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A B S T R A C T   

Forests around the globe have been converted to agricultural land to meet human demands. The investigation of 
soil quality index (SQI) as affected by land use change is essential to prevent and control soil degradation mainly 
in rapidly developing nations. Research on the effects of land-use change on soil quality, especially within deep 
soil layers, remains lacking despite the prevalence of forest conversion. Here, we selected six paired plots in an 
intact forest and an adjacent corn field and collected soil samples from 11 layers at depths of 0–140 cm. We then 
evaluated 16 soil variables for inclusion in a minimum data set and built a SQI from this dataset. Our results 
indicate that soil organic carbon, total nitrogen, potassium, and free iron are the most important indicators of soil 
quality in tropical acidic red soils. Deforestation and corn cultivation related to significant decreases in SQI. Of 
note, SQI decreased to a differing extent among different soil layers, implying that degradation was not constant 
among layers, despite the fact that tilling typically affects only the top 0–20 cm of soil. The effect of agricultural 
conversion on soil quality was more pronounced in topsoil soil layers than in the deep layer. The main driver of 
soil degradation in corn fields was found to be reduced total nitrogen, followed by reduced potassium. Therefore, 
mitigating or reducing the loss of these nutrients is recommended, possibly through fertilization. We also note 
that active iron plays an important role in maintaining soil organic carbon concentrations, and thus is critical for 
maintaining soil quality.   

1. Introduction 

Inappropriate land use changes usually cause land and soil degra-
dation (Bruun et al., 2013; Davaria et al., 2020). Deforestation is the 
most important factor to land degradation, because it’s changes soil 
environment, nutrition and carbon cycle (Rezapour and Alipour, 2017). 
In the 1980s, in order to develop the economy, a large amount of 
deforestation in southwest China was converted into cultivated land 
(Min et al., 2019). As a main crop type, corn is planted in large numbers, 
replacing forests. Due to dominated environment restrictions, this con-
version is not sustainable (Jafarnejadi et al., 2013). There are even re-
ports that a large number of dry farming lands were abandoned because 
of the soil quality degradation (Davaria et al., 2020). Soil degradation 

endangers sustainable agricultural development. The current demand 
for agricultural products, which is driven by economic and population 
growth, is promoting ongoing forest conversion to agricultural land 
(Bakhshandeh et al., 2019). Careless land-use change can lead to the 
destruction of natural ecosystems, soil erosion, and soil degradation 
(Bruun et al., 2013), all of which negatively affect soil properties, 
quality, and health (Saviozzi et al., 2001; Raiesi and Beheshti, 2014; 
Davaria et al., 2020). 

Specifically, land-use changes affect soil organic matter inputs (Guo 
et al., 2017), canopy structure (Finzi et al., 1998), and soil moisture and 
nutrient migration (Sakin, 2014; Six and Paustian, 2014), which in turn 
alter the intensity, extent, and pathways of soil nutrient cycling, ulti-
mately affecting soil properties and quality (Hu et al., 2018). 
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Agricultural management practices and land-use changes can alter the 
physical, chemical, and biological properties of soil (Qi et al., 2018), 
which are determinants of soil quality (Marzaioli et al., 2010). Man-
agement and land-use changes are also related to increased carbon 
emissions; forest conversion to agricultural land has reduced global soil 
organic carbon (SOC) storage by 31–52% (Wang et al., 2017). 

Deforestation, specifically in terms of conversion to high-production 
agriculture, greatly affects soil quality (Davaria et al., 2020). Reduced 
biomass inputs lead to reduced SOC and total nitrogen (TN) (Bakh-
shandeh et al., 2019). Moreover, tilling affects the physical and chemical 
characteristics of soil (Zuber et al., 2017; Barbosa et al., 2019), including 
bulk density (BD) (Korkanç, 2014) and electrical conductivity (EC), and 
has been shown to relate to increased pH (Davaria et al., 2020), reduced 
TN (Wang et al., 2016a) and increased soil microbial respiration 
(Bayranvand et al., 2017). Tilling also promotes the loss of SOC; the 
surface soil layer can lose up to half of its organic carbon through tilling 
(Gelaw et al., 2014; Soleimani et al., 2019). Relative to forest soils, 
cultivated lands typically have reduced microbial activity and nutrient 
concentrations as well as higher heavy metal concentrations (Marzaioli 
et al., 2010). Although a considerable amount of research has focused on 
soil quality impacts following forest conversion to agriculture, the ma-
jority has focused on the surface layers, i.e., depths < 60 cm. Thus, the 
impact of land conversion on deep soil layers remains unclear. 

