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A B S T R A C T   

Deforestation has created heterogeneous patches of old-growth and secondary forests throughout Southeast Asia, 
posing challenges for understanding the hydrological and carbon cycles. In addition to changes in species 
composition, environmental conditions differ across successional stages which in turn can influence forest water 
use and productivity. Here, we investigated leaf-level area-based photosynthesis (Aarea) and stomatal conduc-
tance (gs) of 11 tree species dominating an old-growth (OF; >200 years), an intermediate (IF; ~44 years), and a 
young forest (YF; ~4 years) in Thailand during both the wet and dry season. Specifically, we compared Aarea and 
gs and assessed the sensitivity of gs to vapor pressure deficit (VPD). We also examined relationships between gas 
exchange parameters and key functional leaf traits, including leaf mass per area (LMA), nitrogen (N), phosphorus 
(P), and chlorophyll concentration. All three forests showed comparable Aarea and gs in the wet season, whereas 
significantly lower values were observed in IF during the dry season. All forest stages displayed similar sensitivity 
of gs to VPD. Among the leaf functional traits considered, LMA, N and P were significantly higher in YF compared 
to the other two successional stages. Our results suggested that forest succession may not influence gas exchange, 
rather, canopy development associated with forest stage produced the main effect. Furthermore, the young forest 
was the most active in resource acquisition with its high LMA and leaf nutrient concentrations, which could 
result in high photosynthetic rates. However, low soil water availability in YF possibly limit the gas exchange 
rates thereby making them similar to those in the old-growth forest. These findings highlight the potential effects 
of canopy characteristics inherent in successional forests on water and carbon exchanges between trees and the 
atmosphere and their sensitivity to atmospheric drought. These results call for the need for further studies to 
identify the main factors influencing forest productivity during secondary succession in the tropics, particularly 
in the Southeast Asian region where such information is lacking.   
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1. Introduction 

Tropical forests play an important role in the biosphere, especially in 
global water and carbon cycles. Transpiration represents ca. 40–90% of 
the total amount of water emitted to the atmosphere (e.g., Miralles et al., 
2011; Jasechko et al., 2013; Wang-Erlandsson et al., 2014; Good et al., 
2015) and thus strongly influences hydrology and energy partitioning in 
terrestrial ecosystems (Bonan, 2008). Tropical forests sequester ca. 
0.28–1.26 Pg C each year (Hubau et al., 2020) and thus play a critical 
role in mitigating rising atmospheric carbon dioxide and related climate 
change impacts. However, widespread deforestation and land use 
change are rapidly transforming these ecosystems, with over 80 million 
hectares of natural, old-growth tropical forests being lost since 1990 
(FAO and UNEP, 2020). Deforestation and land use change is especially 
pervasive across Southeast Asia (Zeng et al., 2018; FAO and UNEP, 
2020), where large-scale agricultural production and commercial tree 
plantations have been the main drivers of forest loss (Curtis et al., 2018). 
However, many of these large-scale operations have been abandoned 
because of unsustainable practices, leading to the regeneration of sec-
ondary forests either through natural or aided processes. Consequently, 
forests in Southeast Asia are characterized by a patchy mosaic of pri-
mary, old-growth forests, and forests at different stages of secondary 
succession. 

Structural attributes, such as canopy height and tree density, vary 
considerably among forests which in turn can strongly influence the 
microclimate (Rambo and North, 2009; Jucker et al., 2018) as well as 
the carbon and water balance in old growth, primary forests, and forests 
at different stages of secondary succession (Powers and Marín-Spiotta, 
2017). Old-growth forests usually contain larger trees and heteroge-
neous canopy layers, and lower stem density, compared to secondary 
forests (Chazdon, 2014; Chanthorn et al., 2016, 2017; Jucker et al., 
2018). Conversely, the intermediate successional stage, namely the 
“stem exclusion” stage, has a relatively homogeneous canopy and high 
stem density (Chazdon, 2014; Chanthorn et al., 2016, 2017). Variation 
in canopy height can lead to differences in the convective boundary 
layer which is responsible for transport of energy and gases from plant 
surfaces to the atmosphere. Smaller convective boundary layers over 
early successional forest (stand initiation stage), which are character-
ized by low canopy height, result in a hotter and drier microclimate, 
especially during the dry season (Fisch et al., 2004). Additionally, early 
successional forests have greater variability in their physical environ-
ments, including water and light conditions, compared to later succes-
sional and old growth forests (Culf et al., 1996). Consequently, species 
acclimated to early-successional stages tend to have higher gas exchange 
rates, and higher stomatal conductance and photosynthesis (Hölscher 
et al., 2006; Vargas and Cordero, 2013; Mujawamariya et al., 2018). In 
contrast, the canopy is more homogeneous and shaded in the interme-
diate, stem exclusion stage (Chazdon, 2014; Chanthorn et al., 2016, 
2017), which constrains gas exchange, especially leaf transpiration 
(Hardwick et al., 2015). 

