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A B S T R A C T   

Migration is an essential ecological process, and is usually used to describe the seasonal movements between the 
breeding grounds and wintering areas. During migration, bird populations often disperse in groups and aggregate 
together due to geographical barriers, topography, seasonal climatic changes, species specific physiology, or 
other factors. Recording and reconstructing these diverse migratory routes are important for identifying major 
stopover sites as well as migration bottlenecks which may include key foraging grounds and resting areas, and 
ensuring high-quality habitat to provide adequate resources. However, good data including individual tracking 
data are only available for some regions and species large enough to carry a transmitter. Better approaches using 
observational data are needed to enable better understanding in less-studied regions. To reconstruct and visualize 
the long-distance avian migration routes with observations from the citizen-science dataset eBird, we developed 
an interpretive avian multi-trajectory reconstruction framework based on Level-order-Minimum-cost-Traversal 
(LoMcT) algorithm. This approach uses linear interpolation for missing records, spatial outlier detection for 
abnormal values, unsupervised clustering by density-based Mean-Shift algorithm for sub-group centroids, LoMcT 
algorithm based on the distances among centroids, and multi-trajectory reconstruction based on generalized 
additive models. We have verified the feasibility of our reconstruction method using 15 bird species, and 
analyzed the trends of the distribution density of birds' population during the long-distance migration cycle. Our 
analysis could help obtain the important gathering time points and sites in the moving process based on the 
multiple routes we reconstructed. These can be used in comparisons of multi-trajectory migration strategies 
between the transoceanic migratory birds and non-transoceanic ones, and provide the ability to understand how 
species are moving in the absence of individual tracking data to help target conservation better. We have 
demonstrated that the proposed approach is capable of reconstructing trajectories based on observational citizen- 
science data.   

1. Introduction 

Birds play irreplaceable roles in ecosystems, acting as predators and 
preys across trophic groups, and as seed-dispersers as well as pollinators 
(Whelan et al., 2015). Currently, there are over 10,000 described species 
of bird, of which more than 20% are migratory birds (Roskov et al., 
2020). Bird migration is a regular seasonal movement between breeding 
grounds and wintering grounds driven by environment, climate, atmo-
spheric conditions, photoperiod, and other factors (Gwinner, 1990; 
Horton et al., 2016; Ramenofsky and Wingfield, 2007; Shamoun-Bar-
anes et al., 2017; Somveille et al., 2020). The migration trajectory of 

birds can effectively reveal the behavior of birds and demonstrate the 
importance of certain areas during their migration. Assessing bird 
migration time, routes, population changes, and the conditions of 
breeding places and winter habitats can inform the protection of 
migratory birds. 

A variety of techniques have been used to study bird migration 
including bird ringing, radio tracking, GPS tracking, satellite telemetry, 
isotopic analysis, and so on (Nilsson and Sjöberg, 2016; von Hünerbein 
et al., 2000; Klaassen et al., 2010; Fiedler, 2009; Seifert et al., 2016; 
Hobson, 1999). However, traditional individual tracking technology 
with devices or markers may not be suitable for most small-sized species 
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(Hobson, 1999), and isotopes could provide a limited resolution in 
analysis (Inger and Bearhop, 2008). So they may not be able to provide 
enough information for the migration routes in population level, and 
thus may not enable effective measures for the conservation of stopover 
sites which may be critical to species long-term viability. Therefore, 
more affordable and accessible approaches are needed for further in-
sights into migration trajectories in less-studied regions, where little or 
no exact tracking data exists. 

The recent development and popularization of citizen science pro-
vide a large volume of bird observation data shared via platforms such as 
eBird (Sullivan et al., 2009), iNaturalist (https://www.inaturalist.org/; 
iNaturalist, 2021), and so on. The growing spatial and temporal reso-
lution of citizen science data makes it possible to study migration pat-
terns (Supp et al., 2015; Weisshaupt et al., 2021; Schubert et al., 2019). 
It has already been used to effectively research questions about bird 
migration. Bounas, et al. described the migration trajectories of the red- 
footed falcon in the Mediterranean region from 2010 to 2017 with the 
help of the occurrence information from eBird to find the changes of its 
migration patterns and explore the stopover sites during the migration 
based on distribution modeling in 2020 (Bounas et al., 2020). Li J, 
Hughes A C, and Dudgeon D. constructed the first biodiversity hotspot 
map for the migratory waders along the East Asian-Australasian Flyway 
based on MaxEnt (Phillips et al., 2006) with the observations of 57 
species from eBird (Li et al., 2019). Also, with the help of eBird, La Sorte, 
F. A. and Graham, C. H found out the phenological coupling between 
vegetation greenness and seasonal avian migration in North America (La 
Sorte and Graham, 2021). These models show the potential to study 
avian migration trajectories and patterns with discrete observation data 
from eBird. However, they are weak in providing detailed dynamic in-
formation about bird distributions during migration, which may be 
necessary for targeted management and ensuring the protection of key 
sites. 

