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Abstract
Vegetation in tropical Asia is highly diverse due to large environmental gradients and 
heterogeneity of landscapes. This biodiversity is threatened by intense land use and 
climate change. However, despite the rich biodiversity and the dense human popu-
lation, tropical Asia is often underrepresented in global biodiversity assessments. 
Understanding how climate change influences the remaining areas of natural veg-
etation is therefore highly important for conservation planning. Here, we used the 
adaptive Dynamic Global Vegetation Model version 2 (aDGVM2) to simulate impacts 
of climate change and elevated CO2 on vegetation formations in tropical Asia for an 
ensemble of climate change scenarios. We used climate forcing from five different 
climate models for representative concentration pathways RCP4.5 and RCP8.5. We 
found that vegetation in tropical Asia will remain a carbon sink until 2099, and that 
vegetation biomass increases of up to 28% by 2099 are associated with transitions 
from small to tall woody vegetation and from deciduous to evergreen vegetation. 
Patterns of phenology were less responsive to climate change and elevated CO2 than 
biomes and biomass, indicating that the selection of variables and methods used to 
detect vegetation changes is crucial. Model simulations revealed substantial variation 
within the ensemble, both in biomass increases and in distributions of different biome 
types. Our results have important implications for management policy, because they 
suggest that large ensembles of climate models and scenarios are required to assess 
a wide range of potential future trajectories of vegetation change and to develop 
robust management plans. Furthermore, our results highlight open ecosystems with 
low tree cover as most threatened by climate change, indicating potential conflicts of 
interest between biodiversity conservation in open ecosystems and active afforesta-
tion to enhance carbon sequestration.
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1  | INTRODUC TION

Tropical Asia includes seven of the 36 global biodiversity hotspots 
identified by Zachos and Habel (2011). These hotspots are char-
acterized by high diversity and endemism, and they are threat-
ened due to habitat loss (Hughes, 2017). Habitat and biodiversity 
loss in tropical Asia can be attributed to a variety of direct and in-
direct anthropogenic impacts. Direct impacts include land-cover 
change, for example by deforestation, conversion to cropland, 
plantations or other agricultural land use, and associated fragmen-
tation (Hughes, 2017). Indirect impacts include regional and global 
climate change caused by anthropogenic emissions of greenhouse 
gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide 
(N2O). These changes in the composition of the atmosphere and 
changes in radiative forcing are the drivers of climate change (IPCC, 
2018). Atmospheric CO2 concentrations also directly influence plant 
growth and productivity (Chen et al., 2019; Piao et al., 2020) and, 
along with climate change, broad-scale distribution patterns of spe-
cies, biomes and biodiversity.

Indirect impacts will likely have the largest effects in remaining 
areas with intact vegetation that are protected from direct human 
impacts, such as legally protected areas. Yet, direct human impacts 
have already caused substantial losses of biodiversity in tropical Asia 
(Hughes, 2017). Many protected areas are under pressure by increas-
ing human population and land use intensities in neighbouring buffer 
zones, or by changes in their protection status (Symes, Rao, Mascia, 
& Carrasco, 2016). Hannah et al. (2020) showed that species extinc-
tion risk in the tropics could be halved if 30% of the land surface 
were protected and climate change limited to 2°C. Understanding 
indirect anthropogenic effects on undisturbed vegetation is there-
fore crucial to implement effective measures in conservation, land 
management and climate change mitigation.

Two important features of vegetation that can respond to climate 
change at local scale, and thereby influence large-scale patterns of 
vegetation distribution, carbon storage and biodiversity, are vege-
tation structure and plant phenology. Features of vegetation struc-
ture, such as woody cover, stem density, growth form and vegetation 
height, determine habitat suitability for animals (Smit & Prins, 2015; 
Tews et al., 2004) and link different trophic levels via biotic interac-
tion networks (Schleuning et al., 2016; Walther, 2010). Vegetation 
structure and canopy characteristics also influence the near-sur-
face microclimatic conditions, as well as albedo, surface rough-
ness and partitioning of energy into sensible and latent heat fluxes 
(Bonan, 2008; Ozanne et al., 2003). These properties of the land sur-
face couple biosphere, atmosphere and hydrosphere, and influence 
climate–vegetation feedbacks (Bonan, 2008; Zeng et al., 2017).

