps, and data- driven approaches 
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1  | INTRODUC TION

Understanding species distributions is a fundamental aspect of 
conservation and management. Accurate maps of species distribu-
tions enable assessment of conservation priorities world- wide and 
facilitate the development of targeted conservation strategies (Jung 
et al., 2020). Thus, to perform such prioritizations or gap analyses, 
it is crucial that species ranges are spatially accurate. In the last two 
decades, range maps from the International Union for Conservation 
of Nature (IUCN) and similar publically available sources have been 
used regularly for the assessment of species distributions across 
scales (Jenkins et al., 2013; Jetz et al., 2012). Subsequently, vast 
amounts of conservation funding have been allocated based on 
these range maps (Brooks et al., 2019). Although these maps have 
been created for various purposes by different groups, they are now 
used for global biodiversity analyses, and little has been done to test 
whether they are truly fit for this purpose. Understanding these 
biases is especially important, because despite existing guidelines 
from the IUCN, checklists and other types of species data may be 
used to delimit species ranges, and this might misrepresent real spe-
cies richness patterns if explored at high resolutions.

Species range modelling is highly sensitive to the data and meth-
ods adopted and, if using species range maps, whether and how they 
are trimmed or filtered to reflect local environmental conditions. For 
instance, even basic methods to trim species IUCN ranges using hab-
itat or elevation preferences can reduce their range area enough to 
change the Red List status of many species (Li et al., 2016; Ocampo- 
Peñuela et al., 2016). The reliability of species diversity maps is cru-
cial not only to apportion adequate and appropriate conservation 
efforts, but also to understand even basic biodiversity patterns. 
Errors in these types of assessments, such as the use of adminis-
trative areas with checklists rather than high- resolution maps of 
species ranges, could highlight the wrong areas of richness or oc-
currences of rare species and, with limited resources available, this 
translates to failures to conserve areas and ecosystems critically in 
need of protection.

Unfortunately, accurate and reliable data are rare for most tax-
onomic groups owing to intense sampling biases (Hughes et al., 
2020). As a consequence, IUCN and similar data underlie countless 
studies, including those on distribution (Buckley & Jetz, 2008; Holt 
et al., 2013; Rissler & Smith, 2010), climate change (Akcakaya et al., 
2006; Sandel et al., 2011; Sekerciuglu et al., 2012) and, especially, con-
servation (Betts et al., 2017; Brooks et al., 2019; Jenkins et al., 2013, 
2015; Jetz et al., 2014; La Saout et al., 2013; Li et al., 2017; Mason 
et al., 2020; Meyer et al., 2015; Moran & Kanemoto, 2017; Ocampo- 
Peñuela et al., 2016; Pouzols et al., 2014; Runge et al., 2015). These 

studies include analyses at various resolutions, although 10 km2 is 
a common resolution in many projects as “richness maps” based on 
the same source expert range map (ERM) data as this study are made 
publically available for download and analysis at a 10 km2 resolution 
(https://biodi versi tymap ping.org). Guidance states that distribution 
data should be used in developing species range polygons, yet the 
adherence to these guidelines (which, for example, expressly state 
not to buffer single points as a range) is not apparent (https://www.
conse rvati ontra ining.org/enrol/ index.php?id=156). In order to miti-
gate the risks of misrepresenting a species’ range, researchers should 
carefully assess the limitations of their data before applying them to 
real- world issues, such as developing priorities for conservation.

An immense amount of work has gone into making these ERMs, 
and they hold great potential for informing conservation decisions, 
but assessments on their broader applicability are lacking. Here, we 
test the widespread assumption that the most up- to- date ERMs (for 
mammals, odonates (dragonflies and damselflies), amphibians, birds 
and reptiles) provide consistent and standardized species range es-
timates. Clearly, consistency in approaches is needed to compare 
richness patterns meaningfully between regions and taxa, because 
inconsistent approaches could result in changes in patterns as a con-
sequence of methodological changes and could not be differentiated 
from genuine changes in richness patterns. We assessed whether 
these range boundaries were representative of species occurrence 
or were instead associated with administrative borders. We also as-
sessed the proportion of filtered species occurrence records, based 
on data recorded in the Global Biodiversity Information Facility 
(GBIF)] falling within the designated ERM for each species. We dis-
cuss alternative methods of mapping diversity patterns and demon-
strate the trade- off between different approaches and the limits 
of applications for each. Understanding biases and inconsistencies 
between species occurrence and reported range maps can help to 
inform appropriate use of these ERMs and ensure that these data are 
fit for this purpose. Our goal is to inform the conservation commu-
nity to make better use of available data and to inform research and 
management decisions effectively, based on a clearer understanding 
of species and richness patterns.

2  | MATERIAL S AND METHODS

We use a combination of approaches to explore the relationship 
between species range maps and geopolitical boundaries and a 
subset of geographical features. In some cases, we used the den-
sity of species range boundaries to explore the relationship be-
tween these and various features (e.g., administrative boundaries, 

are needed to provide reliable alternatives to gain a better understanding of species 
distributions.
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river basin boundaries). Additionally, species richness and spa-
tial turnover are used to explore changes in richness over short 
geographical distances. Analyses were conducted in R statistical 
software unless noted otherwise. All code scripts are available 
at https://github.com/qiaoh j/iucn_fix. Workflows are shown in 
the Supporting Information (Figure S1a– c, with associated scripts 
listed).