Environmental gradients during secondary succession can impact the 
strategies trees use to acquire resources and ultimately lead to differ-
ences in tree species richness and composition among different succes-
sional forests (Zhang et al., 2012; Chazdon, 2014, Chanthorn et al., 
2016, 2017). Previous studies in humid tropical forests have shown that 
decreasing light penetration during secondary succession results in 
changes of leaf traits (Lohbeck et al., 2013, 2015). Most trees in early 
successional forests are fast-growing species and, according to the leaf 
economic spectrum (Wright et al., 2004), have leaf traits promoting 
quick returns on investment in nutrients and carbon (i.e., high specific 
leaf area and nutrient levels, short lifespan and high metabolic rates). In 
contrast, trees in old growth forests tend to exhibit conservative stra-
tegies (Lohbeck et al., 2013, 2015) with high investments in leaf carbon 
structures (i.e., high leaf dry matter content). However, in dry tropical 
forests, the light gradient during succession is less pronounced and these 
forests are often more water-limited and have higher temperatures 

which may be stronger factors driving changes in plant communities 
(Lebrija-Trejos et al., 2010, 2011). In general, trees growing in more 
xeric conditions tend to exhibit leaf traits with slow returns on resource 
investment, i.e., have conservative strategies (Reich, 2014). Yet, we still 
know little about how leaf traits vary during secondary succession in dry 
tropical forests and how variation in leaf traits and microclimate con-
ditions affect leaf gas exchange measurements (i.e., photosynthesis and 
transpiration) and ultimately, the growth and productivity of these 
forests. 

In this study, we measured leaf-level gas exchange and plant func-
tional traits of the dominant tree species in a seasonal evergreen forest in 
Thailand. Measurements were made during both the wet (May–October) 
and dry (November–April) season as well as within forests representing 
different stages of succession: a young forest (YF, ~4 years), an inter-
mediate forest (IF, ~44 years) and an old-growth forest (OF, >200 
years). Specifically, our study addressed the following questions: (Q1) 
Does leaf-level gas exchange (photosynthesis and stomatal conductance) 
differ across successional forests and between seasons? (Q2) Does the 
sensitivity of stomatal conductance to changes in atmospheric demand 
vary across different stages of forest succession? (Q3) How do different 
leaf functional traits relate to leaf gas exchange parameters, and do these 
relationships change depending on forest stage? Results from this study 
will improve our understanding of the underlying mechanisms govern-
ing water and carbon fluxes in different successional forests as well as 
assessing how these forests may respond to a hotter, drier future. 