In recent years, further advances in data mining, machine learning, 
and other computer technologies have helped to reconstruct migratory 
routes. Avian trajectories have been widely studied by machine 
learning, statistical methods, and a variety of other methods. One such 
approach used the generalized additive models for location, scale, and 
shape (GAMLSS) model (Rigby and Stasinopoulos, 2005) to estimate the 
migration trajectories of 118 migratory species in the Western Hemi-
sphere to study the convergence of migration strategies caused by 
geographical factors in 2016 (La Sorte et al., 2016). Somveille et al. have 
reconstructed bird migrations over the past 50,000 years with me-
chanical models and provided a baseline understanding of how species 
may respond to modern climate change (Somveille et al., 2020). Walker, 
J. and Taylor, P. used Bayesian regression models and range-wide data 
of 28 species in the U.S. and Canada from e-Bird to reconstruct and es-
timate the migratory trajectories of spring migration/breeding, fall 
migration, and wintering (Walker and Taylor, 2020). 

The approaches mentioned above have greatly helped us improve 
our knowledge about bird migratory routes in the absence of individual 
specific data on species level, however, avian migration often follows 
multiple routes, and may not utilize the shortest route (Alerstam, 2001). 
So, simulations which can better account for and simulate these variable 
patterns in population level are needed. Existing models typically 
consider an average population movement or used one centroid over 
time, both of which may cause a bias towards better-known areas and 
fail to provide the details which may be needed for targeted conserva-
tion actions. 

Here, we have developed a novel multi-trajectory reconstruction 
algorithm for avian migration in population level focusing on Level- 
order-Minimum-cost-Traversal (LoMcT) algorithm based on the obser-
vation dataset from eBird. This enables us to reconstruct multiple tra-
jectories for locality-only observation records. The multi-trajectory 
reconstruction focuses on the dynamic changes of aggregation and 
separation in population level during the long migration circle. Real-
izing the grouping function and reconstructing the multiple trajectories 

could better simulate the birds' real migration process and contribute to 
the protection and cognition. Also, the method may help further 
research in areas where technologically advanced tracking approaches 
have rarely been applied and thus provide further insights into bird 
migratory processes in population level, including flyways which have 
received less attention and species which may not be easy for accurate 
individual tracking. 

2. Material and methods 

2.1. Data acquisition 

We downloaded the observations from the eBird database within the 
Western Hemisphere between 170◦E to 25◦W longitude and 62◦S to 
85◦N latitude in 2018. The avian occurrence data are organized into 
lists, including observed species with longitude, latitude, and observa-
tion date for each species. Here, we selected 15 species of birds whose 
observation date loss rates are less than 20%, and they are active in the 
North and South America with a total of 170,152 records in an annual 
circle. We used MATLAB (MATLAB, 2020) and R (R Core Team, 2020) 
for data mining and trajectory reconstruction. 

2.2. Migration trajectory reconstruction 

We proposed a bird trajectory reconstruction method based on the 
LoMcT algorithm to estimate the migration trajectories effectively, 
which aimed to find the paths of different groups belonging to one avian 
species population during migration. Our method includes four sections: 
data preprocessing, clustering, grouping, and trajectory reconstruction 
(Fig. 1). A flow chart with more details about the main components of 
the approach is shown in Fig. S1. 

2.2.1. Preprocessing 
In addition to species name, we used three data components from the 

eBird indices: latitude, longitude, and observation date. The repeated 
latitude and longitude observations on the same day were deleted to 
reduce redundancy. Missing values were estimated by linear interpola-
tion and outlier records were cleaned according to the spatial local de-
viation factor (SLDF; Zhang and Wang, 2011). The following is a 
detailed description of the data preprocessing steps. 

