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A B S T R A C T

Understanding the stoichiometric characteristics of plants to a substrate shift is a key step in the use of a stoi-
chiometric framework to predict ecosystem responses to environmental change. However, the response and
mechanism of stoichiometry to a substrate shift in facultative epiphytes remains unknown.

The foliar stoichiometric (N, P, K, Ca, Mg, S, Mn, Na, and Fe concentrations) and isotopic characteristics (δ13C
and δ15N) of nine facultative epiphyte species in Xishuangbanna karst forest in southwest China were de-
termined. The stoichiometry and isotopy were compared between the epiphytic and lithophytic individuals in
the facultative epiphytes, and the possible causes of changes in elemental concentrations to substrate shifts were
studied.

We found that the lithophytes were enriched in δ15N and Ca, but depleted in elements such as Fe, K, and Mn
compared with the epiphytes. The δ15N was positively correlated with P, N, S, and K, while the δ13C was
negatively correlated with δ15N, P, N, S, and Fe. Following a principal component analysis (PCA), the first axis
loaded organically bound elements (P, N, and S), while the second axis loaded non-organically bound elements
(Fe, Mn, and K). The variances of non-organically bound elements were mostly affected by the substrate-related
factors than organically bound elements.

These results revealed that the substrate factor has a strong partitioning effect on elements such as K, Ca, Fe,
Mn, and δ15N. The differences of element concentration and isotopy between the two ecotypes suggested stoi-
chiometric and isotopic flexibility, which enabled facultative epiphytes to exploit rock and bark interchangeably.

1. Introduction

Ecological stoichiometry, i.e., the ratio and concentration of ele-
ments within biological organisms in relation to the structure and
function of the ecosystem, can display both stoichiometric homeostasis
and stoichiometric flexibility in response to environmental change
(Elser et al., 2000; Sterner and Elser., 2002). Stoichiometric home-
ostasis means that the elemental ratios within organisms are relatively
stable (Elser et al., 2010), while stoichiometric flexibility refers to the
ability of organisms to adjust their elemental balance to environmental
changes (Sterner and Elser., 2002; Sistla and Schimel., 2012). Changes
in the resource availability of substrates will directly affect plant nu-
trient assimilation and change their stoichiometry (Reich and Oleksyn.,
2004; Han et al., 2011; Yuan and Chen., 2015; Tian et al., 2019). The
understanding of the stoichiometric flexibility of plants on different

substrates is a key step in using a stoichiometric framework to predict
the ecosystem response to disturbances (Sistla and Schimel., 2012).
However, few studies were conducted on the effect of substrate shifts on
plant stoichiometry (Sistla et al., 2015).

Stable isotope approach is an important ecological recorder.
Analyses of isotope abundances variation have provided new insights
into how organisms respond to ecological processes (West et al., 2006).
The use of δ15N to trace sources and pathways of nitrogen and δ13C to
estimate whole-plant water use efficiency for epiphytes have become
important tools for ecological research (Querejeta et al., 2018). In
general, factors such as life form (Watkins et al., 2007, Watkins and
Cardelús., 2012) and taxa (Cardelús and Mack., 2010, Mardegan et al.,
2011) would cause the differences in leaf N concentration and the de-
pletion of δ15N from epiphytes to their terrestrial counterpart. Fur-
thermore, the nutritional microsites of the substrate can also cause the
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isotopy variation (Hietz et al., 2002, Wania et al., 2002), indicating the
changes of the ratio between N demand and supply (Querejeta et al.,
2018). On the other hand, δ13C was not significantly changed along
with epiphytic, transitional and terrestrial growth phases of Ficus tinc-
toria (Liu et al., 2014), but did deplete with increasing plant size in
some epiphytic bromeliads (Hietz and Wanek., 2003). However, much
less is known about the foliar elemental concentrations and isotopy
respond to substrate shifts (Benzing, 1990; Watkins et al., 2007; Burns,
2010; Zotz, 2016).