2. Materials and methods 

2.1. Site description 

The study was carried out in Khao Yai National Park (KYNP), a 
seasonal evergreen forest in Nakhon Ratchasima Province, Thailand 
(14◦26ʹ31′′ N, 101◦22ʹ55′′ E, 700–800 m asl; Fig. 1). Based on 
1994–2018 data, mean annual temperature and precipitation at the site 
are about 22.4 ◦C and 2100 mm, respectively. The wet season usually 
covers the months from May to October while the dry season ranges 
from November to April, when monthly precipitation is less than 100 
mm (Brockelman et al., 2017). KYNP contains a mosaic of different 
forest types including old-growth (primary) forests and secondary for-
ests of different ages that have regenerated from old fields within the 
past 42 years (Jha et al., 2020). In this study, we selected three plots 
representing different successional stages. The first plot was within the 
30-ha Mo Singto forest dynamic plot (Brockelman et al., 2017), a For-
estGEO plot in the network of the Centre for Tropical Forest Science 
(CTFS), Smithsonian Tropical Research Institute. These plots were 
established using a uniform methodology (Condit, 1998) in which every 
woody stem ≥ 1 cm DBH is identified, mapped, and measured every five 
years. This plot represented an old-growth stage (hereafter OF), with the 
age of at least ca. 200 years. The OF’s main canopy height was 20–30 m 
with some emergent trees being higher than 50 m, a leaf area index (LAI) 
of 5 and stem density of 1112 trees ha− 1 (Chanthorn et al., 2016; 
Brockelman et al., 2017). Adjacent to the northern edge of this plot, a 1- 
ha plot in a secondary forest was established in 2003, using the same 
CTFS methods. This plot (hereafter IF) was in an intermediate succes-
sional stage at about 44 years of age and classified as stem exclusion 
stage. The forest canopy of IF was more homogenous and denser 
compared to that of OF and had a mean canopy height of 25 m, an LAI of 
6, and stem density of 2052 trees ha− 1 (Chanthorn et al., 2016). 
Approximately 3 km away from the OF plot, we established a 2-ha plot 
in a 4-year-old, early successional forest (hereafter YF). Its mean canopy 
height was 15 m and stem density of 1226 trees ha− 1. Despite the lack of 
LAI data, the YF canopy was distinctly sparse compared to the other 
stages based on visual observation. The IF and YF were classified as 
“stem exclusion” and “stand initiation” stages, respectively (Chazdon, 
2014; Chanthorn et al., 2016, 2017). The soil type of these forests was 
gray, brown ultisol, but the soils under the IF and YF were degraded by 
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shifting agriculture and burning prior to regeneration (Chanthorn et al., 
2016, 2017). 

2.2. Plant materials and measurements 

In each plot, we selected five dominant tree species, based on basal 
area ranking within the site. The selection resulted in 11 species in total 
with three species occurring in more than one forest stage: Syzygium 
nervosum in IF and YF, Schima wallichii in OF and IF, and Symplocos 
cochinchinensis in all stages. Table 1 summarizes the selected dominant 
species in each study site. 

For each species, five trees of similar stem size (diameter at breast 
height averaged 13.83 ± 2.74 cm (standard deviation); Table S1 in 
Supplementary Information) were randomly selected for gas exchange 
measurements and leaf sample collection. For each tree, we randomly 
chose three mature and fully expanded leaves with good exposure to 
sunlight from the lower and outside branches (Kröber et al., 2015). For 
sampling in the intermediate and old-growth forests, we particularly 
selected leaves that were always present in light gaps within each can-
opy to ensure that the leaves received full or substantial sunlight (Fan 
et al., 2011; Markesteijn et al., 2011; Zhu et al., 2013). Since the canopy 
could not be accessed directly due to the unavailability of towers or 
canopy cranes, we had to perform the measurements on cut branches 
containing the sun-exposed leaves with the stems submerged in a 
container filled with water. Prior to gas exchange measurements, the 
stems of individual branches were recut underwater to allow the 
restoration of the xylem water column (Dang et al., 1997). Within 5 min 

after re-cutting, we placed a leaf in the cuvette for gas exchange mea-
surement to minimize excision-induced effects (Santiago and Mulkey, 
2003). Then, we waited for at least 2–3 min to allow the leaf to reach 
small changes in gas exchange over time before logging the data after 
observing stable gas exchange parameters. Leaf gas exchange measure-
ments were made using a portable photosynthesis system (TARGAS-1, 
PP Systems, Amesbury, MA, USA). All leaves covered the entire window 
area of the cuvette which was equal to 4.5 cm2. Area-based photosyn-
thetic rate (Aarea; µmol m− 2 s− 1) and stomatal conductance (gs; mmol 
m− 2 s− 1) were recorded for each leaf and reported per unit area. All 
measurements were conducted between 0900 and 1600 h (Marenco 
et al., 2001). We realized that the measurement period was longer than 
that often used for gas exchange measurement to avoid stomatal closure 
which is usually 1–2 h before and after midday (Brodribb and Holbrook, 
2004; Bianco and Avellone, 2014; Urban et al., 2014). However, because 
of logistical issues, we utilized sunny conditions between the periods for 
gas exchange measurements. Nevertheless, we compared both Aarea and 
gs values that were recorded after 1400 h with those recorded during 
midday (1000–1400 h) on the same day and found no statistical dif-
ferences (Fig. S1; p ≥ 0.064). The flow rate was set to 250 ml min− 1 

