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A B S T R A C T   

Dendrometers are vital tools for studying the response of trees to intra-annual environmental changes in different 
temporal resolutions, ranging from hourly, daily to weekly time resolution. Dendrometers are increasingly used 
in forest management and tree physiological studies. Besides the data analysis, data processing is also chal-
lenging, time-consuming and potentially error-prone due to the immense number of measurements generated by 
self-registering electronic dendrometers. We present the package ‘dendRoAnalyst’ based on R statistical software 
to process and analyse dendrometer data using various approaches. This package offers algorithms for handling 
and pre-cleaning of dendrometer data before the application of subsequent data analytical steps. This includes 
identifying and erasing artefacts in dendrometer datasets not related to actual stem circumference change, 
identifying data gaps within records, and the possibility of change(s) in temporal resolution. Furthermore, the 
package can calculate different daily statistics of dendrometer data, including the daily amplitude of tree growth. 
The package dendRoAnalyst is therefore intended to facilitate researchers with a collection of functions for 
handling and analysing dendrometer data.   

1. Introduction 

Dendrometers are instruments vital for measuring the growth of 
plant stems in high spatio-temporal resolution. The first mentioned use 
of dendrometers was during the 1920s (Grosenbaugh, 1963). Since then, 
there has been significant technological development in the engineering 
of the devices. During the mid-20th century, various studies used den-
drometers in forestry and agronomy (Clark et al., 2000). With the 
technological evolution of automatic loggers for the recording of 
high-resolution temporal data, there has also been development in the 
theory of data analysis approaches. Currently, three major concepts to 
analyse the data exist: The “daily approach (DA)” (Herzog et al., 1995; 
King et al., 2013; van der Maaten et al., 2013, 2016), the “stem-cycle 
approach (SC) “(Deslauriers et al., 2007, 2011; Downes et al., 1999; van 
der Maaten et al., 2016), and the “zero-growth approach (ZG)” (Zweifel 
et al., 2005; 2006; 2016). 

Tree stems undergo diurnal swelling and shrinking due to water 
uptake by the roots and water loss by crown transpiration. In the DA, 
daily maximum, minimum, and corresponding times are extracted along 
with the amplitude of the daily records (van der Maaten et al., 2013). 
The SC, on the other hand, divides the diurnal cycle into three phases 
known as contraction, expansion, and radial increment (Deslauriers 

et al., 2007, 2011; Downes et al., 1999). During the daytime, when tree 
water loss by transpiration exceeds water uptake and transport through 
the stem, the stem diameter decreases. This phase is called “contraction” 
(Deslauriers et al., 2003; van der Maaten et al., 2016) or "shrinkage 
“(Downes et al., 1999). Conversely, the phase when transpiration ceased 
and water uptake dominates, the diameter increases until reaches to the 
previous maximum is called “expansion” (van der Maaten et al., 2016) 
or “recovery” (Downes et al., 1999). If the tree’s diameter increases 
further, surpassing the previous day’s maximum, it is supposed that this 
represents real tree growth by formation of new xylem cells, and hence 
this phase has been termed “radial increment” phase (Deslauriers et al., 
2011; Downes et al., 1999). Deslauriers et al. (2003) referred to the term 
“expansion” as a combination of recovery and increment. Later, van der 
Maaten et al. (2016) re-defined it as a phase when the tree diameter 
increases but remains below the previous maximum. According to the 
ZG approach, stem growth is divided into two phases. The tree water 
deficit (TWD) is the part of the phase that includes reversible shrinking 
and expansion of the stem due to the loss and uptake of water, and 
irreversible stem expansion (GRO), considered as radial growth (Zweifel 
et al., 2005, 2016). The ZG approach is based on the assumption that 
tree growth stops when trees undergo shrinkage (Zweifel et al., 2016). 
Building upon this, an enveloping curve will be produced joining all 
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dendrometer data points, which exceed the previous maximum value 
(GRO-curve). Then, individual data points are subtracted from the 
GRO-curve to obtain the actual tree water deficit (TWD) values for in-
dividual data points, in a way that the TWD values for GRO phase are 
always zero (Zweifel et al., 2016). 