Facultative epiphytes can use different substrates simultaneously,
such as trees, rocks, or soil (Moffett, 2000; Nadkarni et al., 2001;
Benzing 2012; Zotz, 2013a; Lu et al., 2015; Chen et al., 2019). They are
ecotypes of the same species present on different substrates. Their use
in studies avoids phylogenetic biases, enabling them to become ideal
experimental materials for studying the relationship between stoichio-
metry and substrate shifts (Zotz, 2013a, b; 2016). It is unquestionable
that water is abundantly supplied for terrestrial individuals compare
with the epiphytes (Putz and Holbrook., 1989; Putz et al., 1995; Feild
and Dawson., 1998; Liu et al., 2014). However, the stoichiometry and
isotopy of epiphytic individuals does not always have a similar pattern
to that of water (Zotz and Hietz., 2001; Zotz, 2016). For example, the
foliar N concentration and δ15N in an epiphytic individual of Clusia spp.
was lower than that in a terrestrial individual (Wanek et al., 2002), but
the opposite pattern was reported in Ficus spp. (Putz and Holbrook.,
1989). In addition, no difference was reported in the foliar N con-
centration for facultative epiphytes such as Aechmea lingulata (Ball
et al., 1991), Tillandsia capillaris (Abril and Bucher., 2009), and
Blechnum mochaenum (Guzman-Marin and Saldana., 2017). These stu-
dies imply that epiphytic individuals of facultative epiphytes were
generally not more nutrient limited than their terrestrial counterparts
(Feild et al., 1996; Hao et al., 2016). Furthermore, epiphytes on thin
branches without canopy soil or the upper canopy zones had lower N
foliar concentrations and δ15N than plants rooted on thick branches or
the lower canopy zones, suggesting the variations in δ15N were not
simply caused by different N sources, but by different δ15N dis-
crimination (Hietz et al., 2002, Wania et al., 2002).

The diversity of facultative epiphytes usually peaks in habitats
where the forest canopy converges with the forest floor (Benzing, 2004;
Burns, 2010). In harsh arid habitats, for example, where the canopy and
floor are not distinct, the number of hosts is limited and the competition
among terrestrial species is reduced, with epiphytes usually growing on
rock outcrops (Johansson, 1974; Zotz, 2005; Melo and Waechter.,
2018). Rock and bark substrates are relatively harsh habitats compared
with the soil (Benzing, 1990), in which water and humus have accu-
mulated. These hard substrates are also difficult to penetrate and an-
chor on. The stability, penetrability, nutrient availability, and range of
temperature fluctuation of lithophytic substrates (Freiberg, 2001) is
generally higher than for epiphytic substrates (Zotz, 2016). The popu-
lation structure (Bennett, 1991), population density (Gomez et al.,
2006), and mycorrhizal fungal diversity (Xing et al., 2015) have been
compared between epiphytes and lithophytes. However, the mechanism
determining the preference for a substrate shift is largely unknown
(Testo and Sundue., 2014; Zotz, 2016).

Plant stoichiometry is not only affected by substrate nutrients, but
also by nutrient requirements that maintain their multiple functions
(Tian et al., 2019). Most studies of the response of epiphyte stoichio-
metry to substrate shifts concentrated on N and P (Wanek and Zotz.,
2011), while other elements and isotopy have rarely been studied
(Querejeta et al., 2018). The chemical elements needed by plants can be
divided into three categories: (1) organically bound elements (N, P, and
S), (2) ionic elements (K, Ca, and Mg), and (3) trace elements (Fe, Mn,
and Na), (Medina et al., 2017; Tian et al., 2019). These elements
maintain the plant's ability to perform specific functions and are es-
sential for growth. Elements such as N and P are essential nutrition, but
are often limited in the natural environment. The concentration of these
elements and their response to environmental changes are relatively

stable in plants due to the constraints of physiology and nutrient bal-
ance (i.e., the stability of limiting elements hypothesis) (Han et al.,
2011). Although Benzing (2004) proposed the environmental condi-
tions convergence hypothesis to explain the occurrence of facultative
epiphytes (Burns, 2010), the stoichiometric and isotopic characteristics
of plants on both rock and trunk substrates has not yet been studied.
The direction and scale of the response of the stoichiometry and isotopy
to substrate shifts are still unknown (Tian et al., 2019).

The objective of the study was to determine how the stoichiometry
and isotopy of facultative epiphytes respond to a substrate shift be-
tween rock and bark. We hypothesized the non-organically bound ele-
ment contents and isotope abundance would be different between the
lithophytes and epiphytes. To test this hypothesis, the foliar stoichio-
metric (N, P, K, Ca, Mg, S, Mn, Na, and Fe concentrations) and isotopic
characteristics (δ13C and δ15N) of both the epiphytes and lithophytes of
nine facultative epiphyte species were measured and compared in a
karst forest in Xishuangbanna, southwest China.