(TARGAS-1 Portable Photosynthesis System Operation Manual Version 
1.04 2018). Photosynthetically active radiation (PAR; µmol m− 2 s− 1) 
inside the cuvette was set to 1700 µmol m− 2 s− 1, which corresponded to 
the light saturation point (data not shown; Hölscher et al., 2006; Zhu 
et al., 2013). Temperature, relative humidity and CO2 concentration 
were not controlled and thus tracking ambient conditions. Because no 
previous publications reporting gas exchange measurements from this 
model of portable photosynthesis system were found, we compared our 
measured values to others made in tropical forests (Table S2) by plotting 
photosynthesis against stomatal conductance (Fig. S2). Although our 
values are mostly concentrated in the low ranges of photosynthesis and 
stomatal conductance, they fall within the ranges of values measured by 
other techniques. We realized that this comparison may not fully justify 
our measurements, but our main goal was to study the variations among 
forest stages rather than attempting to quantify absolute gas exchange 
rates. 

Leaf-to-air vapor pressure deficit (VPD; kPa) was recorded for each 
measurement and used in the sensitivity analysis. Leaf-level gas ex-

Fig. 1. Study sites include a young (YF), an intermediate (IF) and an old growth (OF) forest in Khao Yai National Park, Thailand.  

Table 1 
Dominant tree species selected for measurements in each forest stage in Khao Yai 
National Park, Thailand.  

Old growth (OF) Intermediate (IF) Young (YF) 

Dipterocarpus gracilis Syzygium nervosum Adinandra integerrima 
Ilex chevalieri Eurya acuminata Cratoxylum cochinchinensis 
Schima wallichii Machilus gamblei Syzygium nervosum 
Sloanea sigun Schima wallichii Syzygium antisepticum 
Symplocos cochinchinensis Symplocos cochinchinensis Symplocos cochinchinensis  
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change measurements were performed in both the dry (March 2019, 
total monthly precipitation = 0.8 mm) and the wet (July 2019, total 
monthly precipitation = 141.7 mm) seasons. During the wet season 
campaign, we also collected the leaves on which gas exchange mea-
surements were made to measure leaf functional traits. Leaf functional 
traits used in this study included leaf mass per area (LMA; g m− 2), area- 
based nitrogen (N; g cm− 2) and phosphorus (P; g cm− 2) concentration, 
and chlorophyll concentration (Chl; µg cm− 2). LMA was calculated as 
the ratio of leaf dry mass and leaf area (Poorter et al., 2009), measured 
by ImageJ (Schneider et al., 2012). For chemical analyses of total N and 
P concentrations, three leaves from each tree were pooled to obtain 
enough samples (at least 0.1 g) for laboratory analyses. Total N was 
determined using the Kjeldahl method (Kammerer et al., 1967) and the 
colorimetric method was used to determine total P (Gales et al., 1966). 
Chlorophyll concentration was estimated from SPAD values (range 
34.3–75.8) which were measured using the SPAD-502 chlorophyll meter 
(Konica Minolta, Tokyo, Japan). We converted SPAD into Chl using the 
relationship derived from 13 Neotropical species (Chl = 117.1×SPAD

148.84− SPAD, r2 

= 0.89, SPAD value ≤ 80; Coste et al., 2010). 

