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Flexible breeding performance under unstable climatic
conditions in a tropical passerine in Southwest China

DEAR EDITOR,

Parents may adjust their breeding time to optimize
reproductive output and reduce reproductive costs associated
with unpredictable climatic conditions, especially in the context
of global warming. The breeding performance of tropical bird
species in response to local climate change is relatively
understudied compared with that of temperate bird species.
Here, based on data from 361 white-rumped munia (Lonchura
striata) nests, we determined that breeding season onset,
which varied from 15 February to 22 June, was delayed by
drought and high temperatures. Clutch size (4.52+0.75) and
daily survival rate but not egg mass (0.95+0.10 g) were
negatively affected by frequent rainfall. Daily nest survival
during the rainy breeding season in 2018 (0.95+0.04) was
lower than that in 2017 (0.98+0.01) and 2019 (0.97+0.00). The
overall nesting cycle was 40.37+2.69 days, including an
incubation period of 13.10+£1.18 days and nestling period of
23.22+2.40 days. The nestling period in 2018 (25.11+1.97
days) was longer than that in 2017 (22.90+2.22 days) and
2019 (22.00+2.48 days), possibly due to the cooler
temperatures. Climate also affected the total number of
successful fledglings, which was highest under moderate
rainfall in 2017 (115 fledglings) and lowest during prolonged
drought in 2019 (51 fledglings). Together, our results suggest
that drought and frequent rainfall during the breeding season
can decrease reproductive success. Thus, this study provides
important insights into bird ecology and conservation in the
context of global climate change.

Understanding breeding phenology is crucial for predicting
how climate change may affect bird populations worldwide.
Research on the breeding phenology of tropical birds, which
live in relatively stable environments and generally display a
long breeding season (Martin, 2004; Wiersma et al., 2007),
remains limited compared to that on temperate species.
Extreme events such as floods, droughts, and storms caused
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by climate change are expected to occur more frequently
(Beniston & Stephenson, 2004; Coumou & Rahmstorf, 2012).
Furthermore, climate change has increased total annual
precipitation in the mid- and high latitudes but has decreased
precipitation in tropical and subtropical areas (Clark & Jager,
1997). Thus, in a warming world, the flexibility of avian parents
in response to unstable climatic conditions will influence
reproductive success and population stability (Coumou &
Rahmstorf, 2012; Gladalski et al., 2014).

Spring-time temperature and rainfall are thought to be the
main climatic factors affecting the onset of breeding and
reproductive performance in birds (Hidalgo Aranzamendi et
al., 2019). Increasing atmospheric temperatures can alter
resource availability peaks and breeding phenology of bird
species in temperate regions (Both & Te Marvelde, 2007;
Crick & Sparks, 1999; Stenseth et al., 2002). Bird species
incapable of flexibility in response to climate change are likely
to experience sharp declines in population size as
atmospheric temperatures increase (Donnelly et al., 2015).
For example, pied flycatcher (Ficedula hypoleuca) populations
have declined by 90% over the past 20 years in areas where
the timing of breeding has not coincided with resource peaks
(Both et al., 2006). In contrast, the great reed warbler
(Acrocephalus arundinaceus) has shown the ability to adapt to
changes in climate by increasing its total breeding season,
with expansions in both the earliest and median first egg-
laying dates (Dyrcz & Halupka, 2009). Drought can also affect
avian community structure, population size, adult mortality,
and reproductive success (Albright et al., 2010; Bourne et al.,
2020b; Cruz-McDonnell & Wolf, 2016; Guindre-Parker &
Rubenstein, 2020). In tropical areas with monsoon climates,
most bird species breed seasonally, and reproductive
performance often varies within and between breeding
seasons (Delhey et al., 2010; Marques-Santos et al., 2015).
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Thus, extreme climatic events may pose greater challenges
for tropical species, as populations in stable environments are
often less able to adapt to sudden changes in conditions
(Cavieres & Sabat, 2008).

In this study, we analyzed the effects of rainfall and
temperature on variation in breeding season onset, clutch
size, egg mass, egg size, hatching span, nestling growth, nest
cycle, and nest success of the white-rumped munia in
Xishuangbanna, Yunnan, Southwest China. We predicted
that: (1) parents would delay breeding season onset under
decreasing dry season rainfall; (2) frequent rainfall during the
nestling period would prolong its length; and (3) breeding
success would decrease with increasing rainfall in the
breeding season.