2. Materials and Methods

2.1. Study sites and sampling

Five circular plots with a radius of 50m were established. They
were centered on the summits of five hilly dwarf limestone forests in
Xishuangbanna National Nature Reserve, southwest China. The climate
and forest community characteristics were reported by Wu et al.
(2018). According to field surveys and the regional literature regarding
the epiphyte flora (Zhu et al., 1998; Wu et al., 2016), nine species of
facultative epiphytes with the highest abundance were selected as ex-
perimental materials (Table 1). Ten replicates per species, including
five epiphytic and five lithophytic individuals were sampled.

The sampling height was in the range of 0–2m from the ground to
the host trunk and rock outcrops, i.e., the distance that a straight arm
can reach (Song et al., 2011). We assumed that the coexisting litho-
phytes and epiphytes of the same species were exposed to homogeneous
microclimatic conditions, and ignored the effects of the spatial het-
erogeneity of microclimate.

2.2. Chemical element and isotope measurement

Similarly to Medina et al. (2017), the sampling of the substrate
humus of facultative epiphytes to assess the nutrient availability was
not a practical approach due to the extremely rare accumulation of
humus on the barks and rock outcrops in the plots. Therefore, our study
did not measure the chemical elements in the different substrates di-
rectly, the foliar stoichiometry and isotopy of the facultative epiphytes
on different substrates was measured (Watkins et al., 2007).

Table 1
Sampled species of facultative epiphytes.

Family Genera Species Abbreviation

Meteoriaceae Meteorium M. miquelianum (Müll. Hal.) M.
Fleisch.

Memi

Antrophyaceae Antrophyum A. callifolium Blume Anca
Orchidaceae Bulbophyllum B. ambrosia (Hance) Schltr. Buam
Orchidaceae Bulbophyllum B. andersonii (Hook.f.) J.J.Sm. Buan
Orchidaceae Bulbophyllum B. odoratissimum (Sm.) Lindl. ex

Wall.
Buod

Orchidaceae Coelogyne C. viscosa Rchb.f. Covi
Orchidaceae Pelatantheria P. rivesii (Guillaumin) Tang &

F.T.Wang
Peri

Asclepiadaceae Hoya H. pottsii Traill Hopo
Araceae Rhaphidophora R. hongkongensis Schott Rhho
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2.3. Determination of elemental concentrations

The sun leaves, but not new or senescent leaves, of facultative
epiphytes were collected and the petioles were removed. The leaf sur-
faces were cleaned with a damp cloth, dried at 80 °C for 48 h to a
constant mass weight, and then ground into a powder using a ball mill.
The samples were prepared after passing through a 100 mesh sieve, and
then stored in a sealed plastic bag. A total of nine elements (i.e., N, P, K,
Ca, Mg, S, Mn, Fe, and Na) were measured in the Central Laboratory of
Xishuangbanna Tropical Botanical Garden. The N concentration per
unit weight was determined by an automatic analyzer (Vario MAX CN,
Elementar Analysensysteme GmbH, Germany). The other eight ele-
ments were measured by inductively coupled plasma atomic emission
spectroscopy (ICP-AES: Thermo Jarrell Ash Corporation, USA) after
samples were digested in HNO3-HClO4 and HCl.

2.4. Determination of the natural abundance of δ13C and δ15N

The natural abundance of foliar δ13C and δ15N were determined by
a stable isotope mass spectrometer (IsoPrime100, Isoprime, UK). About
2–5mg of the samples were sealed in a vacuum combustion tube, ga-
sified at 850 °C under the action of a catalyst and an oxidizing agent,
and the CO2 and N2 crystals produced by the combustion were purified,
and then the δ13C and δ15N abundances were determined. Leaf δ13C and
δ15N abundances were expressed in delta notation (‰) relative to their
reference standards, Vienna Pee Dee Belemnite (V-PDB) and atmo-
spheric N2 respectively.