2.3. Statistical analyses 

To test for significant differences in Aarea and gs among forest stages 
and seasons (Q1), we used a General Linear Mixed Model with forest 
stage and season as fixed factors and species as a random factor. A 
Tukey’s test was applied for post hoc analysis. We conducted regression 
analyses using exponential decay and logarithmic functions to analyze 
the sensitivity of gs to VPD. To compare the sensitivity across forest 
stages (Q2), we performed the analysis with pooled data from all species 
within each stage and then analyze the data from species that existed in 
multiple stages (i.e., Syzygium nervosum (IF, YF), Schima wallichii (OF, IF) 
and Symplocos cochinchinensis (all stages)). We applied an F-test to 
compare the regression curves among stages. In these analyses, the 
sample size was 15 per species, resulting in 75 samples for each stage. 
We performed a one-way Analysis of Variance (ANOVA) to compare leaf 
traits, which were only measured in the wet season, across forest stages. 
We did regression analysis to evaluate the relationships between Aarea 
and gs and the leaf traits and used an Analysis of Covariance (ANCOVA) 
to assess variations of significant relationships across forest stages. All 
analyses of comparisons were done in SPSS (IBM Corp. Released 2013. 
IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY, USA) and 
regression analyses were performed in SigmaPlot (version 12.0, Systat 
Software, Inc., San Jose, CA, USA). In all statistical analyses, we used the 
significance level of 0.01. 

3. Results 

3.1. Does leaf-level gas exchange differ across successional forests and 
between seasons? 

In general, species in all forest stages had higher Aarea and gs in the 
wet than in the dry season (p ≤ 0.0001). When combining data from 
both the wet and dry season, there was no significant difference in Aarea 
and gs among successional forest stages (p ≥ 0.184). However, when 
comparing dry-season measurements, there were significant differences 
in Aarea and gs among the forest stages (p ≤ 0.0006; Fig. 2 brown bars), 
whereas there were no differences in the wet season (p ≥ 0.03; Fig. 2 
yellow bars). In the dry season, trees in OF and YF had comparable Aarea 
and gs but higher values than trees in IF (Fig. 2). 

For Schima wallichii and Symplocos cochinchinensis, tree species found 
in multiple sites, there was no significant difference in Aarea and gs 
among forest stages during the wet season (p ≥ 0.659; Fig. 3A, B, D, E; 
yellow bars). However, during the dry season these two species had 
significantly higher gas exchange rates in OF compared to the younger 
sites (p ≤ 0.004, 3A, B, D, E; brown bars). For Syzygium nervosum, which 
was found in the intermediate and early successional forests, Aarea and gs 
were similar across stages regardless of season (Fig. 3C, F; p ≥ 0.631). 

3.2. Does the sensitivity of stomatal conductance to changes in 
atmospheric demand vary across forest succession? 

We tested the relationship between gs and VPD in all tree species 
using data from both seasons. Various equations have been proposed to 
explain such relationship, including linear (McCaughey and Iacobelli, 
1994), exponential (Dye and Olbrich, 1993) and logarithmic (Oren 
et al., 1999). We employed these equations in our regression analysis for 
each species in each stage and found significant results with exponential 
(y = a× exp( − bx) + c) and logarithmic (y = b× ln(x) + c) forms in 10 
out of 11 species, which is consistent with previous studies of various 
tree species (Oren et al., 1999; Mielke et al., 2005; Motzer et al., 2005). 
No equation could explain the relationship in Machilus gamblei. First, we 
examined the relationship between gs 

and VPD in all dominant species within each site. We found that gs 
exponentially decreased with VPD in all forests (p < 0.0001, r2 ≥ 0.66) 
with no difference among successional stages (Fig. 4A, F2,447 = 1.25, p 
= 0.287). Next, we further considered the species that occurred in 
multiple forest stages. A logarithmic decline was the best fit between gs 
and VPD for Syzygium antisepticum, whereas for Schima wallichii and 
Symplocos cochinchinensis, an exponentially decaying function was the 
best fit (Fig. 4B-D; p ≤ 0.01). When compared among sites, the re-
lationships between gs and VPD for these species were similar across 
forest stages (p ≥ 0.136). Summary statistics for regression and 
comparative analyses are shown in Table S3. 