2.1 | Species ranges and boundary density maps

Expert range maps were downloaded from the IUCN Red List web-
site for mammals (5,709 species), odonates (2,239 species) and 
amphibians (6,684 species; https://www.iucnr edlist.org/resou 
rces/grid/spati al- data). Shapefile maps for birds were downloaded 
from BirdLife (10,423 species; http://dataz one.birdl ife.org/speci es/
reque stdis) and for reptiles from the Global Assessment of Reptile 
Distributions (GARD) (10,064 species; Roll et al., 2017). The polygon 
boundaries for each species were converted to a polylines to show 
the boundary of each species range (Supporting Information Figure 
S1a- II; coding in lines 7– 18 of line2raster_xxxx.r; xxxx varies based 
on the taxon). The associated shapefile was then split to produce 
independent polyline files for each species within each taxon (see 
Supporting Information Figure S1a- I; codes are lines 29– 83 in the 
same file above).

To generate species boundary density maps, species range 
boundaries were rasterized at 1 km spatial resolution with an equal 
area projection (Eckert IV) and stacked to form a single raster for 
each taxon (at the level of amphibians, odonates, etc.). This repre-
sented the number of species in each group and their overlapping 
range boundaries (Supporting Information Figure S1b- II; codes are 
in line2raster_all.r). The value in each cell indicated the number of 
species whose distribution boundaries overlapped with each cell, 
enabling us to overlay this rasterized information with other features 
(i.e., administrative boundaries) such that the overlaps between 
them could be calculated in R. These species boundary density maps 
underlie most subsequent analyses. R code and caveats are given in 
the Supporting Information, and links are provided in text and the 
Supporting Information (Figure S1).

2.2 | Geographical boundaries

Spatial exploration of species range boundaries in ArcGIS sug-
gested that numerous geographical datasets (i.e., political and, in a 
few cases, geographical features, such as river basins) were used to 
delineate the species ranges for different regions and taxa (this is 
sometimes part of the methodology in developing ERMs, as detailed 
by Ficetola et al., 2014). Thus, in addition to analysing the adminis-
trative bias and the percentage of occurrence records within each 
species’ ERM for all taxa, additional analyses were conducted when 
other biases were evident in any given taxon or region (detailed later 
in the methods on a case- by- case basis).

For all taxa, we assessed the percentage of overlap between 
species range boundaries and national and provincial boundaries 
by digitizing each to 1 km (equivalent to buffering the polyline by 
500 m), both with and without coastal boundaries. An international 
map was used because international (Western) assessors use them 
and does not necessarily denote agreed country boundaries (https://
gadm.org/). The different buffers (500, 1,000, 2,500 and 5,000 m) 
were added to these administrative boundaries in ArcMap 10.3 
(ESRI; https://www.r-proje ct.org/) to account for potential, insignif-
icant deviations from political boundaries (Supporting Information 
Figure S1b). An R script for the same function is provided in 
“country_line_buffer.r”.

To establish where multiple species shared range boundaries, we 
reclassified the species range boundary density rasters for each taxon 
into richness classes using the ArcMap quartile function (Supporting 
Information Figure S1). From these 10 classes, the percentage of the 
top two and top three quartiles of range densities within different 
buffers (500, 1,000, 2,500 and 5,000 m) was calculated per country 
to determine what percentage of highest range boundary density 
approximately followed administrative borders. This was done be-
cause people drawing ERMs might use detailed administrative maps 
or generalize near political borders or might use political shapefiles 
that deviate slightly. Consequently, it is useful to include various dis-
tances from administrative features to assess how range boundary 
densities vary in relationship to administrative boundaries. Analyses 
of relationships between individual species range boundaries and 
administrative boundaries (coastal and non- coastal) were made in R 
and scripts provided (quantile_country_buffer_overlap.r).

2.3 | Spatial turnover and administrative boundaries

Heat maps of species richness were generated by summing entire 
sets of compiled species ranges for each taxon in polygonal form 
(Figure 1; Supporting Information Figure S1b- I). To assess abrupt 
changes in diversity, standard deviations for 10 km blocks were cal-
culated using the block statistics function in ArcMap. Abrupt changes 
in diversity were signified by high standard deviations based on the 
cell statistics function in ArcGIS, which represented rapid changes 
in the number of species present. Maps were then classified into 10 
categories using the quartile function. Given the high variation in 
maximum diversity and taxonomic representation, only the top two 
or three richness categories were retained per taxon. This was then 
extracted using 1 km buffers of national administrative boundaries 
to assess percentages of administrative boundaries overlapping 
turnover hotspots by assessing the proportion of political bounda-
ries that were covered by these turnover hotspots.

2.4 | Taxon- specific analyses

Data exploration and mapping exposed taxon-  and region- 
specific biases requiring additional analysis. Where other biases 
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and irregularities were clear from visual inspection of the range 
boundary density maps for each taxon, the possible causes of 
 biases were assessed by comparing range boundary density maps 
with  high- resolution imagery and administrative maps via the 
ArcGIS server (http://servi ces.arcgi sonli ne.com/ArcGI S/services). 
Standardized overlay of the taxon boundary sets with administrative 
or geophysical features from the image server revealed three types 
of bias that were limited either spatially or taxonomically between: 
(a) amphibians with county borders in the USA, (b) dragonflies and 
river basins globally, and (c) gridding of distributions of reptiles. In 
these cases, species boundary density maps were used as a basis to 
identify potential biases, which were then explored empirically using 
appropriate methods.

For amphibians, counties in the USA were digitized using a 
county map from the USA (https://gadm.org/), then buffered by 
2.5 km either side. Amphibian species range boundary density maps 
were reclassified, showing where species range boundaries existed 
(with other non- range boundary areas reclassified as “no data”), and 
all species boundaries were indicated numerically (i.e., a value of one 
indicates one species range boundary, and a value of 10 indicates 10 
species range boundaries). Percentages of species boundary areas 
falling on county boundaries and in the buffers, in addition to spe-
cies range boundaries that did not overlap with county boundaries, 
were calculated to give measures of the percentage of the species 
boundaries that fell within 2.5 km of county boundaries.