The natural abundance formula for δ13C and δ15N were:

δ13C [‰ versus V-PDB] = (Rsample/Rstandard − 1) × 1000 (1)

δ15N [‰ versus at-air] = (Rsample/Rstandard − 1) × 1000 (2)

where δ13C and δ15N are the C and N isotope values of the corre-
sponding sample, and Rsample and Rstandard are the ratios of the heavy
isotope abundances of the elements in the sample and their reference
standards (13C/12C and 15N/14N), respectively. The precision (± SE) of
the isotope measurements was less than 0.5‰.

2.5. Data Analysis

2.5.1. The stoichiometric and isotopic differences between the epiphytes and
lithophytes

Taking the substrate as a fixed factor and the species as a random
factor, linear mixed-effects models that determined by restricted max-
imum likelihood t-tests in the “lme4” package (Bates et al., 2015) were
fitted to determine the stoichiometric differences between the epiphytes
and lithophytes among the facultative epiphytes on different substrates.
Then, an independent sample t-test was used to compare the differences
between the two ecotypes in the same species.

All statistical analyses were performed using R software (version
3.5.1) (R Development Core Team, 2018), with significance levels in-
dicated as “*” for p < 0.05, “**” for p < 0.01, and “***” for
p < 0.001. The results were visualized using the “ggline” function of
the “ggpubr” package (Kassambara, 2018).

2.5.2. Correlation and principal component analysis (PCA) of
stoichiometry and isotopy in facultative epiphytes

The “psych” package (Revelle, 2018) was used to calculate the
Pearson correlation coefficients among nine chemical elements, δ13C,
and δ15N, and the significance level was indicated as “*” for p < 0.05.
The correlation coefficient matrix and significance were visualized
using the "corrplot" package (Wei and Simko., 2017).

The above 11 variables were subjected to a PCA using the
“FactoMineR” package (Le et al., 2008) and the results were visualized
using the “factoextra” package (Kassambara and Mundt., 2017), to as-
sess how the stoichiometric characteristics affected the distribution of

facultative epiphytes on different substrates.

2.5.3. Variance partitioning of stoichiometry and isotopy in facultative
epiphytes

The “varpart” function in the “vegan” package (Oksanen et al.,
2018) was used to calculate each variable’s variance for three factors
(i.e., substrate, interspecific, and intraspecific), and determine which of
them played a critical role in stoichiometry. The natural abundances of
two isotopes (δ13C and δ15N), nine elemental concentrations (N, P, K,
Ca, Mg, S, Fe, Na, and Mn), and the N/P ratio were used as response
variables, and three categorical variables were used as predictive
variables. The variance partitioning was a partial regression, because
the response variable was a single vector. The three predictive variables
produced seven interpretive parts, i.e., three independent effects of the
substrate, interspecific, and intraspecific factors, as well as the inter-
action of the “substrate–intraspecific,” “substrate–interspecific,” and
“interspecific–intraspecific” factors, and the interactions among the
three factors.

3. Results

3.1. Stoichiometry and isotopy differences between the epiphytes and
lithophytes

According to the results of the linear mixed-effects model (Fig. 1,
the blue and orange boxplot), significant differences (p < 0.05) were
found in elemental concentrations (Ca, K, Fe, and Mn) and isotope
natural abundances (δ15N) between the epiphytic and lithophytic
leaves. The δ15N abundance and Ca concentration in the lithophytes
were higher than in the epiphytes (p < 0.05), while the K, Fe, and Mn
concentrations in the lithophytes were lower than in the epiphytes
(p < 0.05).

Specifically, the δ15N of P. rivesii on rocks was found to be enriched
compared with the abundances in the same species on trunks following
an independent sample t-test (p < 0.001). The Ca concentration of the
five species (M. miquelianum, Bulbophyllum odoratissimum, Coelogyne
viscosa, P. rivesii, and H. pottsii) in lithophytic habitats were higher than
that in epiphytic habitats (p < 0.05). However, the K concentration in
lithophytes was significantly lower than in the epiphytes for C. viscosa
and H. pottsii (p < 0.05). The Fe concentration of B. ambrosia and R.
hongkongensis on rocks was also lower than that on trunks (Fig. 1, the
red asterisks) (p < 0.05).