Fig. 2. Overall mean (±1 SE) leaf-level (A) photo-
synthesis (Aarea; µmol m− 2 s− 1) and (B) stomatal 
conductance (gs; mmol m− 2 s− 1) in young (YF), in-
termediate (IF) and old-growth forests (OF) within 
Khao Yai National Park, Thailand. Measurements 
were taken in the dry (brown bars) and the wet (yel-
low bars) season. Different lowercase (uppercase) 
letters indicate significant difference among forest 
stages during the dry (wet) season. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   
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Fig. 3. Mean (±1 SE) leaf-level (A–C) photosynthesis (Aarea; µmol m− 2 s− 1) and (D–F) stomatal conductance (gs; mmol m− 2 s− 1) of species that occurred in multiple 
forest stages in Khao Yai National Park. Measurements were made during the dry (brown bars) and wet (yellow bars) season. Different lowercase (uppercase) letters 
indicate significant difference among forest stages during the dry (wet) season. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 4. Relationships between leaf-level stomatal 
conductance (gs; mmol m− 2 s− 1) and leaf-to-air vapor 
pressure deficit (VPD; kPa) for (A) all forest stages (B) 
Syzygium nervosum, (C) Schima wallichii, and (D) 
Symplocos cochinchinensis. Measurements were made 
in an old-growth forest (OF, green circles), an inter-
mediate forest (IF, blue squares), and a young forest 
(YF, red triangles). Black solid lines show the best fits 
with 95% confidence intervals (blue lines) for pooled 
data after finding no difference among different 
stages. Regression statistics are presented in Table S3. 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version 
of this article.)   
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3.3. How do different leaf functional traits relate to leaf gas exchange 
parameters and do these relationships change depending on forest stage? 

For this research question, we focused on the wet season only due to 
the availability of data. Across the three forest stages, average LMA, P 
and N values were higher in YF compared to the two older forests 
(Fig. 5A–C; p < 0.0001). In contrast, there was no significant difference 
in Chl among the successional forests (Fig. 5D; p = 0.067). Next, we 
explored the relationships between gas exchange parameters and the 
leaf traits. Of all considered traits, only LMA and N were significantly 
related with Aarea and gs in IF and OF (p ≤ 0.01). We further compared 
the relationships between both gas exchange parameters and LMA and N 
in OF and IF and found no difference between the stages (p ≥ 0.024). 
Fig. 6 shows the significant relationships for the pooled data from both 
OF and IF (black solid lines; regression statistics are listed in Table S3). 

4. Discussion 

Seasonal variations in both gas exchange parameters were observed 
at the forest level and at species level. Generally, both Aarea and gs were 
higher in the wet than in the dry season. For all studied species, lower 
Aarea and gs in the dry season corresponded to higher VPD (Table S1) 
which is consistent with plants closing their stomata in response to 
increasing atmospheric drought (Cunningham, 2004; Chen et al., 2016). 
These results suggested that productivity of these successional stages 
may differ, especially during the dry season when both atmospheric and 
soil humidity are usually limiting (Harper et al., 2013). However, we 
found no significant difference in the gas exchange parameters across 
our successional forests during the wet season. Instead, a significant 
decrease in the parameters was observed in the intermediate forest (IF) 
with the highest stem density (2052 trees ha− 1 vs. 1112 trees ha− 1 and 
1226 trees ha− 1 in OF and YF, respectively), in the dry season. Such high 
density induces shading in the canopy with lower variability in LAI 
(Chazdon, 2014; Chanthorn et al., 2016, 2017) and may limit the gas 
exchange as previously observed in shade-acclimated trees (Chazdon 
et al., 1996; Gerardin et al., 2018; Yang et al., 2019). Based on 

observations, the indifference of gas exchange parameters across stages 
in the wet season may result from the higher canopy leaves in OF and YF 
compared to those in the dry season. In other words, the shaded canopy 
in IF maintained throughout seasons while the canopy in OF and YF 
varied seasonally, with the greatest difference between seasons in YF. 
Further measurements of canopy leaf areas should be performed to 
confirm this point. Overall, our results suggest that the gas exchange 
rates did not differ across forest succession but were affected by different 
microclimates induced by different canopy density. Nevertheless, pre-
vious reports on gas exchange measurements in various tropical tree 
species have shown inconclusive evidence on the effects of forest suc-
cession on leaf gas exchange rates (Hogan et al., 1995, Coste et al., 2005; 
Hölscher et al., 2006). 