Soil quality is an umbrella term incorporating physical, chemical, 
and biological parameters. These soil aspects are interdependent and 
may respond differently to land-use changes, thus, individual parame-
ters may be poor indicators of soil quality (Mukherjee and Lal, 2014; 
Davaria et al., 2020). Instead, a more holistic methodological approach 
should be used to assess changes (Granatstein and Bezdicek, 1992; 
Raiesi, 2017). Currently, comprehensive methods for evaluating soil 
quality include qualitative (e.g., visual), semi-quantitative (Doran and 
Parkin, 1994), and quantitative methods (Andrews et al., 2002; Davaria 
et al., 2020). The difference between semi-quantitative and quantitative 
is the way to obtain the minimum data set. The semi-quantitative 
method is to select the minimum data set from the total data set 
through expert opinions, and the quantitative method is to extract the 
minimum data set through statistical methods, for example, principal 
component analysis, multiple correlation, factor analysis (Andrews 
et al., 2002). Quantitative assessments of soil quality are usually ach-
ieved through laboratory analyses of physical, chemical, and biological 
parameters, in combination with soil quality indices (SQIs) (Marzaioli 
et al., 2010). SQIs can be determined via the standard scoring function, 
nonlinear scoring function, or linear scoring function methods (Li et al., 
2020), where the SQI value represents soil quality. Generally, SQIs are 
easy to use and offer flexibility (Leite Chaves et al., 2017). Previous 
studies have tended to focus on individual soil properties when assessing 
the impacts of land-use change, and comprehensive evaluation methods 
have rarely been applied, particularly for deep soil layers. 

Over the past several decades, Xishuangbanna, an area in south-
western China, has undergone severe deforestation (Min et al., 2019). 
Forest conversion to agricultural land has occurred on a large scale, 
typically for corn, tea, and coffee cultivation (Min et al., 2019). Un-
derstanding how these activities affect soil quality and determining the 
causes of those changes are the foundational steps toward reasonable 
agricultural management policies, which are vital to sustainable devel-
opment and maintaining soil quality in cultivated land. Here, using 
forest sites as controls, we assessed deforested land under long-term corn 
cultivation. We determined 19 physical, chemical, and environmental 
factors from 11 soil layers 0–140 cm in depth and used a minimum data 
set (MDS) approach to assess changes in soil quality. Compared to pre-
vious work, our objectives were to quantify the impact of deforestation 
and corn cultivation on soil quality at different depths in tropical area, 
especially deep soil, and to determine causal mechanisms that promote 
soil degradation at different soil depths. 

2. Materials and methods 

2.1. Study area 

This study was located in the Dadugang Forest in Xishuangbanna, 
Yunnan Province, southwestern China (22◦30′ N, 100◦27′–101◦12′ E, 
Fig. 1). The area is located south of the Tropic of Cancer and receives 
approximately 2000 h of sunshine annually. The climate is typical 
northern tropical humid monsoon, with a rainy season from May–Oc-
tober and a dry season from November–April (Hemati et al., 2020). The 
geomorphologic type is dominated by tectonic denudation, low and 
middle mountains. Elevation at the study site ranges from 1330 to 1360 
m, with an average annual temperature of 18 ◦C and average annual 
precipitation of 1200–1700 mm. The soil is classified as Ferralsols ac-
cording to the Food and Agricultural Organization of the United Nations 
classification. Parent rock is Cretaceous sandstone. In acidic red soils, 
especially in tropical regions, the effects of weathering and leaching are 
strong, with low nutrient content and high iron content. Intact forest 
areas are dominated by Castanopsis fleuryi, Lithocarpus truncatus, 
Homalium hainanense, Pinus yunnanensis, Millettia leptobotrya and Bam-
busa blumeana (Wang et al., 2016b). Agricultural conversion happened 
in 1984, when parts of the native broad-leaved evergreen forest were 
deforested for the establishment of corn fields. Since then, corn culti-
vation has been continuous in the study area and has been planted 
continuously for 34 years. The corn cultivation is a conventional farming 
system. Tilling is completed once annually in March to a depth of 20 cm 
and corn is planted in April. In October, corn is harvested and the stalks 
are left in place. The corn planting is terraced, the row spacing is 60 cm, 
and the plant spacing is 50 cm. During the growth season, weeds were 
manually weeded once in June. The weeding method was to turn the soil 
and bury the weeds in the soil to a depth of about 15–20 cm. In agri-
cultural practices, we did not fertilize, use pesticides and irrigate. Study 
sites were selected based on soil texture, parent material, aspect, loca-
tion, and site history, with selected plots sharing soil formation factors. 
Thus, the differences in soil properties between forested sites and 
adjacent corn fields were attributed solely to changes in land use and 
vegetation cover (Raiesi, 2017). We used artificially reclaimed cornfield 
soil in comparison with un-reclaimed virgin forest soil to determine the 
potential influence of agriculture on soil quality. 