Our results showed that the onset of the breeding season
varied greatly among years, i.e., 18 April, 15 February, 22
June, and 19 May for 2017, 2018, 2019, and 2020,
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respectively. Mean laying date was 41.84 and 56.88 days later
in 2019 than in 2017 and 2018, respectively (t=3.80, P<0.001
and t=5.36, P<0.001, respectively). Egg-laying within the
breeding season also varied significantly by year
(F2,187=14.50, P<0.001), peaking in May and June in 2017
(t=5.18, P<0.001) but in July and August in 2019 ({=2.94,
P=0.004), with relatively even distribution in 2018 (¢=0.80,
P=0.42) (Supplementary Figure S3). Increasing mean
temperature in the 87 to 0 day window (t=74.41, P<0.001) and
decreasing mean rainfall in the 134 to 104 day window
(t=—18.37, P<0.001) before the first egg-laying date in each
nest strongly delayed the onset of the breeding season
(Figure 1A, C). Temperature and rainfall only showed a
between-year effect on the onset of the breeding season
(P<0.001 and P=0.03, respectively).

Eggs were laid on consecutive days (n=292 nests found in
egg-laying period). Mean clutch size was 4.52+0.75 (range:
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Figure 1 Laying date and breeding performance are affected by climatic variations

A: Increasing mean rainfall in climatic windows (134 to 104 days before egg-laying date) significantly advanced laying date (day 1=January 1) from
2017 to 2020. B: Clutch size decreased significantly with increasing mean rainfall in climatic windows (37 to 24 days before date of last egg laid in
each nest) during 2017 and 2019. C, D: Increasing mean temperature in climatic windows (87 to O days before egg-laying, 14 and 11 days before
fledging date) had a significant positive effect on laying date (C) and a negative effect on nestling period (D). Colored dots in (A) and (C) represent
each laying day; in (B) represent clutch size of each nest; in (D) represent nestling period of each individual. Black lines and gray bands represent

fitted lines of Im.
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three to eight, n=320 nests), and was significantly smaller in
2018 (4.27+0.63, n=104 nests) than in 2017 (4.66+0.67, n=86
nests; z=—4.27, P<0.001) and 2019 (4.59+0.70, n=56 nests;
z=4.31, P<0.001). Clutch size decreased as the breeding
season progressed in 2018 (estimate=-0.01, =-6.12,
P<0.001), but showed no difference in 2017 (estimate=—0.00,
t=—1.08, P=0.28) or 2019 (estimate=0.01, t=1.62, P=0.11).
Average rainfall, which ranged from 37 to 24 days before the
last egg-laying date in each nest, had a strong negative effect
on clutch size (estimate=-0.07, z=—6.25, P<0.001, Figure 1B).

Mean egg mass was 0.95+0.10 g (n=904 eggs), and mean
egg size was 15.11 mm=0.87x10.76 mm=0.58 (n=225 eggs).
Egg mass increased with the laying sequence (x?=58.76,
P<0.001), where later-laid eggs (eggs laid fourth to sixth) were
heavier than early-laid ones (eggs laid first to third,
Supplementary Table S2). We found no difference in egg
mass with year (F;;3,=0.26, P=0.77), and no effect of
proximate weather on variation in egg mass (temperature:
P=0.95, rainfall: P=0.93).

Around 92% of broods hatched asynchronously (n=180).
Hatching span varied from one to six days, and ~85% (n=180)
of broods hatched within two or three days. Hatching span
was positively related to clutch size but did not vary with egg-
laying date or among years (F;3,=0.26, P=0.77). However,
the within-brood hatching span was longer later in the
breeding season in 2019 (F;3,=16.45, P<0.001). Proximate
weather had no significant effect on variation in hatching span
(P=0.83, P=0.91).