Most dendrometer manufacturers have dedicated individual soft-
ware solutions to extract the instrumental raw data from a data logger. 
However, these software packages are usually not capable of performing 
complex statistical analyses or very time-consuming. There had been 
previous efforts to develop computer programs to make data extraction 
and analysis efficient and easy. Grosenbaugh (1963) developed the basic 
Fortran computer program DD2 to extract measurements from optical 
dendrometers. At present, besides the data analysis, data processing is 
also challenging due to the enormous numbers of measurements 
generated by self-registering electronic dendrometers. To make data 
analysis more convenient and interactive, Deslauriers et al. (2011) 
published a collection of algorithms written in the SAS platform based 
on the stem-cycle approach. Later, a package called ‘dendrometeR’ (van 
der Maaten et al., 2016) based on R Software (R Development Core 
Team, 2020) was created, which uses both DS and SC approaches for 
dendrometer data analysis. In the ‘dendrometeR’ package, there are 
functions for calculating data resolution, identifying missing values in 
the data set, and filling them using the ARIMA model (van der Maaten 
et al., 2016). However, users cannot apply the ZG approach in this 
package. Meanwhile, due to the intensive use of automatic den-
drometers with the capacity of recording high-resolution data, there is a 
demand for a tool that can not only perform analysis applying all 
prevalent approaches but is also able to pre-process and clean the raw 
dendrometer data. Here, we present a package called ‘dendRoAnalyst’ 
based on the R software (R Development Core Team, 2020) that provides 

an opportunity to use all existing analysis approaches and additionally 
includes new tools for data (pre)processing and analysis. 

2. Package functionality 

2.1. Dataset preparation 

The presented package requires a dataset with the first column 
consisting of time in extended date-time format (e.g. yyyy-mm-dd HH: 
MM:SS) without daylight savings. Individual dendrometer data has to be 
sorted from the second column onward. The dataset may contain data 
for more than one year, but every single device needs its column. The 
package is flexible to column names but is strict with their order. If the 
format of the time is not proper, it will generate an automated error 
message. In total, this package offers ten different functions that are 
useful for dendrometer data processing and analysis (Fig. 1). 

2.2. Data processing 

High-resolution dendrometers often exhibit data gaps caused by 
mechanical or environmental effects. Since they are electronic devices 
that need a battery or continuous power supply for operation, they can 
easily be disturbed, e.g. due to humid weather conditions. Furthermore, 
animals can also harm cables or the power source. This causes in-
terruptions in the recordings, and leads to the generation of gaps in the 
data. This package offers two different functions to deal with such gaps. 
The first function spline.interpolation not only detects data gaps, but 
also interpolates missing values using a cubic spline. This function is 
capable of handling data of several dendrometers in one dataset. It lo-
cates the starting time of a gap, based on a user-defined resolution of the 

Fig. 1. Flow chart depicting the individual sub- 
steps of the package dendRoAnalyst. The func-
tions are categorised in four groups. PM in-
dicates the functions that can analyse perennial 
data containing multiple trees, PS indicates the 
functions suitable for perennial data containing 
a single tree, AM indicates the function that can 
handle annual data containing multiple trees 
and PS* indicates the functions that can be 
applied to perennial data for a single tree but 
unable to generate a graph for perennial data.   
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data using the argument “resolution”, and indicates the consecutive 
number of gaps for each position. If the parameter fill is false, it leaves 
the missing readings as ‘NA’, otherwise it fills all missing readings. 
spline.interpolation uses the whole dataset to predict missing readings 
and replaces the ‘NA’ values with the cubic spline interpolation method. 
The uncertainty of spline.interpolation increases with the number of 
consecutive gaps, so we recommend not using this method in a dataset 
with consecutive gaps lasting for more than 24 h. Generally, den-
drometer data from the same site, and species often show similar stem 
circumference variations (Spannl et al., 2016). Based on this principle, a 
function network.interpolation is designed to fill the data gaps within 
one dendrometer dataset with the help of contemporaneous den-
drometer data from the same site. This method of data interpolation is 

different from existing interpolation techniques included in previous 
software packages. The function included two options for network 
interpolation methods: ‘linear’ and ‘proportional’. Users can select the 
desired methods using a parameter niMethod. When applying the 
‘linear’ method, the missing value at a data point is computed using a 
linear model between previous data points and corresponding data 
points of the missing value in the reference dataset (Equation 1). If using 
the ‘proportional’ method, the average proportional change between 
previous data points and corresponding data points of a missing data 
point in the reference dataset provides the basis for predicting the 
missing value (Equation 1). To make predictions more robust, we 
included the bootstrap method in both interpolation methods. The 
‘proportional’ method for example calculates the proportional change, 

Fig. 2. Plots generated by the jump.locator function. (a) Original data with an indication of the located jumps (red bars). (b/d) The zoomed-in plot at the location of 
the individual jumps with the indication of the jump (red bar). (c/e) The zoomed-in plot after the removal of the jump with the indication of its location (green bar). 
(f) Data set after the removal of the jumps, the position of jump removal is indicated by green bars. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article). 
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and runs 500 iterations using the provided data. Subsequently, the mean 
proportional change is calculated and displayed for each missing loca-
tion including the 95 % confidence level. By contrast, the ‘linear’ 
method calculates the r-square, intercept, and slope of the linear model 
by running 500 iterations and displays the predicted value with its 
corresponding r-squared value. 