Next, we examined species that grew in multiple successional stages 
to further investigate the effect of forest succession on gas exchange 
rates. There were no differences in gas exchange for Syzygium nervosum 
among the forest stages regardless of season. In contrast, Schima wallichii 
and Symplocos cochinchinensis exhibited higher gas exchange rates in the 
old growth forest compared to the two young successional forests during 
the dry season. The lack of difference in the gas exchange rates of 
Syzygium nervosum may be supported by similar stomatal density (p =
0.22, data not shown) across seasons, showing unchanged number of 
sites available for gas exchange per unit leaf area (Wu et al., 2018). 
Compared to the rates in the primary forest, lower rates of Schima 
wallichii and Symplocos cochinchinensis in the intermediate forest agreed 
with site-level results of limited gas exchange under shaded canopy 
while lower rates in the young forest may be attributed to its drier soil 
(average soil moisture = 23.85 ± 5.34% in YF vs. 44.54 ± 8.46% and 
38.11 ± 6.73% in OF and IF, respectively). Nevertheless, further in-
vestigations on physiological responses such as tree hydraulic conduc-
tivity and architecture should be performed to confirm these results. 

Sensitivity of gs to VPD provides insight into how trees respond to 
increasing atmospheric drought (i.e., higher temperature combined with 
low humidity). Trees with greater sensitivity of gs to VPD, closing sto-
mata more rapidly when air dries, acclimate better to increasing atmo-
spheric drought compared to those with lower sensitivity. Nevertheless, 
trees in our successional forests did not show distinct sensitivity of gs to 
VPD when considering both the forest level and species level. Most 
studies investigating the sensitivity of stomatal conductance to VPD in 
tree species found differences in the relationships across various factors 
besides species, such as crown height and wood anatomy (Woodruff 
et al., 2009; Tsuji et al., 2020). However, our data showed similar sen-
sitivities of stomatal conductance to changing vapor pressure deficit 
across our successional forests, suggesting similar responses of the 
dominant trees to varying atmospheric humidity throughout the year. 
This finding may support the observed similarity in the gas exchange 
rates between the two contrasting forest stages (OF and YF), despite the 
widely reported results that early successional species usually have 
greater maximum gas change rates than late-successional ones (Hölscher 
et al., 2006; Zhu et al., 2013). Regarding the response of stomatal 
conductance to atmospheric conditions, we further examined the slope 
parameter in the unified stomatal optimization model (USO; Medlyn 
et al., 2011; Fig. S3, S4) which represents a measure of intrinsic plant 
water-use efficiency. Wu et al. (2019) showed that the slope parameter 
significantly varied with leaf mass per area in tropical forests. However, 
we tested this finding with our data and found an insignificant result (p 
= 0.998, Fig. S5), suggesting similar intrinsic water-use efficiency 
among the dominant trees regardless of LMA. Furthermore, we found no 
difference in slope parameters across successional forests in the case of 
species existing in multiple sites (Fig. S4, p ≥ 0.66). Nevertheless, further 
studies on canopy fluxes should be conducted to confirm such findings 
because results from leaf-level measurements can obscure those from the 
canopy level (Tor-ngern et al., 2015). 

While similar chlorophyll concentration was observed across all 
forest stages, LMA, leaf N and P were significantly higher in YF 
compared to other forest stages. Previous studies indicated that nutrient- 

Fig. 5. Mean (±SE) (A) leaf mass per area (LMA; g m− 2), (B) phosphorus 
concentration (P; g cm− 2), (C) total nitrogen concentration (N; g cm− 2) and (D) 
chlorophyll concentration (Chl; µg cm− 2) among the old-growth (OF; green 
bars), intermediate (IF, blue bars), and young (YF, red bars) forest stages. Lower 
case letters indicate significant differences among forest stages. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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poor soils may induce larger allocation of leaf nitrogen into cell walls, 
increasing LMA but decreasing maximum photosynthesis (Takashima 
et al., 2004; Hikada and Kitayama, 2009). However, we found no sig-
nificant difference in soil N and P among the forest stages (p ≥ 0.21; data 
not shown), suggesting that the soil condition in YF was not nutrient 
poor compared to the others. Other studies have shown that species with 
high LMA usually occur in areas with low rainfall and high light and 
temperature (Niinemets, 2001; Villar and Merino, 2001; Lamont et al., 
2002; Wright et al., 2004). This supports our result because trees in YF 
experience more xeric conditions and higher radiation due to their 
sparse canopy cover. Higher LMA may be associated with greater 
accumulation of nutrients in leaves (Kimura et al., 1998) as observed in 
our data, allowing high photosynthesis under adverse growing condi-
tions, such as low soil moisture as often observed in sparse canopy 
forests with low leaf area indices (Von Arx et al., 2013). Nevertheless, 
our results did not show such high photosynthesis in YF which may be 
limited by the low soil water availability of this site compared to the 
others. 