For Odonata, many species were mapped to river basin borders. 
We used river basins of levels six to eight (sub- basin to basin) in 
the river hierarchy (https://hydro sheds.org) to assess the relation-
ship between Odonata boundaries and river boundaries. Two IUCN 
datasets exist for Odonata: the IUCN Odonata specialist group spa-
tial dataset (https://www.iucnr edlist.org/resou rces/spati al- data- 
download), and a larger dataset available via the Red List website 
(https://www.iucnr edlist.org/resou rces/grid/spati al- data) contain-
ing an additional 1,000 polygons relative to the previous file (as of 

September 2019), predominately in Latin America (and often show-
ing extensions of species ranges or range fragments rather than 
1,000 additional species). We examined both, because either might 
be used for contemporary analyses on Odonata.

For reptiles, two grid resolutions were visible when mapping spe-
cies range boundary density (1 and 0.5 decimal degrees; Supporting 
Information Figure S2c shows these grids and why further analysis 
was conducted). Gridding in range delineation was examined by de-
veloping 1 and 0.5° fishnet grids globally (matching the observed 
grid resolutions). Grids were then aligned with the noted reptile 
range boundary grids in central Africa (the closest area to 0, 0); if 
grids were not a genuine artefact of digitization, this would not be 
possible, or it would be inconsistent in different regions (alignment 
between the digitized fishnet grid and range boundaries was recon-
firmed in Central Asia and South America). Grids were then clipped 
to land areas and merged with national political boundaries into a 
combined shapefile. Species range boundary density was quanti-
fied, and layers were reclassified for areas where more than three 
species boundaries overlapped; this was then intersected with both 
grid sizes to quantify percentages of boundary hotspots overlapping 
with grids or national borders.

2.5 | GBIF cleaning

We used occurrence records from the GBIF to compare the down-
loaded ERMs with locations of known species occurrence. GBIF data 
are useful for understanding species distributions and assessing the 
accuracy of mapped species ranges. To ensure exclusion of inaccu-
rate localities, we filtered GBIF point data using a stepwise approach 
before assessing ERMs (Supporting Information Figure S1c). First, 
oceanic records (i.e., those geo- referenced outside of terrestrial 
land) were removed with a global land area mask. A biogeographical 
realm filter (https://ecore gions 2017.appsp ot.com/) was then used to 

F I G U R E  1   Heat maps of species richness based on expert range map data for each taxon. The values given represent the number of 
species per taxon in a 1 km grid cell. Gridding for reptile data is clearly visible in Africa, and U.S. county boundaries are visible in amphibian 
data. Provinces for India and Australia show in Odonata. The Supporting Information (Figure S2) provides a higher resolution version of 
these issues. A = amphibians; B = birds; M = mammals; O = Odonata; R = reptiles [Colour figure can be viewed at wileyonlinelibrary.com]
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filter samples clearly in the wrong localities using the realms that 
species occupy according to IUCN data (given that IUCN assessment 
data list the realm in which each species is found). Corrections were 
made when the realm listed in the IUCN assessment was inconsist-
ent with the associated ERM. In cases where the IUCN assessment 
and ERM had different realms, further analysis was run to assay 
which realm the ERM fell into as a basis for developing a match-
ing realm filter for GBIF filtering (IUCN_Real_Overlap_polygon.r 
and IUCN_Real_Dist.r). Once correct realms had been assessed 
from IUCN data, they were used to filter out GBIF data from the 
incorrect realm, before the percentages of occurrence points inside 
and outside each species range were assessed; these assessments 
were performed in R with the scripts “IUCN_GBIF_Overlap.r” and 
“IUCN_GBIF_Overlap_Bird.r”.

Given that GBIF data include some synonyms, these were also 
corrected before their use. Synonym lists were developed via IUCN 
lists; for birds, the Clements bird checklist was used (https://www.
world birdn ames.org/ioc- lists/ maste r- list- 2/). Given that IUCN lists 
sometimes gave species as both synonyms and true species, any 
species listed as both was corrected during filtering using R (using 
the codes “synonyms_analysis.r” and “merge_gbif_by_syn.r”). 
Given GBIF efforts to update data filters and the slow rate of tax-
onomic updates on the Red List [e.g., only 45% of amphibian spe-
cies described between 2004 and 2016 were assessed by the IUCN 
(Tapley et al., 2018)], our approaches are at an ecologically mean-
ingful resolution (500 m) and accuracy to assess underestimation in 
species ranges defined by their polygon data. After GBIF filtering, 
the percentage of GBIF points within each corresponding species 
polygon was calculated; analyses were run in R and scripts provided 
(merge_gbif_by_syn_count.r).

2.6 | Exploring alternatives

Global diversity maps are clearly useful for ecological research, and 
various filters to remove commission errors have been proposed (i.e., 
Brooks et al., 2019), but their ability to map distribution accurately or 
to overcome existing biases has not been well assessed. Trimming of 
ERMs by land cover and elevation is regularly promoted as a means 
to trim ERMs to improve accuracy, but it is not known whether sim-
ple elevation and land- cover trimming corrects effectively for spa-
tial biases and, potentially, reduces errors of commission. We used 
a pre- existing, high- resolution dataset for which we already had 
reliable published diversity maps as a case study to test diversity 
patterns generated via original ERMs versus those from analysis of 
point data with and without trimming and compared all these with 
published diversity models for bats (Hughes, 2017). This enables a 
high- resolution comparison of regional bat richness as a case study. 
For this analysis of alternative approaches, we used one taxon in a 
single region to provide a proof of concept of how alternative ap-
proaches could be used. The workflow for this analysis is shown in 
the Supporting Information (Figure S1d). To do this, we developed 
elevation and land- cover filters and applied these to the ERMs and 

to polygons derived from the recent species occurrence point data. 
Point data were clipped for Eurasia to match existing data, and mini-
mum convex polygons (MCPs; polygons bounding the outermost 
point data from each species range) were created in ArcMap for 
species with at least five unique localities. Filters were created for 
each species based on elevation and land cover, both (a) using IUCN 
assessment data exclusively, and (b) based on extracting environ-
mental data from points, and these were then paired with associated 
environmental data to clip species ranges on a per species basis.