Mi = M(i− 1) × m + c (1a)  

Mi = M(i− 1) × M(i− 1) × p (1b)  

Where Mi is the missing value at the ith row in dataset M and M(i-1) is a 
value at (i-1)th row in dataset M; m and c are the slope and intercept of 
the linear model between all the data at (i-1)th and ith row in the 
reference dataset; p is the average proportional change between all the 
data at (i-1)th and ith row in the reference dataset. 

Occasionally, dendrometer installations have to be maintained, e.g. 
by exchanging exhausted logger batteries, or by adjusting dendrometer 
bands or needles after longer phases of stem growth. This may result in 
artefacts displayed as positive or negative jumps in the data. To auto-
matically adjust them, the package includes the function jump.locator. It 
locates conscious jumps in the data and interactively adjusts them 
individually by producing a series of figures (Fig. 2). Although it is 
highly recommended not to use data with any gaps, the jump.locator 
function is capable to handle data with ‘NA’ values. It screens the whole 
dataset and locates their position, timing, and number based on the 
value of argument v that represents a user-defined threshold, such that 
fluctuations above it or below its negative are considered as a jump. The 
function was designed to first display a plot with the original data, 
indicating the location with red bars (Fig. 2). Then, it zooms to each 
position (Fig. 2) and asks for the user’s input to confirm or to remove the 
jump. Subsequently, it displays a zoomed curve after each correction is 
applied (Fig. 2). Finally, the whole data after correction is displayed in a 
graph, indicating the corrected data locations by green bars (Fig. 2). 

Dendrometers record a vast number of data every year. Processing 
and analysing continuously recorded data for many years is often 
complex and highly time-consuming. Truncated dendrometer data 
reduce the complexity and duration of calculations. Therefore, den-
drometer data are generally analysed for yearly or seasonally truncated 
time intervals. Thus, the implemented function dendro.truncate pro-
vides an opportunity to truncate dendrometer data. The function re-
quires a correctly formatted data frame df, the year for which data 
should be truncated CalYear, and an array containing two elements for 
the beginning and end of the period of truncation DOY. The function is 
capable to truncate data within and between years. If the user provides 
an array (with two numbers) instead of a single value for CalYear and a 
single value for DOY, it truncates data from the DOY of the first CalYear 
to the same DOY of the second CalYear. Conversely, if the user provides 
one value for CalYear and an array of two elements for DOY, it truncates 
the dataset from the first DOY to the second DOY within the same Cal-
Year. Finally, if the user provides an array with two values for both DOY 
and CalYear, it truncates data from the first DOY of the first CalYear to 
the second DOY of second CalYear. 

The temporal resolution of a data set may differ according to the 
objectives of the investigation. With the help of the function dendro. 
resample, users can change the resolution of their dataset based on a 
user-defined temporal frequency. For example, if resampled on a daily 
base, the function chooses only one value for each day. This function 
needs a data frame that contains the time in the first column and den-
drometer recordings from the second column onwards. It can resample 
more than one dendrometer data collected for several years simulta-
neously. Based on the objective, the user can define either maximum, 
minimum, or mean values indicating either ‘max’, ‘min’, or ‘mean’ in the 
parameter value. Besides, indicating either ‘H’, ‘D’, ‘W’, or ‘M’ for the 
parameter by, users can resample data in hourly, daily, weekly or 
monthly frequency. 

2.3. Daily approach 

With the function daily.data, our package offers a tool to calculate 
daily statistics of dendrometer data regardless of its temporal resolution. 
The provided daily statistics include daily maximum and minimum with 
their corresponding times, and daily amplitude (the difference between 
daily maximum and minimum). daily.data is capable of analysing 
datasets containing data for more than one year. The user can define the 
dendrometer data to be analysed by using the parameter TreeNum, 
which is an integer denoting the column number of dendrometer data 
excluding the first column (i.e., if dendrometer data is in the second 
column of data frame df, one should enter TreeNum = 1). This function 
can handle the data containing readings for more than 1 year. 
Furthermore, it can also compute similar statistics for climate data, if 
formatted accordingly. It furthermore generates a table that contains 
various daily statistics (Table 1). 

2.4. Stem-cycle approach 

The function phase.sc provides an algorithm to analyse data using 
the stem-cycle approach. For this, a data frame formatted following the 
methods mentioned above is required (see section 2.1) and TreeNum 
needs to be entered to determine which dendrometer data shall be 
analysed. The function includes another parameter called outputplot. If 
entering ‘TRUE’, it produces a plot with different phases based on the 
interval defined by argument days. The parameter days accepts an array 
with two elements. The elements denote the beginning and end of the 
plotting period in terms of the day of the year. 