2.2.1.1. Missing record interpolation. On some occasions (e.g., Table S1), 
both time and location information were lost (the occurrence informa-
tion on 2018/12/17). So, we need to use the time and location data 
which are k-nearest neighbors of the missing value and fill out the 
missing information with linear interpolation for the data continuity. 
We set k as 2 after testing higher numbers which have little effect. Then 
the processed data after interpolation were stored for further use. 

2.2.1.2. Outlier detecting based on SLDF. When it comes to the outlier 
records, we calculated the local deviation degree of each observation 
data and detected the outliers with SLDF (Algorithm description S1), 
which is effective for handing large scale spatial datasets. 

After ordering all the SLDF values of the observations of one day, we 
find and clean the m objects with higher SLDF values in the top 20% after 
testing several times for effective outlier detection. 

2.2.2. Clustering based on mean-shift 
The purpose of this section is to identify the main clusters for each 

day from the preprocessed dataset. Since we focused on the movement 
of the main populations of a given bird species, we chose unsupervised 
density-based cluster analysis to implement the approach. We used high- 
density clusters to identify the grouping process during the migration 
circle because the high-density sets mean more information and fewer 
outliers. Also, an unsupervised algorithm is necessary because we can't 
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confirm the number of bird populations in advance during migration, 
and how it varies across the cycle. 

Based upon the requirements above and considering the common- 
used clustering algorithms, we chose Mean-Shift clustering algorithm 
(Derpanis, 2005), which is an unsupervised clustering method based on 
density with no need to define the number of clusters in advance, and 
has no restrictions on the shape of clusters. The effect of the algorithm of 
pushing the cluster center closer to the densest area is also very satis-
factory. This process conforms to the needs of data-driven tasks, and 
performs well with large data volumes. All of these could meet the 
characteristics of our dataset well: large data volume, unsupervised, 
obvious density differences, and irregular shape. The density can be 
estimated by the number of data points in a region of a specified radius r. 
Its nuclear function helps us come closer to the highest-density clusters 
which may form during migration as the number of iterations increases. 
In each iteration, the algorithm continuously calculates the offset means 
from the center of the circle to the center of mass, and then approaches 
the center of mass gradually. The density within the drift circle is pro-
portional to the number of data points in it. Once the center of mass is 
reached, the algorithm updates the center of mass and continues to move 
the circle closer to a higher density area. When the circle reaches the 
target, it finds itself unable to find more data points no matter which 
direction it drifts in. At this time, it is assumed to be in the densest area. 
The algorithm satisfies the final condition, and we get one intended 
clustering result. The flow chart is shown in Fig. S2. 

However, it should be noted that the distribution of daily observation 
data of one species varied greatly as patterns of data collection vary 
across space and time. In order to solve this problem and ensure the 
stability of clustering results, we aggregated the observation data of 7 
adjacent days to form the cluster dataset for one day based on the rolling 

window analysis (Zivot and Wang, 2007). By doing this, our method 
could stabilize the route construction and reduce sensitivity to uncer-
tainty in areas with heterogeneous data collection. 

2.2.3. Level-order-Minimum-cost-Traversal algorithm (LoMcT) 
Birds usually migrate in different groups rather than one single 

population during their migration process, so we aim at reconstructing 
their trajectories for each subgroup by the LoMcT algorithm. 

The LoMcT is the core and novel component of the multi-trajectory 
reconstruction method. Firstly, the centroid distances among adjacent 
days are calculated, and the clustering centroids of one day are 
considered to be on one level. Without accounting for climate, terrain, or 
other factors, we assume that the shortest path between the centroids 
has the minimum migration cost (Algorithm description S2), which 
forms the basis of the following calculations. Then, the flight path could 
be determined based on the distance D between the unsupervised cluster 
centroids of adjacent two days. The number of trajectories is consistent 
with the largest number of unsupervised cluster centroids in one day 
during the trajectory fitting cycle. The pseudo-code of the grouping al-
gorithm is shown in Pseudo code S1. 

After traversing the distance of two centroids of adjacent two days, 
we considered the two centroids with the minimum distance to be the 
same population group as shown in Fig. S3. 