We used point data to extract elevations from a 1- km- resolution 
digital elevation model (DEM: http://www.earth env.org//DEM), with 
the minimum, maximum, mean and standard deviation per species 
calculated from summary statistics. Species exclusively recorded 
at < 1,000 m = lowland, 1,000– 2,000 m = mid, > 2,000 m = high, 
and between these ranges, were ranked accordingly: lowland, low- 
mid, low- high, mid and high. DEMs were reclassified to correspond-
ing elevation categories. IUCN assessment listings of elevational 
preference were recorded. An “integrated” status was determined 
based on comparison of the point- based assessments with IUCN- 
based assessments (when species were assessed by the IUCN and 
had sufficient point data): where only one assessment was given it 
was retained; where the two agreed it was retained; and where they 
differed we used the point- based data, given higher precision.

For habitat intactness, we collated IUCN assessments and 
data extracted from point data. For IUCN assessments, we used 
keywords to assay disturbance tolerance. Habitat listings that ref-
erenced roosting in buildings, houses or tunnels were assigned as 
generalists. Species listed in cultivated areas, paddies, plantations 
and agriculture were assigned as semi- intact and those listing forest 
and no other “disturbed” habitats assigned as intact. For point data, 
we classified population layers at the 1 km scale with < 50 people/
km as intact, 51– 100 people/km as semi- intact and > 100 people/km 
as generalist (Ciesen, 2020). From point data, species with > 50% of 
localities in the generalist category were listed as generalists, and 
species with ≥ 75% of records in the < 50 people/km were classed 
as intact. The IUCN and point- generated categories were then com-
pared; where the two categories differed, we selected the “final” 
classification based on further searches of the literature or direct 
experience with the species listed.

For richness mapping, we joined the elevation field based on 
species names using the join function in ArcGIS, split into our five 
elevation categories, each of which was then clipped by a polygon 
layer of the appropriate elevation bands. Then the clipped maps for 
all species were merged. This was repeated for the MCP layer and 
ERM layers. The ERM layer was run twice, once for the “integrated” 
assessment data using the “integrated” category and once for IUCN 
elevation assessments. These were then merged to form three types 
of elevation- trimmed species collations (one MCP and two ERM). 
Layers were then joined to intactness categories and split into three 
categories before trimming with the appropriate intactness filter 
(intact, semi- intact or generalist). These were then merged before 
using the count overlap toolbox in ArcMap to count the number of 
species overlapping in any given area. This enabled comparison of 
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trimmed and untrimmed layers with a previously published MaxEnt- 
generated layer of bat species richness (Hughes, 2017) to assess 
the usefulness of these alternative approaches for approximating 
accepted richness patterns. The outputs included untrimmed ERM 
and MCP layers, one trimmed MCP layer (based on the integrated 
assessments) and two trimmed ERM layers (based on limited and 
integrated assessments) in addition to the MaxEnt (v.3.4.1) map of 
regional bat species richness (based on the same point dataset).

3  | RESULTS

3.1 | Overlap between species and administrative 
boundaries (as a percentage)

Our analyses revealed pervasive biases throughout the ERMs. 
For all taxonomic groups, high proportions of species ranges 
overlapped with administrative borders (Table 1; Supporting 
Information Figure S3). Non- coastal borders showed that admin-
istrative boundaries had a disproportionate impact on delineation 
of range limits, with an average of 20– 30% of non- coastal species 
range boundaries coinciding with national administrative bounda-
ries alone. Provincial boundaries were also used, increasing the av-
erage overlap by ≥ 10% for most taxa and almost doubling overlap 
in amphibians.

To assess how species turnover related to administrative areas, 
after mapping species richness (Figure 1), we calculated the stan-
dard deviations of richness maps and identified what percentages 
of national administrative boundaries were included in the higher 
turnover richness classes. For reptiles, the upper four classes were 
retained, covering 40% of national boundaries (4% low turnover, 
13% medium turnover and 24% highest turnover). This means that 
the hotspots for reptiles were disproportionately delimited by global 
administrative boundaries. In total, the overlap between adminis-
trative boundaries and these upper classes equated to 37% of all 
richness classes, but equalled only 10% of the lowest quartile, 33% 
of the medium turnover and 82% of the highest turnover. However, 
given that low- diversity areas will necessarily have low turnover, this 
was then extracted for areas with more than three reptile species, 

and for these regions, 68% of national boundaries were on upper 
richness classes (43% highest turnover).

For amphibians, 34% of national boundaries overlapped with 
richness classes (two top richness classes, 27% high turnover), al-
though equating to only 10% of high- turnover areas (16% of the 
highest levels). For birds, 52% of national boundaries coincided 
with turnover (three upper richness classes, 21% at highest level), 
equating to 29% of the highest bird turnover. For mammals, 60% of 
national boundaries coincided with high- turnover areas (three top 
richness classes, 29% at high turnover), representing 26% of high- 
turnover areas and 35% of the highest levels. For Odonata, 40% 
of national boundaries were covered (three top richness classes, 
with 25% at the highest turnover levels), representing 9% of high- 
turnover areas but 16% of the highest.