Plant phenology describes periodic life cycle events that are 
ultimately caused by seasonal and interannual variations in cli-
mate. It determines events such as leaf green-up, flowering and 
leaf senescence, and whether a plant is evergreen or a deciduous. 
Changes in phenology as a result of climate change have already 
been observed (Buitenwerf, Rose, & Higgins, 2015; Cleland, Chuine, 
Menzel, Mooney, & Schwartz, 2007) and may have implications for 

biodiversity (Piao et al., 2019; Walther, 2010). Phenology influences 
biosphere–atmosphere coupling through seasonal and intraannual 
variations in albedo and biogeochemical fluxes (Bonan, 2008; Piao 
et al., 2019).

Understanding the impacts of climate change on vegetation 
structure and phenology is essential to assess potential future veg-
etation dynamics, ecosystem functioning and to develop policy 
recommendations. Such an assessment requires (a) the capacity to 
predict plant growth and vegetation dynamics in response to climate 
conditions, atmospheric CO2 concentration, soil conditions and dis-
turbance regimes; (b) estimates of the uncertainties associated with 
different climate change scenarios; and (c) a set of variables or veg-
etation classification schemes relevant for policy to track and quan-
tify vegetation change.

Dynamic global vegetation models (DGVMs, Prentice 
et al., 2007) are widely used tools for simulation of vegetation 
dynamics and biogeochemical cycles. These models use eco-
physiological principles to simulate vegetation dynamics at large 
spatio-temporal scales. DGVMs can include mechanistic represen-
tations of disturbances such as fire (Hantson et al., 2016; Scheiter 
& Higgins, 2009) or herbivory (Pachzelt, Rammig, Higgins, & 
Hickler, 2013; Pfeiffer et al., 2019), and biotic interactions such 
as competition for space, water, nutrients and light (Prentice 
et al., 2007). DGVMs simulate transient vegetation dynamics in 
response to fluctuating climate conditions and are often used as 
land surface schemes in general circulation models (GCMs, e.g. 
JSBACH, Reick, Raddatz, Brovkin, & Gayler, 2013). Conducting 
DGVM simulations for ensembles of climate change scenarios 
derived from different GCMs allows estimating potential future 
trajectories and to assess uncertainties. Variables and classifica-
tion schemes for quantifying vegetation states and change can be 
tailored to specific research questions or specific study areas, or 
to procedures used for model testing. For example, basal area and 
vegetation height derived from field measurements can be used 
to quantify vegetation structure, eddy covariance measurements 
to quantify biogeochemical cycles, or biome distributions from re-
mote sensing or modelling to quantify vegetation shifts. The se-
lection of an appropriate set of variables is crucial, because it can 
influence whether a change is detected or not.

Despite the size and rich biodiversity of tropical Asia, this re-
gion remains underrepresented in global biodiversity assessments 
(Hughes, 2017) and in DGVM studies. While the region is included in 
global-scale DGVM simulations (e.g. Hickler, Prentice, Smith, Sykes, & 
Zaehle, 2006; Sato, Itoh, & Kohyama, 2007; Smith et al., 2014), studies 
explicitly focusing on this region are rare (Chaturvedi et al., 2011; Kumar 
& Scheiter, 2019; Ravindranath, Joshi, Sukumar, & Saxena, 2006). 
Accordingly, important features of vegetation at regional scale might 
not be well represented in global-scale simulations. One feature in this 
regard is the Asian savanna. These ecosystems are often misinterpreted 
as degraded forest, with afforestation being considered as appropriate 
conservation policy (Kumar, Pfeiffer, Gaillard, Langan, Martens, et al., 
2020; Ratnam, Tomlinson, Rasquinha, & Sankaran, 2016). Models often 
simulate savanna areas as forest (Kumar & Scheiter, 2019).
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A second feature not well represented in models is the dis-
tribution of deciduous and evergreen vegetation in mainland 
Southeast Asia. Due to rainfall seasonality, deciduous vegetation 
stretches from Myanmar to Vietnam, bordered by semi-evergreen 
and evergreen forests. This pattern is, for example, not repre-
sented in global simulations conducted with lund-potsdam-jena 
general ecosystem simulator (LPJ-GUESS) (Smith et al., 2014) or 
SEIB-DGVM (Sato et al., 2007), but is simulated by an LPJ-GUESS 
version that includes a complex representation of hydrology 
(Hickler et al., 2006) and by a JSBACH version with variable traits 
(Verheijen et al., 2013). Representing this vegetation feature cor-
rectly is particularly important as changes in rainfall seasonality 
and an increasing frequency of droughts are predicted for tropical 
Asia (Hijioka et al., 2014; Zhang et al., 2016).