2.2. Soil sampling and analysis 

Soil samples were collected in December 2018. Six pairs of plots were 
selected for sampling, with one plot in each pair located in intact forest 
and the other in an adjacent cornfield (Fig. 1). The distance between 
each sample is about two hundred meters. The size of the study area is 
about 60 ha. A total number of 132 soil mixed samples were taken from 
the two land use types. Within each plot we also measured slope, as 
determined using a compass, aspect, and collected GPS coordinates. We 
dug soil pits in all plots by first removing surface litter and then digging a 
pit 150 cm deep × 60 cm wide × 100 cm long. We then scraped multiple 
samples of thin layers of soil from the exposed soil profile at depths 
relating to 11 layers from 0 – 140 cm in depth (i.e., 0–10 cm, 10–20 cm, 
20–30 cm, 30–40 cm, 40–50 cm, 50–60 cm, 60–70 cm, 70–80 cm, 
80–100 cm, 100–120 cm, and 120–140 cm, A-K). We mixed the replicate 
samples taken from each layer were placed in a labeled sample bag. The 
soil samples were used to determine physical and chemical soil prop-
erties. The soil samples were air-dried in the laboratory and the stones 
and plant roots are removed, and then passed through a 2 mm sieve for 
further analysis. To measure BD and water content, we collected a soil 
sample from the middle of each soil layer using a ring cutter with a 
volume of 100 cm3. Take another 20 g of soil near the sampling bottom 
of the ring knife, put it into a covered aluminum box with a known 
weight, labeled, weighed fresh, and brought back to the laboratory for 
further analysis. To determine the moisture content. Soil samples were 
air-dried and passed through a 2 mm mesh sieve prior to any analysis 
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(Rezapour and Alipour, 2017). 
water content was calculated using the equation ((soil fresh weight – 

soil dry weight)/soil dry weight) × 100 (Zhang and Shangguan, 2016). 
Prior to calculating BD, soil samples were dried in an oven at 103 ◦C for 
24 h. Dry weight was then measured, and BD was calculated as the ratio 
of the soil core dry weight to the metallic core internal volume. Soil 
particle-size analysis (Xiao et al., 2018) was conducted using a laser 
particle-size analyzer (LPSA, Mastersizer 3000, Malvern Panalytical, 
Malvern, United Kingdom); soil particles were divided into silt, sand, 
and clay. Soil pH was determined by potentiometry (water:soil ratio =
2.5:1) after equilibration for 30 min (FE28, Mettle, Zurich, Switzerland; 
Ou et al., 2017). TN was determined using the Kjeldahl method 
(Bremner and Mulvaney, 1982). SOC was determined using the Wal-
kley–Black method (Walkley and Black, 1934) and EC was measured 
using a conductivity meter (S30, Mettler Toledo, Columbus, Ohio, USA) 
(Yin et al., 2019). The determination of phosphorus (P), potassium (K), 
aluminum (Al), calcium (Ca), sodium (Na), magnesium (Mg), and sulfur 
(S) elements concentration adopted X-Ray fluorescence spectrometry 
(Zhang et al., 2018). Take about 3 g of a sample with a particle size of 
<74 µm (100Φ) after grinding in an agate bowl and place it in a mold. 
Use low-pressure polyethylene powder to border and embed the bottom, 
and the soil samples were set on a tablet press (ZHY-401B, Beijing 
ZhongHeChuangYe Science & Technology Development Co., Ltd, China) 
to press into a disc with a diameter of 32 mm and tested by an X-ray 
fluorescence spectrometer (AXiOSMAX minerals, PANalytical B.V., 
Netherlands). During the test, the ambient temperature was 23 ◦C and 
the relative humidity was 56%. Active iron (Feo) was determined using 
acid ammonium oxalate extraction (Schwertmann, 1964). Iron extracted 
with citrate–bicarbonate–dithionate was described as free iron (Fed) 
(Mehra and Jackson, 1960). Total iron (Fet) in the soil was determined 
following the method of Torrent et al. (2010) and was calculated as 
crystalline iron. 

2.3. SQI development 

The SQI was developed using three steps. First, a MDS was selected 
using the load and eigenvalues obtained from a principal component 
analysis (PCA), wherein a MDS is a non-redundant set of parameters that 
reflect soil quality (Lou et al., 2019). Second, we normalized the vari-
ables in the MDS using a standard scoring function, and finally we ob-
tained the SQI according to these scores and variable weights (Raiesi, 
2017). 

2.3.1. Determining the minimum data set 
Soil quality should be assessed by sensitive indicators of changes in 

soil processes and their related functions (Guo et al., 2017). In this 
context, the total data set (TDS) method contained 16 soil properties 
(BD, TP, water content, pH, Fet, TN, K, Feo, Fed, Al, Ca, Mg, Na, S, EC, 
SOC), including soil parameters that affect nutrient cycling and soil 
structure and function. The TDS can provide a comprehensive result in 
evaluating soil quality (Li et al., 2019a; Jahany and Rezapour, 2020). 
When the evaluated samples are extended to a larger area, it will be 
inevitably expensive and laborious, and many soil properties are highly 
correlated in TDS (Jahany and Rezapour, 2020). Therefore, we intro-
duced MDS, reduced the number of indicators used to evaluate SQI, and 
selected key indicators that contain sufficient information for SQI 
evaluation (Li et al., 2020). Evaluating the results of PCA constructed by 
TDS is an important step in determining MDS and reducing data 
redundancy. PCA is widely accepted as a data reduction tool (Shao et al., 
2020). 