In terms of individual countries, countries with longer coast-
lines obviously exhibited higher diversity changes, because 
coastlines typically mark absolute distributional boundaries. Yet, 
despite this, some countries with little coastline, and even land-
locked countries, showed comparable levels of turnover at political 
boundaries (Figure 2). For reptiles, Nepal had levels of turnover at 
political boundaries roughly comparable to that of coastlines, and 
China also showed exceptional turnover, especially on its south- 
western border (Figure 2); Bolivia showed some similar patterns. 
Various African countries also showed high non- coastal range 
boundary density. In the majority of these cases, the boundaries 
were not associated with significant geographical features, espe-
cially in Southeast Asia.

Without coastal boundaries included, Northern Southeast Asian 
boundaries were visible across taxa (excluding birds; Supporting 
Information Figure S3), with the Chinese side of borders exhibit-
ing much lower diversity than neighbouring Thailand, Vietnam and 
Myanmar, despite a lack of evidence to support biogeographical 
shifts across these borders. Iran also showed high turnover along 
administrative boundaries, considerably below the other areas it 
borders. What was striking was that for some countries, especially 
Southeast Asian countries, 100% of non- coastal boundaries showed 
overlap with peak areas for species turnover, highlighting the dispro-
portionately large role that these borders play in mapping species 
distributions (Supporting Information Figure S3).

Species Country Province

Non- coastal country boundary buffers (m)

500 1,000 2,500 5,000

Amphibia 44.2 74.5 9.7 12.9 16.2 21.8

Birds 90.1 97.9 15.4 20.2 23.5 26.6

Mammals 76.6 92.7 15.0 19.9 23.3 26.5

Odonata 75.8 91.5 12.1 15.6 17.6 21.2

Reptiles 64.6 83.7 16.1 21.1 24.8 29.4

Note: Country and province give boundary totals based on a 500 m buffer (including coastal 
boundaries). Many areas of overlap that are non- coastal fall on administrative boundaries with no 
clear geophysical boundaries (Figure 2).

TA B L E  1   Percentage overlap between 
species boundaries and administrative 
boundaries with different buffer sizes (in 
metres)
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3.2 | Species turnover on the boundaries

When species ERM boundaries were aggregated to show the num-
ber of range boundaries that overlap (Supporting Information Figure 
S3) and reclassified to show only areas with the most overlapping 
species range boundaries, it became apparent that the hotspots of 

where species boundaries were delineated fell on national adminis-
trative borders (Supporting Information Figure S2). Within 500 m of 
national borders, 30– 50% of the top two richness classes and 35– 
50% of the top three richness classes were included. This increased 
to between 43 and 65% for the top two and 51– 70% of the top 
three at 1 km, and > 80% within 5 km, indicating that species range 

F I G U R E  2   Percentage overlap 
between species turnover richness 
classes denoting changes and non- 
coastal administrative boundaries. A = 
amphibians; B = birds; M = mammals; 
O = Odonata; R = reptiles. Grey areas 
show islands or areas where high turnover 
was not detected on any administrative 
boundary. Darker hues indicate a high 
percentage of overlap between non- 
coastal boundaries and high levels of 
turnover in richness, indicating that more 
species might have ranges delimited by 
non- coastal administrative boundaries 
[Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com


1382  |     HUGHES Et al.

boundaries were frequently delimited at administrative borders, al-
beit with varying precision (Table 2).

3.3 | River basins

For Odonata, river basins were used by the specialist group to de-
lineate species range limits (Supporting Information Figure S2b). 
Consequently, when only the ranges designated by the specialist 
group were analysed, > 92% of range boundaries fell on river basin 
boundaries when including a 1 km buffer (Supporting Information 
Table S1). This was not the case for species recently added to the 
Odonata dataset (largely in Latin America), which clearly used a dif-
ferent, less spatially precise approach, and only 74.3% of the new 
boundaries fell on river basin boundaries.

3.4 | U.S. counties and amphibians

Within the USA, county boundaries were primarily used, with only 
2% of the area > 500 m from county borders containing amphibian 
range limits. In contrast, 20% of county boundaries had > 10 am-
phibian species range boundaries recorded, and only 31% of all U.S. 
county borders did not show overlap (Supporting Information Figure 
S2a). Almost 60% of amphibian species in the USA had all their range 
boundaries on county borders, and the 40% that showed some of 
their ranges off county borders included invasive alien species, such 
as the African clawed frog (Xenopus laevis). In addition, many of these 
species were range restricted, with 20% showing a range < 100 km2, 
6% < 10 km2 and 3% < 1 km2. Notably, similar low- level administra-
tive areas were not used in other regions.

3.5 | Reptiles and grids

The gridding of reptile ranges (Supporting Information Figure S2c) 
was visible in all countries with high reptile diversity (especially 
tropical and subtropical areas). Using large (1°, equivalent to 111 km) 
grids, the density boundaries included 19% of boundaries with three 
to five species and 63% of boundaries with more than five species. 
For all large- grid areas for all global landmasses, 4% had a minimum 
of three species boundaries in them, which was surprising because 
most of the globe is low diversity for species that have been mapped. 
Smaller (55 km) grids included 27% of all boundaries with three to 
five species and 71% of boundaries with five or more species. This 
was equivalent to only 2.1% of all small grids across the planet. 
When this analysis was clipped to areas where three or more spe-
cies range boundaries were mapped to occur (because two might be 
simply where range boundaries intersected, but for three or more 
it is more likely that they follow the same range boundary pattern), 
these values inflated to 15% of all large- grid areas with at least three 
species and 8.3% for small (0.5°) grids.

3.6 | GBIF versus ERMs

Remarkably, many disagreements existed between GBIF and ERM 
data, with 80% of taxa having ≥ 30% of their GBIF occurrence points 
outside of their corresponding ERMs (Table 3). This phenomenon 
differed in magnitude regionally, with the Palaearctic, Neotropical 
and Indomalayan regions having > 50% of records outside ERMs 
on average and the Australasian and Afrotropical regions having 
between 40 and 50% of localities outside their mapped ranges 
(Table 3), and others with lower proportions. For species occurring in 
more than one realm, the number of realms in which a species listed 
might relate to error, with wider- ranging species showing a higher 
percentage of localities outside their mapped realms, and reptiles 
almost uniformly had the lowest accuracy.