Here, we used a dynamic vegetation model, the adaptive 
Dynamic Global Vegetation Model version 2 (aDGVM2, Langan, 
Higgins, & Scheiter, 2017; Scheiter, Langan, & Higgins, 2013), to 
simulate current and future vegetation states in tropical Asia for an 
ensemble of the Coupled Model Intercomparison Project 5 (CMIP5) 
climate change projections provided by the Inter-Sectoral Impact 
Model Intercomparison Project (ISIMIP; Warszawski et al., 2014). 
To assess possible trajectories of future vegetation and quantify 
related uncertainties, we conducted simulations for an ensemble 
of two different representative concentration pathways (RCP4.5 
and RCP8.5) and five different GCMs. We used different variables 
and classification schemes to track vegetation states and vegeta-
tion change under future climate conditions. We expected (a) that 
elevated CO2 will lead to higher woody biomass until 2099 due 
to CO2 fertilization, even in areas where precipitation decreases; 
(b) that these biomass changes will be associated with vegetation 
changes from shorter and deciduous vegetation towards taller and 
evergreen vegetation; (c) that variation within the simulated future 
vegetation states will be substantial due to variation within the en-
semble of climate model projections, as well as stochastic effects in 
aDGVM2; and (d) that the area affected by vegetation change will 
be influenced by the variables used to track vegetation changes. 
In addition, we assessed how consideration of managed and cul-
tivated land (Tuanmu & Jetz, 2014) modifies the area affected by 
climate change.

2  | MATERIAL S AND METHODS

2.1 | aDGVM2 model description

We used aDGVM2, an individual-based dynamic vegetation model 
that is based on concepts from community assembly theory and 
uses a functional trait approach. The aDGVM2 concept and a de-
tailed model description are provided by Kumar, Pfeiffer, Gaillard, 
Langan, and Scheiter (2020), Langan et al. (2017), and Scheiter 
et al. (2013). A short summary of the model description is provided 
in the Supporting Information. Model variables used in the analyses 
are described in the following paragraphs.

2.2 | Environmental forcing data

We simulated vegetation for tropical Asia (South Asia, Southeast 
Asia, tropical China) for an ensemble of historic and future climate 
change trajectories. We used climate forcing compiled for the ISIMIP 
(Warszawski et al., 2014). These data comprise daily time series of 
bias-corrected and statistically downscaled climate variables at 0.5° 
spatial resolution between 1950 and 2099. We used minimum, maxi-
mum and average near-surface air temperature, precipitation, near-
surface relative humidity, near-surface wind speed and downwelling 
long- and short-wave radiation. We used climate data for RCP4.5 
and RCP8.5 for five different GCMs: GFDL-ESM2M, HadGEM2-ES, 
IPSL-CM5A-LR, MIROC-ESM-CHEM and NorESM1-M (Warszawski 
et al., 2014). Time series of mean annual precipitation and tempera-
ture for each ensemble member averaged for the entire study region 
are provided in Figure S1.

We used RCP8.5 because it represents the worst-case scenario 
within all RCPs, with high carbon emissions, high energy consump-
tion and low climate mitigation until 2099 (van Vuuren et al., 2011). 
In RCP4.5, it was assumed that carbon emissions peak towards the 
middle of the century and decrease afterwards. Cropland and utilized 
grassland areas decreased in RCP4.5 to the benefit of other vegeta-
tion types (van Vuuren et al., 2011), and feedbacks between such 
vegetation changes and the climate were considered. These two sce-
narios cover a range of possible scenarios and envelope the interme-
diate scenario RCP6.0. We decided to omit RCP2.6, a low-emission 
scenario with ambiguous climate mitigation and negative emissions, 
for example, by carbon capture and storage techniques.

Soil data were derived from the Harmonized World Soil Database 
(Nachtergaele, van Velthuizen, & Verelst, 2009) and we used ele-
vation from the Shuttle Radar Topography Mission (Jarvis, Reuter, 
Nelson, & Guevara, 2008). Atmospheric CO2 concentrations were 
derived from van Vuuren et al. (2011) for RCP4.5 and RCP8.5. Model 
simulations were conducted at 1° spatial resolution (see Section 2.3). 
Therefore, climate, soil and elevation data were re-sampled to the 
required 1° spatial resolution using the nearest neighbour method.