To be aware of the special circumstances, we need the help of the 
cluster centroids on Day (n-1) as shown in Fig. S4. When the number of 
cluster centroids on Day (n) is less than the one on Day (n-1) and Day (n 
+ 1), we cannot judge the grouping conditions by relying solely on the 
centroids of adjacent two days, so we need to use the centroids' distance 
calculation between Day (n-1) and Day (n + 1) for further grouping 
determination. 

Fig. 1. Methodology for avian multi-trajectory reconstruction. (a) Raw observation data of Anthus_spragueii from eBird in 2018; (b) estimating out the missing 
observations via the k-nearest neighbors linear interpolation algorithm; (c, d) detecting and removing outliers with space local deviation factor (SLDF); (e, f) 
identifying the daily groupings with Mean-Shift cluster algorithm and grouping the birds with Level-order-Minimum-cost-Traversal (LoMcT) algorithm; (g-i) with the 
help of generalized additive model (GAM), we constructed trajectories of Anthus_spragueii in 2018. 
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To show our clustering algorithms more intuitively, it can be indi-
cated by the schematic intuitively with a total of seven cases in Fig. S5. 

2.2.4. Trajectory reconstruction based on the generalized additive model 
The generalized additive model (GAM; Algorithm description S3; 

Hastie and Tibshirani, 1990) extends the generalized linear model by 
estimating the relationship between the dependent and independent 
variables by fitting nonparametric functions, and the concept is a 
nonparametric regression method in which potentially non-parametric 
functions can be processed by data smoothing techniques. We need to 
note that the additive terms are also allowed to be parametric function in 
GAMs, such as polynomials. 

When generating the GAM models, we fit longitude and latitude with 
the date respectively because they are assumed to be independent from 
each other. In this way, we 1) matched the coordinates of longitude and 
latitude on the same day according to the chronological order, 2) ob-
tained the trajectory coordinates of longitude and latitude under the 
time dimension, and 3) generated the migration trajectory results finally 
by linking the coordinates up. 

3. Method verifications 

3.1. Virtual data based verification 

To verify the accuracy of the algorithm, we built a virtual species and 
artificially defined the group situation in the absence of bird calibration 
trajectories. The test dataset is the observation data of the virtual species 
across one year. The orange and blue lines are the calibration of the 
virtual species migration trajectory, and the green and red ones are the 
reconstructed trajectories through our grouping algorithm (Fig. S6). 

In the process of grouping verification, considering that two or more 
paths represent a dichotomy, the validity of the two-groups can 
adequately prove the validity of the multi-group grouping algorithm. We 
assume that the virtual species located in the area named B as the 
breeding ground and the area named A as the wintering ground. The 
virtual birds migrate from area A to area B in January, and finally return 
to A through two trajectories colored orange and blue to complete the 
migration activities during one year. The test dataset is observations for 
virtual species within a year and is organized in a humanly defined 
calibration grouping with the grouping results being displayed in orange 
and blue curves on the map. The reconstructed results are displayed as 
green and red lines on the map when the test dataset is input our 
grouping algorithm. As can be seen from the figure, the grouping algo-
rithm can effectively finish the grouping of the virtual migration 
observation data. 

3.2. Empirical data based verification 

The ideal reconstructed trajectories should across most of the high- 
density observation points of a given species. To verify it in empirical 
datasets, we invoked LoMcT algorithm to 15 species to reconstruct their 
population-level paths (Fig. S7–Fig. S11), then we generated a buffer 
around the trajectories via constructing a 95% confidence interval 
(Fig. 2), and used the one-sided independent two-sample t-test to test 
whether the density of the points inside of the buffer was significantly 
higher than the ones out of the buffer. Results are shown in Table S2. 

4. Results 

4.1. Grouping conditions 

Detailed analysis of migratory trajectories was performed on 15 
American species in 2018. The 15 species showed five different patterns 
of grouping across their migratory cycle. No species showed only one 
single migratory trajectory, and three species (Helmitheros_vermivorum, 
Elaenia_parvirostris, Euphagus_carolinus) showed two trajectories 
(Fig. S7). One species (Empidonax_difficilis) showed three migration 
trajectories (Fig. S8), four species had four trajectories (Anthus_spragueii, 
Catharus_minimus, Icterus_spurius, Muscisaxicola_capistratus, Fig. S9), and 
a further four species (Calcarius_ornatus, Cardellina_canadensis, Con-
topus_cooperi, Vireo_philadelphicusi) showed five migratory trajectories 
(Fig. S10). The highest number of migratory trajectories noted was six, 
which was found in two species (Ammospiza_nelsoni, Passerina_amoena) 
in Fig. S11. 