3.7 | Alternative approaches

In comparing the ERM data with models and polygons derived from 
the point data, clear differences could be seen (Figure 3), with dif-
ferent filters dramatically changing richness patterns, especially in 
comparison to the previously modelled richness (Figure 3a). Even 
untrimmed, MCPs captured the hotspots highlighted by advanced 
models better than the ERM data, and the ERM maps continued 
to show clear political borders even when trimmed (Figure 3b,d,e). 
Too little information existed in the IUCN database for the assess-
ment of many species. After trimming, the MCPs showed much 
higher richness than either of the two trimmed ERMs, with a maxi-
mum of only 18 co- occurring species for the ERM data based on 
the limited species assessments possible using only IUCN data (73 
species included; Figure 3d). For bats there were ≤ 70 coexisting 
species from the “integrated assessment” ERM filtered data (260 

TA B L E  2   Percentage of all species range boundary hotspots 
(A: top two richness classes of turnover; and B: top three 
richness classes of turnover) included within buffers of national 
administrative boundaries

Species 500 m 1,000 m 2,500 m 5,000 m

A.

Amphibians 46 65 74 76

Birds 30 44 54 59

Mammals 38 55 64 68

Odonata 48 54 57 61

Reptiles 30 43 54 58

B.

Amphibians 40 56 64 68

Birds 43 63 74 77

Mammals 48 68 79 82

Odonata 45 52 57 62

Reptiles 35 51 62 66

Note: A greater proportion is captured when only the highest turnover 
boundaries are used.
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species; Figure 3e) and 128 species from the MCPs (340 species; 
Figure 3f). Simple MCPs not only included many more species, 
but also recreated the patterns recovered by previously published 
MaxEnt bat richness layer and other published studies better than 
the ERMs (Li et al., 2019).

4  | DISCUSSION

The aim of ERMs is to provide globally consistent and comparable 
sources of data for mapping biodiversity and endangerment scal-
ability, comparability and representativeness, because differences 
in approaches can mean that differences in patterns might reflect 
methodological differences rather than genuine differences in biodi-
versity. Yet, for all groups examined, the data fail to meet even these 
basic expectations. As a consequence of the different approaches 
used to develop ERMs there are obvious methodological changes, 
geographical or taxonomic biases, and inconsistencies both within 
and between taxa. Consequently, meaningful comparison of analy-
ses, especially between regions or taxa, might not be possible using 
ERMs.

4.1 | Spatial biases

Biases in ERM data were inconsistent across space and taxa. Relative 
to their global area, provincial and country boundaries played dis-
proportionate roles in delineating species ranges, especially in mam-
mals and amphibians. Political boundaries near temperate– tropical 
transitions, in particular, have high levels of bias, including borders 
in South China and northern Southeast Asia (Figure 2; Supporting 
Information Figure S3) and in south- western Brazil, making the use 
of these data for such areas exceptionally risky. In these cases, care-
ful assessment for the possibility of strong administrative biases is 
needed, because using ERMs at these transitions might cause sig-
nificant errors in analysis; alternative approaches, such as models or 
trimmed MCPs, should be used where such data exist. Thus, in these 

regions, even basic richness patterns might not be replicated accu-
rately, meaning that even graphical representation of richness pat-
terns would require at least some independent validation. Mapping 
diversity patterns within a country or on islands, based on effec-
tive filters, might be appropriate (except in cases where biases occur 
within taxa and regions, as for Odonata, reptiles and amphibians), 
but transnational scales require further validation for quantitative 
analysis. In addition, such maps could be combined with point data 
to assess model accuracy of modelled species ranges, because large 
deviations between the ERM approximate range and the modelled 
range would highlight the need for further data and validations.

4.2 | Comparability across and within groups

Amphibian, odonate and reptile maps have separate drivers of spa-
tial bias, and their biases differ both spatially and temporally as a 
consequence of different methodologies. Consequently, the main 
benefit of using a single data source is entirely lost, because this 
inconsistency precludes the attribution of differences between re-
gions or taxa to genuine differences rather than to methodological 
differences. For example, reptile distribution maps have frequently 
relied on either 1 or 0.5° grids, with these boundaries clearly de-
tectable on maps of species range boundaries and turnover with, for 
example, > 71% of range boundaries shared by more than five spe-
cies falling either on a political boundary or on a 0.5° grid. The fact 
that grids, political areas and other features are used in a variable 
manner complicates these issues further. Even for Odonata, where 
more biologically relevant river basin boundaries are used, the near- 
universal use of such features (i.e., 92% of formerly mapped ranges 
are on river basin boundaries) can still result in inaccurate maps with 
both type I and type II errors. Thus, although trimming of ERMs with 
appropriate filters could be applied to most taxa, assessments of 
gridding for reptiles before such an approach could be applied use-
fully. For other taxa, once possible political boundaries have been 
assessed, it might be possible to trim species ranges based on clear 
assessments of habitat needs.

Realm Bird Odonata Reptiles Mammals Amphibians All

Total 25 32 35 34 46 33

Average 39 59 70 39 52 52

Palaearctic 51 68 62 51 33 53

Neotropical 39 43 73 39 57 50

Indomalayan 27 66 77 27 53 50

Afrotropical 23 73 71 23 46 47

Australasian 38 24 65 38 48 43

Nearctic 52 – 55 52 36 39

Oceania 30 – 90 30 – 30

Note: “Total” refers to the percentage of all points falling outside the corresponding expert range 
map, and “average” is the average percentage of points. Values given for realms represent the 
average percentage of points outside expert range maps for those taxa and realms for species with 
realms listed within International Union for Conservation of Nature Red List assessments.