We determined the loads and eigenvalues resulting from the PCA, 
and selected principle components (PCs) with eigenvalues ≥1 to 
construct a soil quality index evaluation system. Variables with factor 
load values ≥0.5 in the same PC were grouped together. If the same soil 
variable had a factor load value ≥0.5 on multiple PCs, that variable was 

Fig. 1. Map displaying the study area with six pairs of sample plots (n = 12 plots in total). Forest sites as denoted by “F”; corn field sites are denoted by “C”.  
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incorporated into the PC in which it had a higher value. Following 
grouping, we calculated norm values for each parameter (Lou et al., 
2019) according to Eq. (1). We then selected the variables within 10% of 
the highest scores from each group. According to the principle of 
representativeness and relative independence of soil quality evaluation 
indicators, correlation analysis was then used to determine whether 
some variables with high norm values within groups were redundant 
and the MDS could be further reduced (Armenise et al., 2013). The 
geometric meaning of norm is the length of the vector norm of the 
variable in the multidimensional space composed of principal compo-
nents. The longer the length is, the greater the comprehensive load of the 
variable on all principal components is. Corresponding, the more soil 
quality information the variable contains. Norm values were calculated 
as: 

Normik =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑k

i=1
(μ2

ikλk)

√
√
√
√ (1)  

where Normik is the comprehensive load of the i-th variable on the first k 
principal component with an eigenvalue ≥1; μik is the load of the i-th 
variable on the k-th principal component, and λk is the k-th principal 
component eigenvalue. 

2.3.2. Variable scoring 
Given that different variables had different numerical scales, we used 

a scoring function to normalize the data (Marzaioli et al., 2010; 
Nabiollahi et al., 2017). The standard scoring function has been widely 
used in soil functional indices because of its accuracy (Liu et al., 2014, 
2018; Sun et al., 2020a). The standard scoring function converts the 
range of values of each variable included in the MDS into dimensionless 
values that range between 0 and 1. These scores represent the explan-
atory contribution of each parameter to soil quality. Scoring algorithms 
indicate whether a variable should be retained in the MDS; retained 
variables should increase in score (ascending membership function), 
and variables with decreasing scores should be removed (descending 
membership function) (Guo et al., 2017). Variables with ascending 
membership functions (including SOC, TN, and K) have a positive effect 
on soil quality, and those with descending functions indicate a negative 
effect (such as BD and EC). 

The ascending membership function equation was as follows: 

F(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.1 x⩽x1

0.9
x − x1

x2 − x1
+ 0.1 x1 < x < x2

1.0 x⩾x2

(2) 

The falling membership function equation was as follows: 

F(X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.1 x⩾x2

0.9
x2 − x
x2 − x1

+ 0.1 x1 < x < x2

1.0 x⩽x1

(3) 

F(X) is the index score between 0.1 –1, X is the actual measured value 
of each MDS index and X1 and X2 are the minimum and maximum values 
of the index, respectively. 

2.3.3. Assigning variable weights 
Each soil variable explained a certain amount of variation in the TDS 

(Raiesi, 2017). Weights for the MDS and TDS were determined from the 
PCA results (Yu et al., 2018). The commonality of each indicator ranged 
from 0 to 1, where the value indicated the contribution of each variable 
to the overall variance; the higher the commonality value, the greater 
the contribution (Li et al., 2019a). Weights for the MDS were calculated 
as: 

Wi = Ci/
∑n

i=1
Ci (4)  

where Wiis the variable weight, Ciis the commonality value of the var-
iable, and n is the number of variables included in the MDS (Shao et al., 
2020). 

2.3.4. Developing the soil quality index 
A SQI can be used to quantify changes in soil quality caused by land- 

use change. SQI scores generally reflect key soil parameters, wherein a 
high SQI value indicates high soil quality. We used Eq. (5) to calculate a 
comprehensive soil quality score, and we specifically focused on soil 
quality under different land-use types. SQI values of 1–0.8 are consid-
ered very high, 0.8–0.6 high, 0.6–0.4 medium, 0.4–0.2 low, and 0.2–0 
very low (Levi et al., 2020). We calculated the SQI as: 

SQI =
∑n

i=1
WiNi (5)  

where SQI is the soil quality index (0–1), Wi is the weight assigned to 
each variable, Ni is the variable score, and n is the number of variables in 
the MDS. The test of the validity of PCA was carried out by the Kaiser- 
Meyer-Olkin measure (KMO) of sampling adequacy and Bartlett’s test 
of sphericity. In this context, both KMO (KMO = 0.681) and Bartlett’s 
test of sphericity (p = 0.000) indicated the validity of using PCA. Ac-
cording to the classification criteria, SQI was divided into five grades as 
follows: very high (grade I, SQI ≥ 0.85), high (grade II, 0.85 ≥ SQI ≥
0.7); moderate (grade III, 0.7 ≥ SQI ≥ 0.55), low (Grade IV, 0.55 ≥ SQI 
≥ 0.4); Grade V, (SQI＜0.4). In these criteria, it is considered that grade I 
is the most suitable for plant growth, Grade II is suitable for plant 
growth, Grade III is suitable for plant growth, but there are some limi-
tations, grade IV is more serious than grade III, grade V soil has the most 
severe restrictions on plant growth (Qi et al., 2009; Jahany and Reza-
pour, 2020). 