4.2. Trajectories reliability assessment 

Because of the scattered distribution of the observation data from 
eBird caused by less accessible areas and fewer engaged bird-watchers, it 
is difficult for us to make use of all the occurrence information. There-
fore, our grouping algorithm focuses more on the areas where the 
density of the observation data points is sufficiently high for trajectory 
grouping to capture the movement information of the main populations. 

As shown in Fig. 2, the red full line is one trajectory of Anthus_-
spragueii. The gray ribbon area is the buffer of the trajectory created by 
95% confidence interval. We calculated the density of the points inside 
and outside of the buffer. The P-value of the one-sided independent two- 
sample t-test is 0.0064 < 0.01, which meant the density of points inside 
of the buffer was significantly higher than the ones outside. In this way, 
we preliminarily proved that our trajectories could effectively charac-
terize the major populations with higher densities in the observational 

Fig. 2. A map for one trajectory of Anthus_spragueii. The red full line is the trajectory. The gray ribbon area is a buffered pathway with 95% confidence interval. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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data. 11 of the 15 species in our study showed the same pattern as 
Anthus_spragueii, while the rest of 4 species didn't give out a significant 
difference (Table S2). 

5. Discussion 

With the increasing global data availability and the greater pressure 
on natural habitats, there is a greater need for more accessible ap-
proaches to understanding species migratory routes. However, the type 
of data often used for such analysis is generally limited to a subset of 
species and regions. Based on that, we developed an avian multi- 
trajectory reconstruction method based on LoMcT, which could help 
reconstruct avian migration routes with observations from eBird. 

However, due to the limitations of eBird being an unsupervised citizen 
data, the dataset is limited by data availability, visibility, observation 
bias, and other factors, which can lead to some deviation, such as local 
closed loop in the trajectory reconstruction results, in areas where there 
is too much observation data or too little observation data. Through the 
effective analysis of avian occurrence information, the trajectory of bird 
migration can be simulated as the basis to analyze and visualize the 
stopover sites distribution, and the important time nodes of reaching 
wintering grounds, breeding grounds as well as stopover sites during 
avian migration. The simulated trajectories can help us evaluate the 
distribution of the movement sequences and the dynamic changes in the 
moving process, and was found to be credible by experimental trials and 
calibration. 

Fig. 3. (a) A migration axis and its migration trajectories schematic for Anthus_ spragueii. The line segment AB represents the migration axis between the winter range 
and the breeding range. We can get the changing trend of the offset degree graph between each route and the migration axis AB by working out its each-day 
Euclidean offset distances in the migration process. (b) Offset distances graph of Anthus_spragueii in 2018. The horizontal axis is time, and the vertical axis is the 
every-day offset Euclidean distance under the Mercator coordinate system between the position on each trajectory and the migration axis. The graph shows that the 
birds reach the breeding range in early June. The offset distances of each route change periodically. (c) Speed of Anthus_spragueii in 2018. By the speed graph above, 
we can see the birds arrive at the breeding ground in early June with decreasing speed and leave in late August with increasing speed. (d) Variance of each-day 
positions in the trajectories of Anthus_ spragueii in 2018. By the variance graph between the trajectories above, we can see the birds arrive at the breeding 
ground in early June and leave in late August with the minimum variance. Also, we find the birds arrive at a stopover site in late September. The variance graph 
shows the aggregate information of the population during the whole migration circle according to the distribution of different trajectories. They scatter with large 
variances and cluster with smaller ones. 
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Fig. 3. (continued). 
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5.1. Offset distance and their variance analysis 

It seems necessary for birds to choose altitude and speed to maintain 
optimal migration direction and minimize energy consumption and risk. 
In order to analyze the strategy of flight behavior and migration, we 
calculated the daily Euclidean offset distances between the trajectories 
and the migration axis between the winter range and the breeding range 
during the migration cycle. 