TA B L E  3   Percentage of filtered 
occurrence records outside the expert 
range map boundaries for each species 
within each taxon for each of the realms 
examined
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Regional biases are an especially notable issue; for example, only 
31% of U.S. county boundary area (width = 1 km) had no amphibian 
range boundaries, whereas only 98% of the land > 500 m from a county 
boundary had no amphibian range boundaries (Supporting Information 
Figure S2a). These amphibian county biases are the result of a specific 
initiative within the USA (Blackburn et al., 2001), and such inconsis-
tent standards make comparable analysis between regions impossible. 
Once U.S. amphibians that have all their boundaries on county borders 
are removed, only 40% of species remain, and the remainder include 
range- restricted and invasive species. Given that county limits do not 
typically follow ecological boundaries, they clearly do not represent 
species boundaries. Thus, most forms of trimming could not be used to 
map ranges or diversity of such groups accurately.

In many cases, the development of published IUCN distributions 
contradicts their general guidance (IUCN guidelines: https://www.
iucnr edlist.org/resou rces/guide lines - for- appro priat e- uses- of- red- 
list- data). Although former IUCN training material (https://www.iucn.

org/conte nt/iucn- red- list- train ing- cours e- now- online) explicitly 
specified not to draw buffers around single locality points for build-
ing distributions, this has clearly been done for hundreds of species 
across taxa, extensively for some groups (Supporting Information 
Figure S2d). In addition to other inconsistent biases both within and 
across groups, these datasets lose the invaluable comparability that 
would normally be expected from methods that are standardized 
temporally, spatially and taxonomically. Consequently, further vali-
dation and refinement with verified point data are necessary before 
these data are used for formal conservation management.

4.3 | Missing the point: errors of omission need to 
be solved

The pervasive biases in these datasets are not a new issue. Range 
overestimations have been explored previously (Brooks et al., 2019), 

F I G U R E  3   Different richness maps for bats in Southeast Asia using a variety of approaches and a standardized key denoting species 
richness to enable direct comparison. (a) MaxEnt- based model on bats (from Hughes, 2017). (b) IUCN richness for bats without any filters. 
(c) Minimum convex polygons (MCPs) based on point data used by Hughes (2017) for bats. (d) Filtered IUCN data on bats for species with 
sufficient data in the IUCN Red List database for trimming by elevation and vegetation type. (e) IUCN data on bats with an integrated 
filter based on a compilation of IUCN assessments and point data for trimming by elevation and vegetation type. (f) Filtered MCPs based 
on integrated assessments. Methods for this analysis are shown in the Supporting Information (Figure S1d) complete with the data that 
were used for each component of the analysis. IUCN = International Union for Conservation of Nature [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://www.iucnredlist.org/resources/guidelines-for-appropriate-uses-of-red-list-data
https://www.iucnredlist.org/resources/guidelines-for-appropriate-uses-of-red-list-data
https://www.iucnredlist.org/resources/guidelines-for-appropriate-uses-of-red-list-data
https://www.iucn.org/content/iucn-red-list-training-course-now-online
https://www.iucn.org/content/iucn-red-list-training-course-now-online
www.wileyonlinelibrary.com
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but errors of omission have received comparatively little focus. 
Researchers seemingly assume that, because models overestimate 
habitat suitability within their borders, the total area of inhabitance 
should also be excessive. However, a recent analysis (Li et al., 2019) 
found that although BirdLife range maps were typically c. 10 times the 
area of predictive models, ERMs still missed areas with recorded, veri-
fied records, potentially highlighting areas of limited value whilst miss-
ing key areas that species might require to survive. We found the same 
issue in our analyses; even in the best- studied group (birds), 25% of 
records fall outside individual ERMs on average, and ≤ 46% of records 
for other groups. This varies significantly between regions, with ≤ 90% 
of records for reptiles in oceanic zones potentially falling outside their 
ERMs. When we average for each region, rather than across all data 
(which emphasizes better- sampled regions in the West), the average 
accuracy of the results drops for most groups such that many mapped 
ranges are spatially incorrect; hence, they might misdirect conserva-
tion efforts. Altogether, these issues can lead to entirely incorrect esti-
mates of biodiversity hotspots, as seen when comparing the validated 
models (Hughes, 2017), which showed that ERM hotspots were much 
larger (≤ 40% of the region for some groups relative to ≤ 5% for mod-
els: Li et al., 2019). Despite this, ERMs still failed to capture 15% of the 
most diverse hotspots according to models and might actively hinder 
effective conservation efforts by overestimating some and missing 
other key biodiversity regions. Thus, at least in developing and tropical 
regions, these errors in ERMs mean that aggregating distribution data 
and trimming MCPs based on environmental factors might map spe-
cies ranges more accurately and have a lower probability of omission.

Crucial hotspots in transboundary areas are particularly likely 
to be overlooked and missed owing to these issues, because some 
borders show particularly high purported species turnover based on 
ERM analyses (Figure 2; Supporting Information Figure S3). These 
issues further complicate pre- existing challenges with working in 
close vicinity to many political boundaries. Already, transboundary 
conservation assessments and recommendations are being made 
based on these data (Mason et al., 2020). These concerns are even 
more important for rare and range- limited species, which cannot 
necessarily be protected merely by conserving more charismatic 
megafauna. One consequence is that the largest taxa are often re-
moved from analyses. For example, some analyses have used only 
8% of mammal species (Visconti et al., 2016), the rough equivalent of 
assessing plants without angiosperms. Further efforts are needed to 
increase the breadth and empiricism underlying ERMs and to ensure 
that data- driven analyses are applied to remove such biases.