The mean nesting cycle was 40.37+2.69 days (n=51), with a
mean egg-laying period of 4.52+0.75 days (n=104), mean
incubation period of 13.10£1.18 days (n=122), and mean
nestling period of 23.22+2.40 days (n=67). Incubation length
showed no differences among years (F;¢5=0.86, P=0.43), but
decreased with egg-laying date (F; g5=7.85, P=0.006) and was
negatively correlated with clutch size (F; ¢5=10.26, P=0.002).
Neither rain nor temperature in any climatic window had a
significant effect on incubation length (P=0.64 and P=0.95 for
rainfall and temperature, respectively). The nestling period
was longer in 2018 (25.11+1.97, n=18) than in 2017
(22.90+2.22, n=20; t=3.03, P=0.01) and 2019 (22.00+2.48,
n=13; t=-3.87, P<0.01). Number of hatchlings and egg-laying
date did not affect nestling period length (F; 4=1.31, P=0.26;
F146=1.90, P=0.18, respectively). Fledging occurred earlier
when the temperatures from 14 to 11 days before the fledging
date were higher (t=-5.46, P<0.01).

Nestling mass exhibited a traditional S-shaped curve, which
well fitted the logistic growth equation (Supplementary Figure
S4). The growth rate constant (k) and asymptote (A) were
0.30 and 9.37 g in 2017, 0.27 and 8.83 g in 2018, and 0.29
and 9.73 g in 2019, respectively.

Overall nest success was 31.76% (n=340), while the mean
hatching rate was 0.52 (n=315) and average fledging rate was
0.45 (n=186). The mean fledging number was 1.78 (n=186).
The hatching rates were 0.54, 0.53, and 0.51 in 2017, 2018,
and 2019 respectively, with no significant differences found
among years (F;,47=0.10, P=0.91). The fledging rates were

0.54, 0.40, and 0.40 for 2017, 2018, and 2019, respectively,
which were not significantly different (Fj5=0.73, P=0.18).
Total number of fledglings was 115 in 2017 (n=89), 97 in 2018
(n=118), and 51 in 2019 (n=56). Compared to that found in
2017 and 2018, partial loss occurred significantly more
frequently in 2019 (z=2.47, P=0.04 and z=2.45, P=0.04,
respectively). Among nest failures, 63.19% were caused by
predation (2017: 75%, 2018: 52.22%, 2019: 66.67%), 15.93%
were caused by parasites (2017: 8.93%, 2018: 21%, 2019:
10.26%), and 14.84% were caused by nest desertion (n=182).

The daily survival rate (DSR) (0.97+0.00) increased with
nest age (£=107.40, P<0.001). The survival rate over the total
nest cycle was 0.30, whereas the survival rates during the
egg-laying, incubation, and nestling periods were 0.86, 0.64,
and 0.52, respectively. Variation in DSR within each breeding
season showed different patterns among the three sample
years (Supplementary Figure S5).

Rainfall and temperature played an important role in
breeding phenology and reproductive performance in the
white-rumped munia. Drought and high temperature in the dry
season significantly delayed the onset of breeding season.
Frequent rainfall decreased the clutch size and prolonged the
nestling period, suggesting that proximate rainfall could
directly influence breeding performance. Total number of
fledglings decreased sharply in 2019, which was mainly
associated with the drought and shortened duration of the
breeding season. Our results showed that rainfall, specifically
drought, represents a major potential constraint on
reproductive performance in white-rumped munia.

Selecting an optimal breeding period and season is critical
for maximizing reproductive output (Sydeman et al., 1991).
Certain species exhibit remarkable flexibility in their timing of
breeding, allowing them to closely track changes in the climate
(Lv et al., 2020; Senapathi et al., 2011). In our study, however,
high temperatures and decreased rainfall in the dry season
delayed the onset of the breeding season. Rain is known to
affect resource abundance as well as seasonal breeding in
tropical species (Hau et al., 2008; Hidalgo Aranzamendi et al.,
2019). In the current study, early rainfall in the dry season
advanced the onset of the breeding season in 2018, whereas
drought delayed breeding by more than four months in 2019
(Supplementary Figures S1, S2). Drought can affect avian
community structure, population size, adult mortality, and
reproductive success (Albright et al., 2010; Cruz-McDonnell &
Wolf, 2016; Saracco et al., 2018). Breeding season duration
can affect the stability of populations (Tarwater & Arcese,
2018). Our study showed that white-rumped munia responded
flexibly to climate variation, which should aid their ability to
match the timing of their most resource-demanding activity
(breeding) with the period when resources are most abundant;
however, the length of the breeding season in 2019 was
substantially shortened, which led to a sharp decline in the
total number of fledglings. Thus, an increasing number of
extreme climatic events caused by climate change, e.g., hot
droughts (Bourne et al., 2020a, 2020b), may threaten the
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stability of white-rumped munia populations.