For example, Anthus_spragueii is a small songbird that breeds in the 
mixed-grass prairies of North America. It overwinters in the south-
western United States and northern Mexico, and its summer habitat is 
primarily native grasslands in the north-central meadows of the United 
States and Canada. But the trajectory result shows that it does not utilize 
the route of the shortest distance. 

In the static trajectory diagram map of Anthus_spragueii in Fig. 3a, the 
migration axis between the overwintering grounds and the breeding 
ground is reflected as line segment AB for the shortest distance. Daily 
Euclidean offset distances in the migration process enable calculation of 
the offset degree graph between each route and the shortest trajectory. 
In Fig. 3b, the horizontal axis is time, and the vertical axis is the every- 
day offset Euclidean distance under the Mercator coordinate system 
between the position on each trajectory and the migration axis. The 
graph shows that the birds reach the breeding range in early June with 
decreasing speed shown in Fig. 3c., and the offset distance of the 
migration trajectories from the migration axis changes periodically with 
roughly in the straight flight direction. Alerstam found that migratory 
birds often choose to make detours to avoid crossing barriers such as 

large areas of sea, sand, or ice (Alerstam, 2001). Considering the actual 
environment and their feeding habits, we demonstrate that Anthus_-
spragueii prefers to migrate across grassland for food-providing rather 
than using potential routes straightly through forests. 

Furthermore, we figure out the daily population density of Anthus_-
spragueii during the yearly migration cycle (Fig. 3d). Combined with the 
variance graph between the trajectories in Fig. 3d, we can analyze the 
time of their arrival at the breeding ground (early June) and they leave 
in late August with the minimum variance. In the same way, the birds 
arrive at the stopover site in late September. By the variance graph, the 
aggregate information of the population during the whole migration 
cycle can be reflected clearly according to the distribution of different 
trajectories. The birds scatter with large variances and cluster with 
smaller ones. Fig. 4 shows the whole migration cycle along with the 
information we get above. 

Variance graphs of birds' trajectories show the degree of scattering or 
concentration within each species population during the migration 
cycle. Birds disperse at high levels of variance and concentrate when the 
variance is low. Different groups of the same species converge in the 
same special geographical location likely denoting topographic drivers 
or high food availability, especially in breeding grounds or other stop-
over sites. Birds come together in the spring for breeding, and they travel 
separately to the winter grounds after breeding. 

By identifying areas with low variance, we can identify the areas of 
key importance for feeding, breeding, wintering, and stopover sites 
which may show important time nodes during the movement phases of 
migration. 

Fig. 4. A diagram of the whole migration cycle of Anthus_spragueii in 2018. Number 1 represents the time of their arrival at wintering sites. Number 3 represents the 
time of arrival at breeding sites. Number 2 represents the time of departure from wintering sites. Number 4 represents the time of departure from breeding sites. Four 
different colors represent four different groups during the migration cycle. 
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5.2. Analysis of migration strategies 

The migration trajectories of birds can be categorized into broad or 
narrow front migration (Fig. S12) according to the breadth of the 
migration coverage area (Mead, 1983; Qin et al., 2008). Narrow-front 
migration refers to the movement of birds between breeding sites and 
wintering grounds with a narrow concentrated migratory route, which is 
typically narrower than the range used for breeding or overwintering. In 
broad-front migration, the paths of birds between the breeding area and 
the wintering area are more scattered, and cover a wider area than the 
narrow-front migration (Mead, 1983; Qin et al., 2008). 

15 species are further divided into broad-front migration or narrow- 
front migration according to the offset degree. When the average offset 
distance away from the migration axis of the trajectories is greater than a 
Euclidean distance of 500,000 m, the bird migration belongs to the 
broad-front movement. When the offset Euclidean distance away from 
the migration axis is less than 500,000 m, the bird migration is narrow- 
front migration. These two types of migration trajectories are evenly 
distributed among the 15 species migration trajectories. The migration 
strategy results are shown in Table S3. 