The smoothing of data is essential to ignore sudden fluctuations, 
which can be considered as noise. A higher smoothing value reduces the 
cycle amplitude and can affect the results of the analysis, whereas a 
lower smoothing value might not be able to remove the noise level 
(Deslauriers et al., 2011). The phase.sc function therefore further in-
cludes a parameter called smoothing, which defines the length of the 
spline in hours for the smoothing window of the dendrometer data. The 
function calculates the length of the spline using the resolution of the 
provided dataset and the input value for smoothing. For instance, if the 
resolution of the provided dataset is 60 min and the desired smoothing 
interval is five (i.e. 5 h =300 min), then it divides the smoothing value 
(in minutes) by the resolution of data (in minutes) to determine the 
spline window. The value of smoothing should, therefore, be chosen 
with care and be as low as possible. After smoothing the data, the 
function defines three phases: Shrinkage, when the dendrometer reading 
is less than the previous reading; Expansion, when the current reading is 
more than the previous reading, and Increment, when the current 
reading is higher than previous maxima. Mathematically, the method is 
expressed as the following equation (Eq. 2). 

phasei+1 = 1 (Shrinkage) (when xi+1 < xi & xi < maxi)

phasei+1 = 2 (Expansion) (when xi+1 > xi & xi < maxi)

phasei+1 = 3 (Increment) (when xi+1 < xi & xi > maxi)

(2) 

Table 1 
Description of statistics generated by the daily.data function.  

Name of 
columns 

Description 

DOY Day of the year. 
min Minimum value for the corresponding day. 
Time_min Time when the minimum value was recorded for the 

corresponding day. 
max Maximum value for the corresponding day. 
Time_max Time when the maximum value was recorded for the 

corresponding day. 
mean Daily average value of the dendrometer reading. 
median Daily median value of the dendrometer reading. 
amplitude The difference between daily maximum and daily minimum.  
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Where xi is a cumulative reading of dendrometer data at data point i; 
xi+1 is the cumulative reading of dendrometer data at data point i+1; 
and maxi is the maximum dendrometer reading between 1st to ith 
dendrometer data. 

phase.sc can also analyse data for two consecutive years. The only 
precondition to use such a dataset is that the data frame must not 
contain the same days of two calendar years. For example, the dataset 
can contain data from 2017− 06-01 to 2018− 05-31, but should not 
contain data for further than this in 2018. The function is able to analyse 
a perennial dataset without the mentioned precondition. However, it 
only returns the analysed dataset for the whole period without gener-
ating any plot. It is necessary to define a period of plotting using days 
argument providing an initial and final day of the year. In the case of 
perennial data, there is a repetition of days of the year in every calendar 
year, which makes the plotting period arbitrary to identify. This function 
generates a list of two datasets. The first data frame ’SC_cycle’ contains 
cyclic phases along with the beginning, end, duration, magnitude, and 
rate of each phase (see Table 2). The second data frame ’SC_phase’ 
contains assigned phases for each data point. 

2.5. Zero-growth approach 

The package offers a function called phase.zg for analysing data 
using the zero-growth method. The format of the dataset should be the 
same as for phase.sc. First, phase.zg divides the data into two categories: 
Tree water deficiency (TWD), the reversible shrinkage and expansion of 
the tree stem when the current reading is less than previous maxima, and 
Increment (GRO), the irreversible expansion of the stem when the cur-
rent reading is higher than previous maxima. Mathematically, Eq. 3 
represents the method. Secondly, it applies a linear interpolation be-
tween each consecutive GRO period and forms a growth curve (GRO- 
curve). Then it determines the TWD value of each data point by sub-
tracting the actual dendrometer reading from the corresponding value of 
the modelled data of the GRO-curve so that TWD value for the GRO 
phase is zero. 

phasei+1 = TWD (when xi+1 < maxi)

phasei+1 = GRO (when xi+1 > maxi)
(3)  

Where xi is the cumulative reading of dendrometer data at data point I; 
xi+1 is the cumulative reading of dendrometer data at data point i+1; 
maxi is the maximum dendrometer reading between 1st to ith den-
drometer data. 

Like phase.sc, the zero-growth function phase.zg is capable to anal-
yse data with two consecutive calendar years and generates a list of two 
datasets. The first data frame ’ZG_cycle’, contains cyclic phases along 
with the beginning, ending, duration, magnitude, and rate of each GRO 
phase along with maximum TWD value and its time of occurrence (see 
Table 3). The second data frame ’ZG_phase’ contains the TWD value for 
each data point. 

2.6. Additional functions for growth-climate analysis 

We further included two additional functions that can investigate the 
growth of trees during extended climate events. For instance, trees 
experience shrinkage of circumference during extended dry periods. 
However, the severity of the impact may not be equal for all trees 
growing at the same site. Trees can reveal different responses to the 
same climate event, based on their functional type and age (Raffelsbauer 
et al., 2019). The two functions twd.maxima and clim.twd help to zoom 
to a particular climate event and assess the circumferential/radial 
change of the trees. The function clim.twd requires two data sets: a 
dendrometer data frame df and daily climate data Clim as an input. The 
user can define events by setting criteria with the parameters clim-
Threshold and daysThreshold. The parameter climThreshold defines the 
threshold for climate below which is considered as an adverse climate. 