2.3 | Model simulations

We conducted aDGVM2 ensemble simulations for tropical Asia at 
1° spatial resolution and daily temporal resolution using climate 
data of five GCMs for RCP4.5 and RCP8.5 (Section 2.2), amounting 
to 10 scenarios in total. Replicate runs for these scenarios were not 
conducted due to the high computational demands. For each simu-
lation, we conducted a 450-year model spin-up to allow modelled 
state variables, traits and plant communities to reach a dynamic 
equilibrium with environmental conditions. For model spin-up, we 
used a random sequence of years from the period between 1950 
and 1980 for each ensemble member. After the spin-up, transient 
simulations were conducted using the time series between 1950 
and 2099 of the respective scenario. Simulations were conducted 
in the presence of a natural surface fire regime, as represented 
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by the aDGVM2 fire routines (Langan et al., 2017; Supporting 
Information). Anthropogenic fire was not simulated. We simulated 
potential natural vegetation in the absence of anthropogenic im-
pacts (but see Section 2.8). All data processing procedures and 
model analyses were conducted with R (R Core Team, 2018) and 
the ‘raster’ package (Hijmans, 2020).

2.4 | Biome types

The aDGVM2 simulates biomass, phenology and height of indi-
vidual woody plants (trees or shrubs) and grass patches, as well 
as plant population characteristics at plot level, such as number 
of plants or height structure. We used model state variables to 
classify vegetation in a grid cell into different biome types. To ac-
count for vegetation structure and phenology, we tailored a clas-
sification scheme that reflects these features. The classification 
scheme distinguishes seven different biomes characterized by 
evergreen and deciduous, tall and short woody vegetation, and 
woody and grassy vegetation.

When simulated woody cover in a grid cell is below 10% and abo-
veground grass biomass (including both C3 and C4 grasses) is below 
300 kg/ha, vegetation is classified as desert. When woody cover is 
below 10% and aboveground grass biomass (including both C3 and C4 
grasses) is above 300 kg/ha, vegetation is classified as C3 or C4 grass-
land, depending on the fractional cover of the grass types. If woody 
cover exceeds 10%, vegetation is classified as woody vegetation, ir-
respective of grass biomass. Woody vegetation is subdivided into the 
four combinations of evergreen and deciduous as well as short and 
tall. Vegetation is classified as evergreen if the number of evergreen 
woody plants exceeds the number of deciduous woody plants; oth-
erwise, it is classified as deciduous. Woody vegetation is classified as 
short if the 90th percentile of the plant height distribution is less than 
4 m, otherwise it is classified as tall. The 4-m threshold was picked be-
cause application of different thresholds showed that the simulated 
distribution of tall vegetation derived from the 4-m threshold agreed 
well with observed forest distribution (Haxeltine & Prentice, 1996). In 
studies using both observations and models, vegetation height is typ-
ically not used in biome classification (for an exception using remote 
sensing data see Higgins, Buitenwerf, & Moncrieff, 2016).

In our biome scheme we assume that the four woody vegetation 
types include shrubland, savanna, woodland and different forest 
types. These types of woody vegetation are functionally different and 
often used in vegetation mapping, both using models and using obser-
vations from field studies or remote sensing. However, here we used 
four woody vegetation types to be able to focus on features related 
to phenology and vegetation height, and to constrain the number of 
biome types. In Kumar, Pfeiffer, Gaillard, Langan, Martens, et al. (2020) 
and Kumar, Pfeiffer, Gaillard, Langan, and Scheiter (2020), we included 
different types of woody vegetation, and highlighted the importance 
of distinguishing between savanna and dry deciduous forest.

Biome classification was conducted for each grid cell and each 
ensemble member to obtain biome maps for each ensemble member. 

Consensus biome maps for each RCP were then generated by identi-
fying the most frequent biome type in the ensemble in each grid cell. 
We tracked the number of ensemble members that represent the 
consensus biome type in each RCP as a proxy for model uncertainty.

2.5 | Dominant phenological type

The aDGVM2 simulates four different phenological strategies: 
light-triggered evergreen, rain-triggered evergreen, light-triggered 
deciduous and rain-triggered deciduous (for details see Supporting 
Information and Langan et al., 2017). To investigate the patterns of 
phenological strategies and their responses to climate change, we 
calculated the relative abundance of woody plants of each pheno-
logical strategy in each simulated grid cell. We assigned a dominant 
phenological type to each grid cell based on the most abundant phe-
nological strategy of woody plants. We tracked both changes in the 
relative abundances of different phenological strategies and of the 
dominant phenological strategy in response to climate change.