2.4. Statistical analyses 

The median absolute deviation method was used to remove outliers. 
Prior to statistical analyses, we tested the data for normality and equal 
variance, and transformed variables as needed to meet the assumptions 
of the t-test. Soil variables, standardized variable scores, and SQI values 
were all analyzed using paired t-tests. A one-way analysis of variance 
(ANOVA) was used to assess SQI values within land-use types at 
different soil depths. All analyses were performed using Microsoft Excel 
2019 and SPSS version 20.0 software. 

3. Results 

3.1. Soil variables in forest and agricultural plots 

Relative to the soils in the forest plots, the soil that have undergone 
deforestation and 34 years of continuous corn cultivation have showed 
some significantly changes (P < 0.05) in different soil depths 
(Table A.1). In the 0–10 cm soil layer, pH, Fed and Feo were significantly 
increased relative to forest soils (P < 0.05), whereas water content, K 
and TN were significantly reduced (P < 0.05, Table A.1). In the 10–20 
cm soil layer pH, TP, Fed and Feo were significantly higher, and TN, K 
and EC were significantly lower (P < 0.05, Table A.1). In the 20–30 cm 
layer, pH, Fed, Feo and S were significantly higher and TN, K was 
significantly lower (P < 0.05, Table A.1). In the 30–40 cm layer, Fed and 
Feo were significantly higher and TN and BD were significantly lower (P 
< 0.05, Table A.1). In the 40–50 cm layer, Fed was significantly higher 
and BD was significantly lower (P < 0.05, Table A.1), and in the 50–70 
cm layer, BD and EC were significantly lower (P < 0.05, Table A.1). In 
the 70–100 cm soil layer, BD was again significantly lower (P < 0.05, 
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Table A.1), and in the 100–140 cm layer, pH was significantly lower (P 
< 0.05, Table A.1). There were no significant differences among the 
remaining soil variables between the land-use types in each soil layer (P 
> 0.05, Table A.1). 

3.2. Differences in soil quality between land-use types 

3.2.1. Minimum data set 
PCA was applied to analyze 16 soil quality indicators and there were 

four PCs with eigenvalues > 1, values ranging from 1.301 to 4.642. They 
contributed 78.2% cumulatively, explaining the variability of most soil 
variables. In the PCA, BD, SOC, TP, Feo, Ca, and S formed the first group, 
accounted for 29.013% of the total variance. SOC had the highest norm 
value (1.996) and SOC and TP were highly correlated (0.825) (Tables 1 
and 2). Therefore, SOC was chosen to represent PC-1 due to the high- 
loading value. Water content, Fet, Fed, and Al formed the second 
group, accounted for 21.850% of the total variance. had the highest 
norm value (1.827) among the variables in the second group and was 
correlated with Fet, water content, and Al (0.958, 0.553, and 0.932, 
respectively), so we only chosen Fed represent PC-2. K, Mg, and Na 
formed the third group, accounted for 19.179% of the total variance, 
there is a significant correlation between the two high load indicators K 
and Mg (0.954). Therefore, K with the highest loading value (1.662) was 
retained to represent PC-3. EC, pH, and TN formed the fourth group, 
accounted for 8.132% of the total variance, EC was excluded from the 
third group based on its norm value. Finally, the highest norm value 
within the fourth group was observed for TN (1.252), which was related 
to pH (0.533) (Table 1). Therefore, the final MDS included SOC, Fed, K, 
and TN. 

3.2.2. Soil quality index 
The concentrations of TN and K were lower in all soil layers in the 

corn field relative to the forest soil (0–140 cm, Fig. 2). In terms of ver-
tical distribution, the TN concentrations in both corn-field and forest soil 
decreased sharply with increasing soil depth between 0 – 50 cm (P <
0.05), but there were no significant increases or decreases below 50 cm 
(P > 0.05, Fig. 2A). K concentrations did not vary significantly among 
soil layers in either land-use type (P > 0.05, Fig. 2B). SOC concentrations 
did not differ between the corn field and forest soils in any soil layer (P 
> 0.05, Fig. 2C). However, within both land-use types, SOC decreased 
with increasing soil depth to 70 cm, after which there were no signifi-
cant differences among layers (Fig. 2C). Fed concentrations were 

significantly higher in the 0–50-cm soil layer in the corn field than in the 
forest soil (P < 0.05), but there was no difference between the land-use 
types at soil depths > 50 cm (P < 0.05, Fig. 2D). In terms of vertical 
distribution, Fed concentrations in both land-use types gradually 
increased with increasing depth, but there were no significant differ-
ences among layers in the corn field (P > 0.05, Fig. 2D). 