There were no significant differences (p > 0.05) in δ13C abun-
dance, N, P, S, Mg, and Na concentrations, and the N/P ratio (Fig. 1, the
black and gray boxplot) in plants growing on different substrates ac-
cording to the linear mixed-effects model. However, significant in-
traspecific differences were found following an independent sample t-
test (p < 0.05), with the differences being species-dependent (Fig. 1,
the red asterisks).

3.2. Correlation of stoichiometry and isotopy in facultative epiphytes

The δ15N was positively correlated with P, N, S, and K (p < 0.05)
for both the lithophytes and the epiphytes (Fig. 2, the blue squares with
white asterisks). The δ13C was negatively correlated with δ15N, P, N, S,
and Fe (p < 0.05) (Fig. 2, the red squares with white asterisks), and
positively correlated with Ca (p < 0.05). The Ca had a negative cor-
relation (p < 0.05) with N, S, and Fe, and a positive correlation
(p < 0.05) with Mg.

Different correlations in foliar element were found between the li-
thophytes and epiphytes. In lithophytes, significant negative correla-
tions were obtained for Ca with P, K, and Na, between δ15N and Fe, and
for K with Ca and δ13C (p < 0.05), and significant positive correlations
were obtained for Mg with δ13C and Mn (p < 0.05). These correlations
were not significant in epiphytes (p > 0.05).
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3.3. PCA of stoichiometry and isotopy in facultative epiphytes

The total variation explained by the first axis (44.2%) and the
second axis (25.0%) of the lithophytes was higher than that of the

epiphytes (41.1% and 24.6%, respectively) (Fig. 3). The positive di-
rection of the first axis of the PCA was mainly loaded with organically
bound elements, such as P, N, and S, and δ15N for both the epiphytes
and lithophytes. The negative direction was loaded with δ13C and Ca.

Fig. 1. The differences in foliar stoichiometry and isotopy between the epiphytes and the lithophytes among facultative epiphytes in a karst forest in southwest China.
The 12 boxplots indicate the δ13C and δ15N abundances, the concentrations of nine mineral elements (Ca, N, K, Mg, P, S, Fe, Mn, and Na), and the N/P ratio,
respectively. Each boxplot shows the range of elemental concentrations (minimum, lower quartile, median, mean, upper quartile, maximum, and outliers). The
horizontal axis gives the abbreviated names of nine species (Table 1). The five blue (epiphyte) and orange (lithophyte) boxplots show the δ15N abundance and K, Ca,
Fe, and Mn concentrations, indicating that the differences were significant (restricted maximum likelihood t-tests, p < 0.05). The other seven gray (epiphyte) and
black (lithophyte) boxplots show the δ13C abundance and N, P, N, Mg, S, and Na concentrations, and N/P ratio indicating that the differences were not significant
(p > 0.05). The red asterisk * above each boxplot indicates a difference in those variables between the lithophytes and epiphytes of each species (t-tests, * indicates
p < 0.05, ** indicates< 0.01, *** indicates< 0.001).

Fig. 2. Pearson correlation coefficients among foliar elemental concentrations (Ca, N, K, Mg, P, S, Fe, Mn, Na) and δ13C and δ15N abundances in facultative epiphytes
in a karst forest in southwest China. The left and right plots stand for the epiphytes and lithophytes, respectively. The size of the square area indicates the magnitude
of the correlation coefficient and the color depth indicates the p value. The blue squares in the lower right and upper left indicate where the two variables were
positively correlated, while the red squares in the lower left indicate where the two variables were negatively correlated. The white * indicated that the correlation
coefficients were significant after testing (p < 0.05).
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However, on the second axis the positive direction was mainly loaded
with Mn, Mg, and K, and the negative direction was loaded with Fe and
Na (Fig. 3). Interestingly, Fe was positively correlated with the first axis
and S was negatively correlated with the second axis in the epiphytes,
while the opposite pattern was observed in the lithophytes.

The epiphytes and lithophytes, R. hongkongensis, A. callifolium, and
M. miquelianum were clustered together and distributed in the positive
direction of the first axis (Fig. 3). Five orchid species and H. pottsii were
distributed in the negative direction of the first axis. On the second axis,
M. miquelianum and C. viscosa were distributed in the negative direc-
tion, and the other species were mostly distributed in the positive di-
rection. The epiphyte P. rivesii was distributed in the negative direction,
while the opposite pattern was observed for the lithophytes on the
second axis.