Table 3 
Description of output statistics in ’ZG_cycle’, generated by the phase.zg function.  

Name of 
columns 

Description 

DOY Day of the year for the corresponding phase. 
Phase TWD for tree water deficit and GRO for irreversible expansion. 
start Time when the corresponding phase starts. 
end Time when the corresponding phase ends. 
Duration_h Duration of the corresponding phase in hours. 
Magnitude Radial/circumferential change during the corresponding ‘GRO’ 

phase in millimetres. 
rate Rate of radial/circumferential change during the corresponding 

‘GRO’ phase measured in micrometres per hour. 
Max.twd Maximum TWD recorded for the corresponding TWD phase. 
Max.twd.time Time of occurrence of the maximum TWD value for each 

corresponding TWD phase. 
Avg.twd Average of TWD values for each TWD period. 
STD.twd Standard deviation of TWD values for each TWD period.  

Table 2 
Description of statistics in ’SC_cycle’, generated by the phase.sc function.  

Name of 
columns 

Description 

Phase Cyclic phases. 1, 2, and 3 for Shrinkage, Expansion, and Increment 
respectively. 

start Time when the corresponding phase starts. 
end Time when the corresponding phase ends. 
Duration_h Duration of the corresponding phase in hours. 
Duration_m Duration of the corresponding phase in minutes. 
Magnitude Radial/circumferential change during the corresponding phase in 

millimetres. 
rate Rate of radial/circumferential change during the corresponding 

phase in micrometres per hour. 
DOY Day of the year for the corresponding phase.  

Table 4 
Exemplary data set (the circumference in mm) nepa17 consisting of two trees 
with data gap between 2017-08-26 18:00:00 and 2017-08-26 23:00:00.  

Time T2 T3 

2017− 08-26 14:00:00 73.7598 58.07983 
2017− 08-26 15:00:00 73.7356 58.06337 
2017− 08-26 16:00:00 73.72882 58.05272 
2017− 08-26 17:00:00 73.72978 58.05127 
2017− 08-26 18:00:00 73.7327 58.05272 
2017− 08-26 23:00:00 73.76077 58.07402 
2017− 08-27 00:00:00 73.76561 58.07935 
2017− 08-27 01:00:00 73.77142 58.08177  

Table 5 
Data set after the application of gap finding using the function spline. 
interpolation.  
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The parameter daysThreshold defines the minimum duration (days) 
such that the period extending longer than this duration is considered as 
adverse periods. The clim.twd function first generates a figure and a 
table showing dry periods with newly created IDs. Users can choose one 
or more periods inserting respective ID numbers in the console. Finally, 
it simultaneously generates a figure and a data frame with all trees and 
their relative growth change. If we desire to plot two or more periods 
then it chooses different colours for the different IDs and different ‘pch’ 
(point signature) for different trees. It has to be stated, that clim.twd is 
only useful when daily climate data is available. However, daily climate 
data may not always available due to various reasons. In such cases, the 
second function, twd.maxima is a useful help/tool. Within twd.maxima, 
an algorithm defines the TWD periods and calculates the TWD value for 
all trough maxima within each TWD period incorporating the functions 
phase.sc and phase.zg. It generates a data frame with each TWD period 
with the exact time for each trough maximum and time difference of its 
occurrence from the beginning of each TWD period. Like in phase.sc, the 
user can modify the smoothing parameter to adjust the identification of 
trough maxima. 

3. Illustrated example 

For the demonstration of this package, we used a dataset of Chir pine 
(Pinus roxburghii) from Kathmandu, Nepal. The data was derived using 
an automatic logging band dendrometer (DRL26, EMS Brno) recording 
hourly circumference change from 2016 to 2017. For reference and 
comprehensibility, we included this dataset as a default called ‘nepa’ in 
the package. Following, we will demonstrate all the functions of the 
package based on this dataset in sequential order (Fig. 1). 

Before starting data processing, the user should ensure that the 
format of the dataset fits within the prerequisites. The first step is to 
identify gaps in the dataset using either spline.interpolation, or network. 
interpolation. In our sample dataset (Table 4), a data gap is apparent 
where the dendrometer skipped four recordings between 2017− 08-26 
18:00:00 and 2017− 08-26 23:00:00. While using the spline.interpola-
tion function with the argument fill = FALSE, additional rows with 
missing times (shaded cells of first column of Table 5) are automatically 
generated and missing readings are filled with NA (shaded cells of col-
umns 2 and 3 of Table 5). However, with fill = TRUE, the missing 
readings are filled applying the spline interpolation method (shaded 
cells of columns 4 and 5 of Table 5). 