Community analysis results provided MDS weights as follows: SOC 
= 0.285, TN = 0.303, K = 0.258, Fed = 0.154 (Table 3). Thus, the SQI 
was calculated from the MDS using these weights and the standard 
scoring function method. The SQI of the corn-field soil was lower than 
that of the forest soil at all depths (0–140 cm) and significantly lower at 
depths of 0–100 cm (P < 0.05, Fig. 3). SQI values gradually decreased 
from the surface to deeper layers in both soil types, with significant 
decreases in layers 0–70 cm in depth in the cornfield soil and between 
the surface and 50 cm layer in the forest soil. After deforestation and 
planting corn, the MDS-SQI of each layer of soil decreased by 20.15%– 
33.08%. The soil quality is classified by SQI, and only 0–30 cm of forest 
is classified as Class III; 30–60 cm of forest soil and 0–20 cm of cornfield 
are classified as Class IV; the rest of soil layers are all Class V, indicating 
the research the acid red soil in the area is relatively barren. We also 
assessed the linear fit between the SQI derived from the MDS and the SQI 
derived from the TDS, MDS-SQI = 2.0052TDS-MDS–0.6305, R2 = 0.721 
(P < 0.05, Fig. 4). 

Soil variables had differing contributions to the SQI in both land-use 
types (Fig. 5). The contributions of SOC and TN to the SQI decreased 
with increasing soil depth, but the contributions of K and Fed increased 
with increasing depth (Fig. 5). After transformation of the forest into 
corn field, in top soil (0–10 cm), the contribution of SOC to SQI 
increased from 33.93% to 41.24%, the contribution of TN decreased 
from 40.66% to 27.73%, and K decreased from 17.90% to 14.21%, and 
Fed’s contribution to SQI increased from 7.51% to 16.82% (Fig. 5). In the 
deepest layer (120–140 cm), the contribution of SOC to SQI increased 
from 11.38% to 13.00%, and the contribution of TN increased from 
15.79% to 20.97%, K decreased from 42.05% to 28.36%, and the 
contribution of Fed to SQI increased from 30.79% to 37.66% (Fig. 5). 

4. Discussion 

4.1. Effects of deforestation and planting corn on soil properties 

Changes in land use and vegetation cover can lead to changes in soil 
properties (Davaria et al., 2020). N is one of the most important 

Table 1 
Soil attributes principal component factor load and Norm value.  

Soil attribute Grouping PC Commonality Norm value 

1 2 3 4 

BD 1 − 0.652 − 0.317  0.509  − 0.087  0.791  1.768 
SOC 1 0.908 − 0.179  − 0.019  0.181  0.890  1.996 
TP 1 0.868 − 0.003  − 0.140  0.019  0.774  1.887 
Feo 1 0.643 − 0.122  0.529  0.057  0.711  1.683 
Ca 1 0.790 0.077  − 0.271  − 0.236  0.759  1.793 
S 1 0.718 − 0.028  − 0.299  0.276  0.682  1.664 

WC 2 0.435 0.715  0.150  0.093  0.733  1.658 
Fet 2 − 0.065 0.948  0.140  0.007  0.922  1.794 
Fed 2 − 0.121 0.966  − 0.016  − 0.076  0.954  1.827 
Al 2 − 0.092 0.953  − 0.059  − 0.044  0.922  1.796 
K 3 − 0.128 0.187  0.904  0.205  0.911  1.662 

Mg 3 − 0.190 − 0.008  0.880  0.210  0.855  1.613 
Na 3 − 0.158 0.116  0.753  − 0.090  0.613  1.383 
pH 4 0.135 0.172  − 0.491  − 0.592  0.639  1.176 
TN 4 0.147 0.137  0.458  0.764  0.682  1.252 
EC 4 0.220 0.036  − 0.166  0.770  0.670  1.042 

Eigenvalues 4.642 3.496  3.069  1.301   
Variance (%) 29.013 21.850  19.179  8.132   

Cumulative variance (%) 29.013 50.863  70.042  78.174   

Notes: BD, bulk density; SOC, soil organic carbon; TP, total phosphorus; Feo, active iron; Ca, calcium; S, sulfur; WC, water content; Fet, total iron; Fed, free iron; Al, 
aluminum; K, potassium; Mg, magnesium; Na, sodium; TN, total nitrogen; EC, electrical conductivity. The same as below. 
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nutrients in agricultural land and is a limiting element to corn growth (Li 
et al., 2019a; Zheng et al., 2019). Here, we found that TN and K con-
centrations were lower in corn-field soils relative to forest soils. This 
may be because harvesting corn removes N from the system annually. In 
addition, the farming disturbance itself leads to a loss of both N and K 
(Shi et al., 2018; Bakhshandeh et al., 2019). We did not observe sig-
nificant differences in soil P concentrations between forest and corn- 

field soils, which may be due to low movement of P in the soil (Lou 
et al., 2019). Furthermore, we did not observe a significant reduction in 
SOC in corn-field vs. forest soils. This may be due to current agricultural 
practices in the study area, which ensure that soil is not left bare and 
exposed throughout the year. In addition, corn-field soils had greater Feo 
concentrations at depths of 0–60 cm, and Feo can promote SOC storage 
(Sun et al., 2020b; Bai et al., 2020; Zong et al., 2020). Fed significantly 

Table 2 
Correlations matrix for measured soil attributes across the study depths (0–140 cm layer) and sites (n = 12). The abbreviations are described in Table 1.  