3.4. Variation partitioning of stoichiometry and isotopy in facultative
epiphytes

Substrate (Fig. 4, red circle), interspecific (Fig. 4, green circle), and
intraspecific (Fig. 4, purple circle) factors and their interactions ex-
plained the variance of the 12 variables, ranging from 62% for Na to
99% for δ13C. The three factors had a high interpretation rate for N, P,
K, and S concentrations (87% to 92%). In contrast, the interpretation
rate for the Mn, Na, Fe, and Mg concentrations was low (62%∼64%).

Substrate and interspecific, the “substrate–interspecific” interaction,
and the interactions among the three factors could not explain any of
the variance. However, the interaction of “substrate–intraspecific”,
“interspecific–intraspecific,” and intraspecific factors explained most of
the variance. The “interspecific–intraspecific” interaction explained
more than 50% of each variable’s variance, especially the interpretation
of the N, P, K, and S concentrations, which accounted for more than
75% of the overall variance. The interpretation rate for the Mn, Na, Fe,
and Mg concentrations was between 50% and 60%. Interestingly, the
“substrate–intraspecific” interaction had a certain proportion of inter-
pretation for δ15N, K, Fe, Ca, and Mn (Fig. 4).

4. Discussion

4.1. Effects of a substrate shift on element concentration in facultative
epiphytes

There were no significant differences in the concentrations of or-
ganically bound elements (P, N, and S) between the epiphytes and the
lithophytes, which supports “the stability of limiting elements hy-
pothesis” (Han et al., 2011). However, the lithophytes were enriched in
Ca than epiphytes. This was due to the dissolution and release of Ca
from the rock substrate. In addition, low solubility of trace elements
such as Mn and Fe in the karst forest soil with high pH, caused low Fe
and Mn concentrations in lithophytes (Hou, 1982; Medina et al., 2017;
Tian et al., 2019). In contrast, the host bark was usually acidic (Song
et al., 2011), and the organic acids secreted by the rhizosphere of the
epiphytes can act as chelating agents to facilitate the absorption of Fe
and Mn (Medina et al., 2017).

The atmospheric deposition of K originated from natural processes
and anthropogenic activities were the main sources of K for terrestrial
ecosystems (Sardans and Penuelas., 2015). In southwest China, biomass
accumulation in the context of rock outcrops had depleted soil K stocks
and caused the reduction of K concentrations (Shen et al., 2020). On the
other hand, the concentration of K in fog water collected in the dry
season was significantly greater than that of in the rainy season around
the study sites, which can be attributed to the ions deposition and
emissions by biomass burning in this region (Liu et al., 2005). More-
over, the fog droplets were not deposited on the forest floor but were
rather intercepted by the forest canopy (Liu et al., 2008). Therefore, we
speculated epiphytes would efficiently absorb and accumulate more K
from their canopy habitat with relatively higher K concentration given
that K showed greater foliar leaching due to its high solubility (Winkler
and Zotz., 2010; Zhang et al., 2012; Querejeta et al., 2018; Tian et al.,
2019).

The 11 variables had different contributions to the principal com-
ponents in the PCA ordination between the epiphytes and lithophytes.
This suggested a difference in foliar stoichiometry on different sub-
strates. The first axis loaded organically bound elements (P, N, and S)
and a macroelement (Ca), representing a “nucleic acid-protein set,”
while the second axis loaded non-organically bound elements (Fe, Mn,

Fig. 3. The first two axes of the principal component analysis (PCA) for 11 variables (Ca, N, K, Mg, P, S, Fe, Mn, and Na concentrations and δ13C and δ15N
abundances) and nine species of facultative epiphytes in a karst forest in southwest China. The left and right plots show epiphytes and lithophytes, respectively. See
Table 1 for the abbreviated species names used in the legend. The larger dots represented the species mean points, and the smaller represented each individual in the
legend.
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and K), representing a “photosynthesis–enzyme activity collection”
(Wright et al., 2005; Zhang et al., 2012). The opposite relationship
between Fe and S was observed on the different substrates on different
ordination axes in the PCA, which indicated a difference in micro-
habitat and substrate mineral nutrients after a substrate shift. For ex-
ample, the epiphytic individuals of P. rivesii were loaded in the negative
direction of the second axis, while the lithophytes displayed the op-
posite pattern. Similarly, the lithophytic individuals of H. pottsii were
loaded closer to the Ca on the first axis than the epiphytes, suggesting
the Ca concentration of the former was higher than that of the latter.
Therefore, a substrate shift led to foliar stoichiometry differences in
facultative epiphytes.