Seven species, including Ammospiza nelsoni, Cardellin canadensis, 
Catharus minimus, Contopu cooperi, Euphagus carolinus, Icterus spurius, 
and Passerina amoena are classified as broad-front migrants. The other 
eight species, including Anthus_spragueii, Calcarius ornatus, Elaenia par-
virostris, Empidonax difficilis, Geothlypis philadelphia, Helmitheros vermi-
vorum, Muscisaxicola capistratus, and Vireo philadelphicus are classified as 
narrow-front migrants. Birds with more groups are more likely to have 
broad-front migrations. The differences in the migration mode could 
help us obtain the important survival information of birds in migration, 
such as understanding the importance of stop-over sites during migra-
tion and ensuring that these key areas are maintained, especially in 
migratory bottlenecks. 

Different groups of the same species show different offset distances 
from the migration axis. According to the variance of different offset 
distances, we can judge the distribution of the whole population in the 
entire migration cycle. When the variance is significant, then wide 
migratory pathways may be used, while low levels of variance indicate 
very narrow migratory routes. The distribution of different populations 
of the same species could be obtained across one year using the variance 
graph (Fig. 3d), which reflects the level of dispersal of each bird species 
in the face of geographical, climatic, and other environmental changes, 
and therefore may be used to pinpoint key stopover sites. This analysis 
also advances from previous methods (Bounas et al., 2020; La Sorte 
et al., 2016; Li et al., 2019; Somveille et al., 2020; Walker and Taylor, 
2020), by better capturing the dynamic process of avian migration 
including population distribution bottlenecks across the year. 

5.3. Moving forwards 

Globally, there are five global flyways (UNEP/CMS, 2014), and huge 
efforts have gone into tracking and reconstructing the routes of the 
American flyways, but to a less extent gone for the African/west 
Eurasian flyway; data for species on other flyways is also much more 
limited. This represents a serious threat to the future survival of many 
species, as, for example, populations of some species on the East-Asian 
Australasian flyway have shown decrease rates at 5–9% per year (Li 
et al., 2019). Targeted conservation for many species has previously 
been impossible with limitation of both the capacity and resources in 
certain regions, and the low weights of some species which precludes the 
use of most tracking devices. Our approach provides many details of any 
analysis in terms of identifying the intensity of use across routes as well 
as their stopovers, and therefore enables targeted conservation efforts to 
ensure these regions are protected. Furthermore, in areas where data is 
particularly sparse, we also could help reconstruct routes, and addi-
tionally understand their dependencies over the course of migration 
(such as flying over grasslands) which may be essential for such species 

to be a viable weight for reproduction or over-wintering once they reach 
breeding or over-wintering grounds. By utilizing our approach within 
these less-known regions, we hope to enable new insights into the routes 
used in much less-known global flyways, and therefore enable better 
conservation, management, and further research. 

6. Conclusion 

Advancing global understanding of avian migratory routes calls for 
making better use of easy-to-acquire and access data. In this work, we 
detail a new method for multi-trajectory reconstruction method based 
on the LoMcT algorithm with observations from eBird, which combines 
with data mining and graph theory to enable sub-grouping trajectory 
reconstruction during bird migration. As bird databases grow, our 
method may be applicable to an increasing number of species all over 
the world, helping fill in gaps for small-bodied and little-known species. 

What's more, our trajectory reconstruction work is carried out in an 
“ideal state” without taking the limits of accessibility due to terrain, 
prevailing wind, or other factors into account. Terrain, and climate in-
formation could be added to such analysis and would further enhance 
our understanding of bird migration. It's worth noted that our occur-
rence information is usually from areas with good observation condi-
tions, and we need actively subsample such data to develop our 
trajectories. Inaccessible areas, such as mountain passes and oceans are 
challenging to produce exact migration trajectories in this study, espe-
cially for the species across the Atlantic, the Gulf of Mexico. Combining 
limited individual tracking data, such as from radio-tracked birds, as a 
complement to trajectory analysis would provide one way to assay ac-
curacy across such regions. Also, as an important part of our multi- 
trajectory reconstruction algorithm, more available clustering methods 
would be tested and assessed in our framework for further improvement 
to make our approach more effective. 

In synthesis, we showcase a helpful method for mapping multiple 
migration trajectories, and their stops based on observation data. The 
increased level of routes accuracy provides more accurate data to target 
conservation and management, and provides a tool that will greatly 
enhance our understanding of species on less known and studied flyways 
across the globe. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecoinf.2021.101319. 
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