> data("nepa17′′) 

Table 6 
Comparison of interpolated data by network.interpolation using the ’proportional’ and ’linear’ method. The shaded cells in columns 3 and 4 represent the interpolated 
value for each missing data using ‘proportional’ and ‘linear’ methods respectively.  

Table 7 
Output of daily.data containing the daily statistics of dendrometer data.  

DOY min Time_Minimum max Time_Maximum mean median Amplitude 

1 62.266 00:00:00 62.469 07:30:00 62.430 62.454 0.2034 
2 62.464 13:30:00 62.543 07:30:00 62.499 62.487 0.0794 
3 62.528 00:00:00 62.992 14:00:00 62.725 62.625 0.4633 
4 62.771 16:00:00 63.012 08:00:00 62.899 62.941 0.2411 
5 62.794 14:30:00 62.943 08:30:00 62.852 62.831 0.1491 
6 62.731 16:30:00 62.933 08:30:00 62.837 62.843 0.2014 
7 62.791 14:00:00 62.900 08:00:00 62.839 62.829 0.1085 
8 62.712 16:30:00 62.913 08:00:00 62.817 62.835 0.2014 
9 62.730 16:30:00 62.897 08:00:00 62.815 62.806 0.1666 
10 62.714 15:30:00 62.886 08:00:00 62.804 62.805 0.1724  
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> library(dendRoAnalyst) 
> gf_nepa17 < -spline.interpolation(df = nepa17, resolution = 60, 

fill = FALSE) 
To use the network.interpolation function, the respective dataset 

should be treated with spline.interpolation including fill = FALSE. For 
instance, we replaced in the sample dataset some reading in the data 
frame ‘gf_nepa17′ (Table 6) for the demonstration and assigned a new 
name ‘df1′. We also created a reference dataset df2, repeating the second 
and third columns of dataset ‘gf_nepa17′ two times. We considered df1 
as an input and df2 as a reference dataset. 

data("gf_nepa17′′) 
> df1 < -gf_nepa17 
> # Creating an example reference dataset. 
> df2 < -cbind(gf_nepa17,gf_nepa17[,2:3],gf_nepa17[,2:3]) 
> # Creating gaps in dataset by replacing some of the reading with 

NA in dataset. 
> df1[40:50,2]<-NA 
> # Using proportional interpolation method. 
> df1_NI<-network.interpolation(df = df1, referenceDF = df2, 

niMethod=’proportional’) 

Table 8 
Cyclic statistics using the stem-cycle approach. Data generated by the phase.sc function for T2 of gf_nepa17.  

Phases start end Duration_m Duration_h magnitude rate DOY 

1 2017− 01-01 01:00:00 2017− 01-01 04:00:00 180 3.000 − 0.005 − 1.63144 1 
2 2017− 01-01 04:00:00 2017− 01-01 05:00:00 60 1.000 0.001 1.11807 1 
3 2017− 01-01 05:00:00 2017− 01-01 10:00:00 300 5.000 0.041 8.269678 1 
1 2017− 01-01 10:00:00 2017− 01-01 13:00:00 180 3.000 − 0.017 − 5.6303 1 
2 2017− 01-01 13:00:00 2017− 01-01 20:00:00 420 7.000 0.016 2.319211 1 
3 2017− 01-01 20:00:00 2017− 01-02 10:00:00 840 14.000 0.131 9.390499 1 
1 2017− 01-02 10:00:00 2017− 01-02 18:00:00 480 8.000 − 0.032 − 3.99042 2 
2 2017− 01-02 18:00:00 2017− 01-03 05:00:00 660 11.000 0.029 2.643204 2 
3 2017− 01-03 05:00:00 2017− 01-03 10:00:00 300 5.000 0.016 3.219348 3 
1 2017− 01-03 10:00:00 2017− 01-03 13:00:00 180 3.000 − 0.010 − 3.48021 3  

Fig. 3. Plot generated by the phase.sc function, which shows stem size varia-
tion for 10 days along with different phases of the dendrometer data (T2) 
in gf_nepa17. 

Fig. 4. Plot generated by the phase.zg function for T2 of gf_nepa17: (a) stem size variation (black line) and GRO curve (blue line) for 18 days along with TWD for 
each data point for that period. (b) GRO phase (from a1 to a2), TWD phase (from a2 to a3), and the maximum TWD value (Max.twd) for the TWD phase. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 
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> # Using linear interpolation method. 
> df1_NI<-network.interpolation(df = df1, referenceDF = df2, 

niMethod=’linear’) 
The consecutive step is then applied to locate jumps in the dataset, 

which might not be related to environmental influences. For example, 
there are two jumps in the dataset ‘nepa’. The first jump is positive 
(more than the provided value for v, i.e. 1 mm) whereas the second is 
negative (less than negative of provided value for v, i.e. 1 mm). 