Soil attribute WC pH SOC Fet TN TP K Fed Al Mg 

WC 1          
pH 0.069 1         

SOC 0.241 − 0.085 1        
Fet 0.579 0.043 − 0.188 1       
TN 0.058 − 0.533 0.130 0.087 1      
TP 0.229 0.151 0.825 − 0.031 0.057 1     
K 0.208 − 0.506 − 0.134 0.318 0.407 − 0.1739 1    

Fed 0.553 0.156 − 0.268 0.958 − 0.058 − 0.0624 0.171 1   
Al 0.580 0.180 − 0.270 0.884 − 0.019 − 0.0559 0.114 0.932 1  
Mg 0.038 − 0.507 − 0.180 0.133 0.426 − 0.2099 0.954 − 0.0225 − 0.0621 1  

Fig. 2. Standard function scores of A) total nitrogen 
(TN), B) potassium (K), C) soil organic carbon (SOC), 
and D) free Iron (Fed) in 11 soil layers from 0 to 140 
cm in depth. Independent sample T-test and one-way 
ANOVA were used to compare the mean differences 
of the two land use methods and eleven soil layers. 
Different lowercase letters denote significant differ-
ences among soil layers in the same land use, and 
uppercase letters indicate significant differences 
among the different land uses in the same layer (p <
0.05; Tukey post-hoc test). Forest sites as denoted by 
“F”, corn field sites are denoted by “C”. Values rep-
resented as means (n = 6) ± standard deviation.   
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rises in the 0–50 cm soil layer, the reason for the increase in Fed can be 
attributed to the rise in Feo. Human cultivation promotes soil develop-
ment, which destroys the lattice structure of natural aluminosilicate 
minerals in soil and releases Fe (Chang et al., 1999; Takahashi et al., 
1999). Meanwhile, Fe combines with water to form Feo, an important 
indicator of soil development (Chang et al., 1999; Takahashi et al., 
1999). This may be the reason for the increase in the proportion of Feo 
(Bai et al., 2020, Zong et al., 2020). 

BD is an important physical soil indicator that reflects soil quality, it 
is closely related to soil attributes such as erosion, pore structure, and 
permeability (Lou et al., 2019). BD was significantly lower in the corn- 
field soils relative to the forest soils, possibly because of soil disturbance 
caused by agricultural activities. However, BD was also lower in the corn 
field at depths 30–100 cm, the reasons for which are unclear. We found 
no significant differences in soil particle size among soil layers between 
the two land-use types, which implies that deforestation and conversion 
to agriculture did not affect soil texture. water content was significantly 
lower in the surface soil layer (0–10 cm) of the corn field relative to the 
forest soil, but there were no differences at greater depths. Surely, the 
forest canopy shades the soil surface which can:(a) lead to enhance more 
infiltration of rainfall water into the soil and (b) serves as a vapor barrier 
and suppresses evaporation against moisture losses from the soil 
(Khresat et al., 2008; Rezapour and Alipour, 2017). Soil pH was signif-
icantly higher in the cornfield at depths of 0–30 cm than in the forest 

soil, and the pH of the deep soil layers (100–140 cm) was significantly 
lower. The reasons for this phenomenon may be that cultivation accel-
erates leaching of H+ ions in surface soil (Li et al., 2016) and typically 
mixes lower, carbonate-bearing soil layers with the surface soil, which 
leads to an increase in pH (Davaria et al., 2020). Higher pH reduces the 
bioavailability of the heavy metal cadmium, which reduces cadmium, 
and also arsenic, absorption by crops and thereby suppresses heavy- 
metal damage and promotes crop growth (Wang et al., 2015). 

EC, Na, Mg, and Ca reflect soil salinity, and soils with high EC values 
and high concentrations of these elements may be in the process of 
salinization, which relates to poor soil quality and function (Levi et al., 
2020). We observed lower EC and Na and Mg concentrations in corn- 
field soil relative to forest soil, but higher Ca, Al, and S concentra-
tions. This may be because the return rate of alkaline elements is higher 
in forest soil by the recycling of basic compounds (e.g., Na and K) 
through tree-root uptake, translocation into plant shoots and re-entry 
into the soil with litter fall and decomposition, which results in a 
higher EC (Rezapour and Alipour, 2017; Bakhshandeh et al., 2019). In 
addition, the perennial or seasonal cover of forest soil changes the water- 
heat balance under natural conditions (e.g., high temperatures, low 
leaching due to rain, and strong evaporation), which leads to soils that 
are not fully leached by rain and thus salt may accumulate on the soil 
surface (Bakhshandeh et al., 2019). Furthermore, agricultural practices 
can result in increased soil permeability, which promotes leaching, and 
thus reduces surface cations and anions (Bakhshandeh et al., 2019). We 
note that the EC values we observed in both land-use types are within 
the salinity tolerance range for most plants (<1 dS m− 1), and thus not 
likely to affect plant growth or soil microorganisms (Davaria et al., 
2020). 