The breeding performance of white-rumped munia varied
significantly among years. The average clutch size was larger
in 2017 when rainfall and temperature were moderate. In
normal years, higher rainfall could increase female body
condition because of higher food availability, which could, in
turn, increase clutch size and fecundity (Boulton et al., 2011;
Hidalgo Aranzamendi et al., 2019; Oppel et al.,, 2013).
However, we found that clutch sizes in 2019 under drought
conditions were even larger than those in 2018 with earlier
and more frequent rainfall (Supplementary Figure S1), which
may be a compensatory mechanism in response to the shorter
breeding season (Bourne et al., 2020a). Clutch size
decreased with rainfall in 2018, which may be associated with
higher predation pressure under wetter conditions. In
environments with high predation risk, small clutch size could
lower feeding visits as well as the exposure of nests to
predators (Ghalambor et al., 2013). The main predators at our
study site were snakes, which generally show increased
activity with rain events (Li et al., 2019). Clutch size decreased
as the season progressed in 2018, as reported in most
temperate species and some tropical species (Delhey et al.,
2010; Both et al., 2006; Shave et al., 2019). The seasonal
decline in clutch size may be related to a scarcity of resources
in the late breeding season or declining female quality
(Christians et al., 2001).

Egg mass of later-laid eggs was significantly greater than
that of early-laid eggs. In addition, asynchronous hatching was
the main hatching pattern observed in this study. Parents may
invest more energy in eggs laid later to improve their growth
and competitive ability after hatching in asynchronously
hatching species (Jeon, 2008; Muriel et al., 2019). Hatching
asynchrony is a strategy for coping with unpredictable
resources, and hatching span often increases in years with
poor conditions and low resource abundances (Barrientos et
al., 2016). In our study, however, hatching span did not vary
among the three sample years.

The growth rate of the white-rumped munia nestlings was
significantly lower in 2018 than in 2017 and 2019, which may
be associated with the wetter and colder conditions observed
in 2018 (Supplementary Figures S1, S2) (de Zwaan et al.,
2019). Increasing rainfall during the nestling period is related
to declines in nestling body mass (Cox et al., 2019).
Furthermore, cold weather increases the energy costs of
thermoregulation for nestlings and can constrain their growth
(Abdullahi, 1990). Indeed, nestlings in experimentally heated
nests grow faster than nestlings in control nests (Dawson et
al., 2005). We also found that low temperatures prolonged the
nestling period, which may be caused by slower nestling
growth under cooler conditions.

The DSR of the white-rumped munia varied significantly
with nest age and laying date (Supplementary Figure S5).
Rainfall generally has a negative effect on nest survival
(Boulton et al., 2011; Mwangi et al., 2018). Here, parasites
caused ~21% of nest failures in 2018, significantly higher than
the parasite infestation rates in 2017 and 2019. High parasite
infestations may be related to the high humidity caused by
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frequent rainfall (Cantarero et al., 2013; Heeb et al., 2000).

Our results highlight the potential effects of proximate
rainfall and temperature on the timing of breeding and
reproductive performance in a tropical bird species. This
highly plastic reproductive performance contributed to the
ability of white-rumped munia to persist in the face of climate
variability. Furthermore, we also found that drought, which is
predicted to increase in severity and frequency as climate
change advances (Dai, 2011; Trenberth et al., 2003, 2014),
was associated with a shorter breeding season and the
production of fewer surviving offspring. These findings are
similar to recent reports on arid-zone birds (Bourne et al.,
2020a; lknayan & Beissinger, 2018; Sharpe et al., 2019; van
de Ven et al., 2020). Our findings suggest that increasing
drought events under future climate change will have serious
implications for population replacement and persistence in
tropical birds.
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