> jump_free_nepa<-jump.locator(df = nepa, TreeNum = 1, v = 1) 
jump.locator produces a series of graphs (Fig. 2). The first graph 

shows all the jumps in the data indicated by red bars (Fig. 2). The small 
panels of Fig. 2 show the individual jumps before and after the adjust-
ment (Fig. 2). Fig. 2f displays the sample data after the adjustment of all 
jumps with the indication of the location of jumps by green bars. 
(=jump-free series). 

The dataset ‘nepa’ consists of data for two years: 2016 and 2017. 
Nevertheless, we require data only for 2017 from the day of year 1–365 
for further analysis. The output of jump.locator can be used as the input 
file for this function. 

> nepat2.2017=dendro.truncate(df = ju.gp.nepat2, CalYear = 2017, 
DOY = c(1365)) 

After performing all the mentioned steps above, the dataset is now 
suitable for the analysis of the different approaches (DA, SC, and ZG). 
The function daily.data can calculate the daily statistics of the 

dendrometer data. To use this function, the parameters TreeNum needs 
to be provided along with the input dataset that denotes the number of 
the column whose daily statistics are to be calculated. 

> data ("gf_nepa17′′) 
> daily17 < -daily.data(df = gf_nepa17, CalYear = 2017, TreeNum =

1) 
This results in an output data frame illustrating various daily sta-

tistics of the dendrometer data (Table 7). 
For a demonstration of the phase.sc function, we insert gap-filled 

dendrometer data of a test-site in Kathmandu for the year 2017 as 
follows: 

> sc.phase<-phase.sc(df = gf_nepa17, TreeNum = 1, smoothing = 4, 
outputplot = TRUE, days = c(150,160)) 

This command generates a list containing two data frames and a plot 
showing different phases from the day of year 150–160 (Fig. 3). The first 
data frame ’SC_cycle’ contains cyclic phases along with various statistics 
and the second data frame ’SC_phase’ contains assigned phases for each 
data point. The data frame ’SC_cycle’ contains the beginning, ending, 
duration, magnitude, and rate of each phase (Table 8). 

Similarly, the data ‘gf_nepa17′ can also be applied in the function 
phase.zg to analyse the data using ZG approach. 

> zg.phase<-phase.zg(df = gf_nepa17, TreeNum = 1, outputplot =
TRUE, days = c(140,158)) 

This function also generates a list containing two data frames and a 

Table 9 
Cyclic statistics for the zero-growth approach as generated by the phase.zg function for T2 of the default dataset gf_nepa17.  

DOY Phases start end Duration_h magnitude rate Max.twd Max.twd.time Avg.twd STD.twd 

1 GRO 2017− 01-01 01:00:00 2017− 01-01 09:00:00 8 0.205 25.600 NA NA NA NA 
2 TWD 2017− 01-01 09:00:00 2017− 01-02 00:00:00 15 NA NA 0.022 2017− 01-01 13:00:00 0.011 0.007 
2 GRO 2017− 01-02 00:00:00 2017− 01-02 09:00:00 9 0.078 8.715 NA NA NA NA 
3 TWD 2017− 01-02 09:00:00 2017− 01-03 02:00:00 17 NA NA 0.080 2017− 01-02 15:00:00 0.047 0.028 
3 GRO 2017− 01-03 02:00:00 2017− 01-03 09:00:00 7 0.084 11.966 NA NA NA NA 
3 TWD 2017− 01-03 09:00:00 2017− 01-03 14:00:00 5 NA NA 0.109 2017− 01-03 14:00:00 0.034 0.041 
3 GRO 2017− 01-03 14:00:00 2017− 01-03 16:00:00 2 0.207 103.476 NA NA NA NA 
4 TWD 2017− 01-03 16:00:00 2017− 01-04 02:00:00 10 NA NA 0.066 2017− 01-03 18:00:00 0.033 0.022 
4 GRO 2017− 01-04 02:00:00 2017− 01-04 09:00:00 7 0.067 9.545 NA NA NA NA 
19 TWD 2017− 01-04 09:00:00 2017− 01-19 07:00:00 358 NA NA 0.811 2017− 01-18 19:00:00 0.434 0.171  

Fig. 5. Illustration of the output plot of the function twd.maxima for T2 of the default dataset gf_nepa17. It shows the TWD phase (from a2 to a3) and all the local 
maxima (m1, m2, …., m10) within it. 
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plot showing different phases from the day of year 140–158 (Fig. 4). The 
first data frame ’ZG_cycle’ contains cyclic phases along with various 
statistics and the second data frame ’ZG_phase’ contains assigned phases 
for each data point. The data frame ’ZG_cycle’ contains the beginning, 
ending, duration, magnitude, and rate of each phase (Table 9). 