4.2. MDS method for soil evaluation 

The 16 variables included in the TDS were reduced to 4 in the MDS 
using a PCA. Certainly, some important soil-quality information may be 
lost through the PCA reduction process (Yu et al., 2018), but the MDS 
method reduces the number of variables, avoids redundancy, reduces 
cost and time, and improves overall efficiency. Therefore, the MDS 
method has been widely used in determining SQIs (Nabiollahi et al., 
2017). Here, SOC, K, TN, and Fed were retained in the MDS. Thus, our 
MDS reflected comprehensive soil indicators, representing both physical 

Table 3 
Weight of soil quality indicators assigned by principal component analysis in the 
minimum data set (MDS). The abbreviations are described in Table 1.  

Soil property principle component analysis 

Communality Weight 

Fed  0.484  0.154 
SOC  0.899  0.285 
TN  0.957  0.303 
K  0.814  0.258  

Fig. 3. Standard function scores of the SQI for both forest (blue) and corn-field 
(red) soils between 0 and 140 cm in depth. Different lowercase letters denote 
significant differences among soil layers in the same land use, and uppercase 
letters indicate significant differences among the different land uses in the same 
layer (p < 0.05; Tukey post-hoc test). Values represent means (n = 6) ± stan-
dard deviation. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 4. Linear regression between the SQI derived from the MDS (y-axis) and 
that derived from the TDS (x-axis). 
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and chemical attributes, for determining soil quality (Li et al., 2013, 
2020). SOC plays an important role in soil processes such as nutrient 
cycling and storage and is used worldwide as a soil quality indicator 
(Raiesi, 2017). N and K concentrations are also widely used as indicators 
(Li et al., 2013; Liu et al., 2018) because they are important nutrients for 
plant growth and crop production (Li et al., 2020). Indicators such as BD 
and EC were excluded from our SQI, likely because we assessed collin-
earity to avoid redundancy (Li et al., 2019b). Fe is essential for plant 
growth and development, and is an essential co-factor for many cellular 
processes. Our findings imply that Fed is an important indicator for 
evaluating soil quality in acidic red soils. Fed contains both crystalline 
iron and Feo, and Feo can promote SOC storage (Sun et al., 2020b; Bai 
et al., 2020). 

When comparing the SQIs developed from the MDS and TDS, we 
observed a significant, positive correlation (MDS-SQI = 2.0052TDS- 
MDS–0.6305, R2 = 0.721 (P < 0.05, Fig. 4)), which indicated that the 
SQI developed from the MDS was effective in evaluating soil quality 
(Shao et al., 2020). Thus, the MDS that we selected provided sufficient 
information to assess changes in quality in the acidic red soils of our 
study region, and represented major factors that affect soil quality in 
tropical red soils. 

4.3. Effects of deforestation and planting corn on soil quality 

As in previous research, we found that forest conversion to cultivated 
had a negative impact on soil quality (Toohey et al., 2018; Davaria et al., 
2020). In our study area, 34 years after deforestation and conversion, 
soil layers between 0 – 100 cm showed a significant decrease in quality, 
despite the fact that tilling typically affects only the top 0–20 cm of soil. 
The effect of agricultural conversion on soil quality was more significant 
in topsoil soil layers than in the deep layer. Soil quality was highest in 
the surface layers of the forest soil, due to relatively high SOC, TN, and K 
concentrations. As has been observed in other research findings (Wang 
et al., 2018; Bakhshandeh et al., 2019), long-term agricultural cultiva-
tion leads to reduced concentrations of TN and K, which relate to de-
clines in soil quality. Of note, although farming typically results in SOC 
loss (Guo et al., 2009; Raiesi and Beheshti, 2014), we observed equiv-
alent SOC concentrations in corn-field and forest soils, but significantly 
higher Fed and Feo concentrations in corn-field soils, and Feo, which is 

the main component of Fed, promotes SOC storage (Sun et al., 2020b; Bai 
et al., 2020). Therefore, because of its role in maintaining SOC con-
centrations, Feo plays a vital role in maintaining soil quality in tropical 
red soils. 

5. Conclusion 

We used MDS determined by PCA to build SQI for tropical red soils, 
and evaluated the impact of deforestation and 34 years of continuous 
corn cultivation on soil quality. Our results indicate that forest conver-
sion to agricultural land and corn planting led to degradation of soil 
quality. After deforestation and planting corn, the SQI of each layer of 
soil decreased by 20.15%–33.08%. Although soil disturbance due to 
farming typically occurs only in the arable layer, the soil has been 
significantly degraded in the 0–100 cm soil layers. On the one hand, the 
loss of TN and K is the main factor of soil degradation, which is greatly 
affected by land use change, which promotes the deterioration of soil 
quality. On the other hand, we note that Feo is vital to maintain SOC 
concentrations and thus soil quality in acidic red soils. Thus, soil 
degradation in deep soil layers deserves further research. Overall, the 
inclusion of land-use change soils in the SQI evaluation helps to establish 
a useful relationship between the SQI and management strategies. 
Nevertheless, the data may be site-specific, and its applicability to other 
areas and land uses must be assessed. 
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