In general, three factors (i.e., substrate, interspecific, and in-
traspecific) had a strong influence on the stoichiometry. The “inter-
specific–intraspecific” interaction played a critical role, and its influ-
ence on the organically bound elements (N, P, and S) was stronger than
that of the non-organically bound elements (Mn, Na, Fe, and Mg).
Intraspecific factors and the “substrate–intraspecific” interaction could
explain a certain proportion of the variance of the K, Fe, Ca, and Mn
concentrations. The intraspecific factors and the “sub-
strate–intraspecific” interaction were related to the substrate, sug-
gesting that the variance of the non-organically bound elements were
more affected by the substrate-related factors. This was consistent with
the results of the linear mixed-effects model.

4.2. Effects of a substrate shift on δ13C and δ15N abundances in facultative
epiphytes

The δ13C abundance was related to the water use efficiency (WUE)
of the plants, with an efficient water use resulting in an enriched δ13C
(Watkins et al., 2007). Therefore, the water conditions between the
epiphytic and lithophytic substrates can possibly converge. The fa-
cultative epiphytes accounted for 52% (23/44 species) of all epiphyte
species in the 3,500m2 karst forest plots during the field survey (Wu
et al., unpublished data). This was consistent with the habitat con-
vergence hypothesis, which states that the diversity of facultative

epiphytes peaks where the within and below canopy environments
converge, which is either exceptionally wet or dry (Benzing, 1990,
2004; Burns, 2010).

Foliar δ15N was determined by the isotope composition of plant N
sources and isotope fractionation during absorption (Robinson, 2001),
with the latter affected by the plant rhizosphere N supply and demand
(Querejeta et al., 2018). There are three main N sources for epiphytes:
(1) allochthonous N sources (atmospheric dry and wet deposition), (2)
autochthonous N sources (canopy humus and leaching), and (3) bio-
logical N fixation (Stewart et al., 1995; Bergstrom and Tweedie., 1998;
Hietz et al., 2002; Wania et al., 2002: Watkins et al., 2007: Petter et al.,
2016). Here, the N supply from atmospheric deposition was similar in
all locations because the facultative epiphytes occurred in a relatively
homogeneous habitat, suggesting that a substrate shift was the main
cause of the differences in δ15N.

Our results indicated that the lithophytes were able to obtain ad-
ditional N sources from rock outcrops, originated from rock weathering
for ecosystems (Houlton et al., 2018). The older rock humus δ15N
would be more enriched than the canopy humus (Vitousek et al., 1989),
because of the slow loss of δ14N in soil development. Our results
showed that substrate shifts play an important role in determining the N
isotope composition. The substrate differences in δ15N abundance were
analogous to the “nutritional microsites” at different canopy positions,
i.e., the humus epiphytes were enriched in δ15N compared with the twig
epiphytes (Hietz et al., 2002; Wania et al., 2002).

4.3. Correlation between stoichiometry and isotopy in facultative epiphytes

At global, regional, and landscape scales, the δ15N of terrestrial
plants is positively correlated with the N concentration (Craine et al.,
2009). Our findings were consistent with previous studies (Stewart
et al., 1995; Hietz et al., 1999; Valiela et al., 2018), confirming that
δ15N and N were positively correlated within both terrestrial and epi-
phytic plants. Hence, this relationship is not dependent on the sub-
strate, but is mainly regulated by changes in the N supply and demand
balance (Querejeta et al., 2018).