The function twd.maxima uses both phase.sc and phase.zg functions. 
It first identifies all the TWD phases for the provided data. Then it 
identifies all the local maxima within each TWD phase and calculates the 
TWD values for each local maximum. 

> twd_max<-twd.maxima(df = gf_nepa17, TreeNum = 1, days = c 
(148,158)) 

This command produces a data frame and a plot (Fig. 5) with the 
TWD phases and the local maxima contained within them. The output 
data frame (Table 10) contains the beginning (start.time) and end (end. 
time) of each TWD phase (a2 and a3 in Fig. 5), the time of occurrence 

(Time) and the corresponding TWD values (TWD) of each local 
maximum (m1 to m10 in Fig. 5) within each TWD phase. It also contains 
the difference of time (duration_from_start) for each local maximum 
from the beginning of each TWD phase (a2 in Fig. 5). 

Furthermore, the function clim.twd requires two datasets as input. A 
dataset df containing dendrometer data with one or more trees and Clim 
containing a daily climate parameter. In this example, we take the gap 
filled dendrometer data (‘gf_nepa17′) and daily rainfall data 
(‘ktm_rain17′) of Kathmandu for 2017. The first column of Clim must be 
the day of the year as integers not as long time format as in the den-
drometer data. 

> data(gf_nepa17) 
> data(ktm_rain17) 
> relative_dry_growth<-clim.twd(df = gf_nepa17,Clim =

ktm_rain17, dailyValue=’max’, climThreshold = 0, daysThreshold = 2, 

Table 10 
Example of the output table of the function twd.maxima for T2 of the default dataset gf_nepa17.  

start.time end.time Time TWD duration_from_start twd.number 

2017− 01-01 08:00:00 2017− 01-01 23:00:00 2017− 01-01 12:00:00 0.02239 180 1 
2017− 01-02 08:00:00 2017− 01-03 01:00:00 2017− 01-02 14:00:00 0.080369 300 2 
2017− 01-03 08:00:00 2017− 01-03 13:00:00 2017− 01-03 12:00:00 0.070597 180 3 
2017− 01-03 15:00:00 2017− 01-04 01:00:00 2017− 01-03 17:00:00 0.066112 60 4 
2017− 01-04 08:00:00 2017− 01-19 06:00:00 2017− 01-04 17:00:00 0.250679 480 5 
2017− 01-04 08:00:00 2017− 01-19 06:00:00 2017− 01-05 15:00:00 0.261033 1800 5 
2017− 01-04 08:00:00 2017− 01-19 06:00:00 2017− 01-06 17:00:00 0.36139 3360 5 
2017− 01-04 08:00:00 2017− 01-19 06:00:00 2017− 01-07 15:00:00 0.329621 4680 5 
2017− 01-04 08:00:00 2017− 01-19 06:00:00 2017− 01-08 17:00:00 0.44983 6240 5 
2017− 01-04 08:00:00 2017− 01-19 06:00:00 2017− 01-09 17:00:00 0.466453 7680 5  

Fig. 6. Output plots of the function clim.twd. The upper plot (a) shows the no-rain periods in grey colour with assigned IDs along the upper x-axis and the lower plot 
(b) shows the relative circumferential change of the trees T2 and T3 for the no-rain period ID 28. 
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showPlot = TRUE) 
clim.twd generates a plot (Fig. 6) and a table, showing all the periods 

that are included by climThreshold and daysThreshold with a unique ID 
assigned to each of them. Then users can plot (Fig. 6) the relative 
circumferential/radial change for all the dendrometers setting the ID of 
the desired periods in the console. Finally, it returns a table containing a 
beginning, end and, ID of each period along with the number of days for 
which the periods exist and the circumferential/radial change of all the 
trees for the corresponding days. In this case, the function showed a 
relative circumferential change of T2 and T3 for the period 28, which 
extends from the day of the year 99–103 (Fig. 6). 

4. Availability 

The package is freely accessible from the CRAN-Server via https: 
//cran.r-project.org/package=dendRoAnalyst. It can be downloaded 
directly in the R console by using install.packages(“dendRoAnalyst”). 
‘dendRoAnalyst’ requires the packages pspline (Ripley, 2015) and zoo 
(Zeileis and Grothendieck, 2005). 

5. Perspectives 

The package initially contains various functions that are crucial not 
only for data analysis but also for data processing and management. It 
offers an opportunity for users to use all major approaches in the current 
state of the art of dendrometer data analysis. The functions of this 
package are simple to use with minimum input from the users. As this 
field of research is rapidly growing with the implementation of new 
methodologies, we look forward to suggestions from the scientific 
community to improve the package with the integration of more 
methods for further analyses. 
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