To gain insight into which leaf traits were linked to tree growth, we 
explored the relationships between leaf functional traits and gas ex-
change parameters (Aarea and gs) within the different successional for-
ests. Maximum net photosynthesis is usually affected by various leaf 
traits, such as LMA (Field and Mooney, 1986; Reich et al., 1999; Poorter 
et al., 2009), and leaf nutrient concentrations (Evans, 1989; Reich et al., 
1999; Wright et al., 2004). Several studies have reported significantly 
positive correlations between maximum photosynthesis rate and LMA 
(Reich et al., 1997; Wright et al., 2004; Quero et al., 2006), leaf N (Reich 
et al., 1994; Ellsworth and Reich, 1996; Kull and Niinemets, 1998; 
Gulías et al., 2003; Hölscher et al., 2006) and P (Hölscher et al., 2006; 
Zhang et al., 2018). Our results showed that LMA and leaf N were 
significantly related to the gas exchange rates in IF and OF, although we 

found no relationships between the rates and leaf P. Comparing the 
linear dependence of Aarea and gs on LMA and N between OF and IF, we 
found no differences between the trends, which is in contrast to a recent 
study that showed a lower slope between Aarea and N in climax species 
(Zhang et al., 2018). However, the study argued that such difference was 
relevant to different soil phosphorus concentrations between succes-
sional stages, which was not the case for our sites. Interestingly, we 
observed no significant relationships between maximum gas exchange 
parameters and any leaf traits in YF. High variations of species-specific 
data may contribute to the insignificant relationship as seen in clearly 
separated clusters of data, corresponding to different species within YF. 
This finding suggests that trees in the young forest (YF) may be more 
active in resource acquisition, as shown by the large variation in leaf 
nutrients, and in morphological acclimation through the increased LMA 
for greater nutrient accumulation. Such acclimation should facilitate 
high gas exchange rates; however, the different soil water availability 
may have limited the rates in the young forest. Nevertheless, findings 
from this study warrant further investigations from different perspec-
tives, including other physiological parameters, such as tree hydraulics 
and canopy-level measurements, to arrive at firm conclusions. 

5. Conclusions 

Varying environmental conditions among different successional 
forests present a challenge for estimating forest water use and produc-
tivity in tropical forests. Such heterogeneity in environmental condi-
tions can strongly influence water and carbon exchanges between the 
forest canopy and the atmosphere. Our results show that, in general, gas 
exchange rates between the tree canopy and the atmosphere did not vary 
across forest stages yet differed among them in the dry season, as a result 
of changes in canopy density during secondary succession. The similar 

Fig. 6. Linear relationships between photosynthesis 
(Aarea; µmol m− 2 s− 1) and stomatal conductance (gs; 
mmol m− 2 s− 1) and leaf mass per area (LMA; g m− 2) 
and total nitrogen concentration (N; g cm− 2). Mea-
surements were made in an old-growth forest (OF, 
green circles), an intermediate forest (IF, blue 
squares), and a young forest (YF, red triangles). Black 
solid lines show the best fits with 95% confidence 
intervals (blue lines) for pooled data of OF and IF after 
finding no difference among between the stages. Note 
that no significant relationships were found in YF. 
Regression statistics are presented in Table S3. (For 
interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of 
this article.)   
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rates were further supported by similar sensitivity of stomatal conduc-
tance to changing atmospheric humidity across forest stages. Our data 
also suggest that the young forest was highly active in acquiring re-
sources, but such high resource acquisition did not allow high gas ex-
change rates because of limiting soil water availability. These findings 
highlight the potential effects of inherent canopy characteristics of 
successional forests on water and carbon exchanges between trees and 
the atmosphere. Nevertheless, further studies on canopy level are 
needed to confirm such findings. 
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