Fig. 4. Variance partitioning of foliar stoichiometry and isotopy for different environmental variables in facultative epiphytes in a karst forest in southwest China.
The 12 plots shows the δ13C and δ15N abundance, the concentrations of nine mineral elements (Ca, N, K, Mg, P, S, Fe, Mn, and Na), and the N/P ratio, respectively.
The red, green, and blue circles indicate the variables of substrate, interspecific, and intraspecific factors, respectively. Correspondingly, the overlap of the “sub-
strate–intraspecific,” “substrate–interspecific,” and “interspecific–intraspecific” interactions, and the overlap among the three factors indicate the interactions of
those factors. The part that cannot be explained by the three factors is a residual, and a value less than 0 is not displayed. All values in the circles represent the
variance explained by each variable or the interactions of two or three variables.
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In addition, δ13C was negatively correlated with δ15N, P, N, and S.
This was consistent with the results of Hietz et al. (2002), Wania et al.
(2002), and Petter et al. (2016). Because δ13C is positively correlated
with WUE, the more the δ13C is depleted, the less water stress that
plants are subjected to, and the P, N, S, and Fe concentrations will in-
crease. This suggests that facultative epiphytes will maximize water and
nutrient uptake and photosynthetic activity during the narrow windows
of intermittent supply following irregular rainfall pulses when resources
become available (Querejeta et al., 2018).

Substrate shifts alter the correlations of elements between different
substrates. Our results showed that the correlations among different
elements in lithophytes were more significant than those of epiphytes.
Thus, we expected the foliar stoichiometry and isotopy of the epiphytes
or lithophytes to indirectly reflect their adaptation to environmental
stresses, although the substrate shift occurred at a fine scale (Han et al.,
2011). These differences suggested that the absorption mechanism and
nutrient sources would differ for plants growing on different substrates
(Cardelús and Mack., 2010).

4.4. Stoichiometric and isotopic flexibility and physiological plasticity

Different growth substrates in the karst forest could affect the
stoichiometric and isotopic characteristics of the two ecotypes. Here,
epiphytes and lithophytes have shifted their elemental balance to cope
with substrate and habitat shifts, confirmed stoichiometric flexibility
(Sterner and Elser., 2002). At the individual level, stoichiometric flex-
ibility can occur through changes in nutrient allocation to tissue or
synthesis of subcellular components of different element ratios (Sistla
et al., 2015).

Stoichiometric flexibility was regulated by physiological plasticity
(Sistla et al., 2015), which can be manifested by an adjustment in
growth form (Sistla and Schimel., 2012). Facultative epiphytes can
change its growth form to adapt the substrate shifts (Zotz, 2016). High
physiological plasticity in facultative epiphytes is considered as an
adaptive mechanism to exploit different environmental conditions in
order to exploit the available resources efficiently (Chen et al., 2019;
Grassein et al., 2010). Shifting resource availability appears to be a
primary constraint on the expression of stoichiometric flexibility at the
individual level (Sistla and Schimel., 2012). In our study, enriched δ15N
in lithophytes suggested lithophytic ecotype is able to obtain additional
N sources from rock outcrops. Moreover, Ca is a key element in cell
structure and cell division, enabling plants to withstand drought stress
(White and Broadley., 2003). Similarly, K is also believed to alleviate
the inhibition of water stress on growth and plays an important role in
osmotic adjustment (Sardans and Penuelas., 2015). It is possible that K
function in water economy for epiphytes, while Ca function in drought
stress for lithophytes. Both the epiphytic and lithophytic habitats have
low water availability, which can cause plants to increase either K+ or
Ca2+ uptake to improve plant drought resistance (Tian et al., 2019). On
the other hand, both Fe and Mn are critical for enzyme formation and
the catalysis of plant growth processes (He et al., 2016), representing
photosynthesis–enzyme activity collection. Thus, epiphytes enriched in
Fe and Mn, which would imply that epiphytic ecotype facilitates a
higher light capturing/harvesting and photosynthetic capacity com-
pared with the lithophytes (Chen et al., 2019).

Lithophytes and epiphytes exploited rock and bark simultaneously
in Xishuangbanna karst forest, which exhibited remarkably stoichio-
metric flexibility and high physiological plasticity under harsh habitat
(Querejeta et al., 2018). Therefore, the greater physiological plasticity
found in facultative epiphytes may play a role in the survival both on
rocks or host barks. Our results have confirmed that stoichiometric
flexibility in response to changes in the availability of substrate re-
sources in plants.

5. Conclusions

In conclusion, our results found that the substrate shifts has a strong
partitioning effect on the concentration of elements such as K, Fe, Ca,
and Mn and δ15N abundance. The flexibility of non-organically bound
elements for environmental changes was detected by comparing the
stoichiometry and isotopy of facultative epiphytes on different sub-
strates, which enabled facultative epiphytes to exploit the nutrients of
rock outcrops and host barks flexibly.
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