Climate change presents an especially large challenge for anal-
yses using ERMs. As we demonstrate, biases on borders, especially 
the South China border, are particularly problematic with, for ex-
ample, a change in 60 bat species shown across a few kilometres 
(Supporting Information Figure S4), which is not supported by local 
data (Figure 3). In recent studies, it has been hypothesized that dra-
matic changes in community composition resulting from climate 
change could have caused severe acute respiratory syndrome coro-
navirus 2 to emerge (Beyer et al., 2021), but this perceived shift 
in community composition is purely an artefact of this perceived 

change in species present, and various coronaviruses are known to 
be present in bats of the region independently (Zhou et al., 2020). 
Given that these perceived changes in diversity are common at bor-
ders, studies on climate change, particularly with implications for 
disease and human health, must proceed with extreme caution, be-
cause improper analyses can lead to inaccurate outcomes and possi-
ble misinformed, possibly detrimental, policy actions.

4.4 | Finding a reliable and accurate solution

Given the difficulty of acquiring verified point data across all spe-
cies, many researchers modify ERMs to justify mapping diversity at 
higher resolutions or “accuracy”. A common method is to trim spe-
cies ranges by habitat and elevational range (Brooks et al., 2019; Li 
et al., 2016; Ocampo- Peñuela et al., 2016). Yet, to do so universally 
makes a number of critical errors and fails to address the root causes 
of issues in such analyses.

These new approaches do not account for spatial biases asso-
ciated with administrative boundaries or the missing of key areas 
(highlighted above). In addition, although refining by habitat is sen-
sible if species are well known, such data exist for relatively few 
species. As an example, clipping by elevation makes assumptions 
about the level of knowledge on species ranges, although defining 
the true elevational ranges of species is challenging and uncertain 
for many species. Furthermore, inconsistency of the data across 
species ranges cannot be accounted for; for example, there is likely 
to be a relationship between elevation range and latitude for most 
species with large ranges, and these may shift seasonally. Basically, 
ranges will vary by latitude and might not be known for most spe-
cies. Additionally, current minimum ranges do not necessarily repre-
sent climate- based ecophysiological thresholds for species, because 
lower- elevation range limits are most vulnerable to being converted 
to other types of land use and to other disturbances. However, our 
occurrence point data showed that many species listed as mid or high 
elevation by the IUCN had also been recorded at sea level; thus, cur-
rent IUCN assessments might overlook areas of the range without 
evaluating what data are available. Our analysis showed that spe-
cies ranges regularly fell over a much broader area than in ERM as-
sessments even when such a listing was given, and that estimates of 
range without sufficient data falsely represent true species ranges. 
Thus, basing future projections on thresholds generated by ERMs 
will overinflate the perceived vulnerability of species by effectively 
removing higher- temperature areas that might even be optimal for 
some species. For these reasons, clipping an “expert- generated map” 
with “expert knowledge on species ranges” (i.e., elevational range) 
might amplify biases, especially when species have lost habitat or 
other areas might be undersampled.

Data- driven alternatives with sensible uncertainty measures 
should be developed, especially given that most range maps 
clearly disobey current guidance. A better approach is to use data 
of species localities sensibly to develop predictions of where spe-
cies are known to occur, restrict extrapolation to the country or 
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island where localities exist and use these predicted ranges as a 
replacement for “expert range maps”. Such initiatives could also be 
used to drive data aggregation and sharing, maximizing the avail-
ability of open data such as those made available through GBIF 
(although careful error checking is needed; Orr et al., 2020). Given 
that such data biases are well known in GBIF, further digitization 
and data- sharing efforts will be key. To grow these resources fur-
ther, mechanisms must also be developed to fund taxonomic data 
verifications and museum data digitization better, also including 
mandated data sharing for projects receiving this funding (Orr 
et al., 2021). Such data are more likely to capture less- accessible 
areas and rarer species than data generated by citizen scientists, 
making them invaluable for generating a representative view of 
the natural world (Hughes et al., 2020).

Here, we show that ERMs are biased and inconsistently de-
lineated across space and taxa, and that even simple approaches, 
such as MCPs, produce more realistic diversity models. Trimming, 
which can be streamlined into a reproducible approach and applied 
in a standardized way across species (Figure 3), improves the perfor-
mance of MCPs further, whereas many shortcomings in ERMs are 
not ameliorated. As a basis for regional conservation, the data now 
exist for many taxa to have such data- driven approaches, whereas 
continued use of range maps without careful bias management could 
misdirect conservation attention.

4.5 | Looking forwards

As a scientific community, we should have moved past manually 
drawing maps of where we assume species to be, yet such maps still 
form the basis of almost all global and regional assessments on biodi-
versity. Here, we demonstrate that inherent and inconsistent biases 
within and between these datasets arise from the use of adminis-
trative or other convenient boundaries to demarcate species limits, 
missing up to half the records of many species. Such approaches will 
lead to incorrect assessments of species vulnerability, potentially 
highlighting the wrong areas for conservation or management for 
both single species and communities, especially where transitioning 
from tropical to subtropical or temperate areas.

Although these ERMs were adequate when data were unavail-
able, initiatives for data digitization and sharing are finally gaining 
traction as more high- resolution satellite data have become avail-
able. Methodological approaches that enable the modelling of spe-
cies ranges based on data- driven approaches such as those shown 
here are more representative of reality. Expert knowledge has a 
crucial role in developing and testing such analyses and in devel-
oping standard frameworks to ensure that outputs are meaningful; 
however, we have reached a point where we can begin to develop 
truly automated, standardized approaches to inform conservation. 
We can no longer rely on inconsistent or biased datasets, because 
doing so limits efforts to digitize real point data and develop new 
approaches, and conservation advice should no longer rely entirely 
on these types of expert data alone.
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