Phenology classification was conducted for each grid cell and 
each ensemble member to obtain maps of the dominant phenology 
type for each ensemble member. Consensus maps of the dominant 
phenological type for each RCP were generated by identifying the 
most frequent dominant phenological type in the ensemble in each 
simulated grid cell. We tracked the number of ensemble members 
that represent the consensus-dominant phenological type in each 
RCP as a proxy for model uncertainty.

2.6 | Benchmarking

Kumar, Pfeiffer, Gaillard, Langan, and Scheiter (2020) parameter-
ized aDGVM2 for South Asia (i.e. the western areas of the study 
region) and conducted data-model comparisons using multiple re-
mote sensing products. Here, we compared simulated vegetation 
of all ensemble members and the ensemble means for both RCPs 
for current climate conditions (year 2019) to biomass and height 
derived from remote sensing. For biomass, we used the product of 
Saatchi et al. (2011), and for vegetation height we used the product 
of Simard, Pinto, Fisher, and Baccini (2011). For simulated vegetation 
height, we used the 90th percentile of all woody plants in a grid cell. 
We calculated the coefficient of variation of biomass and height in 
each grid cell and for each RCP as a proxy for uncertainty.

All remote sensing products were re-sampled to match the 1° 
spatial resolution used in simulations. For re-sampling, we used aver-
aging, to account for variation of high-resolution benchmarking data 
within 1° grid cells.

2.7 | Biomass and height changes

To identify areas with substantial changes in woody biomass, 
C3 and C4 grass biomass and vegetation height, we calculated 
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percentage changes in these variables between current (2019) and 
future (2099) conditions in each grid cell. For vegetation height, 
we used the 90th percentile of all woody plants simulated in a grid 
cell. We tracked if these four state variables changed by more than 
±5%, ±10%, …, ±50%, and we distinguished between increasing 
or decreasing trends. Otherwise, biomass or height was classified 
as stable. We conducted this analysis for the ensemble means of 
biomass and height of both RCPs. We only provided results for the 
±10% and the ±50% threshold to represent high and low sensitiv-
ity to vegetation change.

2.8 | Cultivated and managed vegetation

Large areas in tropical Asia have been converted to cropland and plan-
tations for food and timber production, and have been affected by 
urbanization, pollution and anthropogenic fire. To account for land 
use, we overlaid aDGVM2 results with a map of current anthropo-
genic impact derived from Tuanmu and Jetz (2014), a consensus land-
cover product aggregated from four different land-cover products. 
Specifically, we used ‘cultivated and managed vegetation’ (class 7) and 
‘Urban/Built-up’ (class 9) of Tuanmu and Jetz (2014; Figure S2).

To account for anthropogenic impacts in benchmarking 
(Section 2.6), we masked out areas with more than 50% anthro-
pogenic cover fraction. Kumar, Pfeiffer, Gaillard, Langan, and 
Scheiter (2020) used a similar approach and found that data-model 
agreement improved for South Asia. To account for anthropogenic 
impacts in the assessment of biome and phenology transitions, 
we overlaid areas where aDGVM2 simulates transitions in natu-
ral vegetation with the grid cell's anthropogenic cover fraction. 
Specifically, we multiplied consensus maps indicating areas with 
(value = 1) or without (value = 0) vegetation change by the fraction 

of natural land (i.e. fraction of land not utilized). Values close to 1 
indicate areas with a high fractional cover of natural vegetation 
that is highly susceptible to climate change. Values close to 0 indi-
cate areas without simulated vegetation change or with high frac-
tional cover of utilized land.

As we focused on natural vegetation, our approach does not ac-
count for past or future changes in land use, but only for recent land 
use as represented in the Tuanmu and Jetz (2014) data set. We also 
ignored impacts of past land use on growth, biomass or vegetation 
structure in simulations. Local-scale anthropogenic impacts, such 
as cattle farming, anthropogenic fire, fuelwood harvesting, defor-
estation or agriculture, were ignored in vegetation simulations. Yet, 
these impacts are widespread in the study region, and some of them 
have already been implemented in aDGVM and aDGVM2 (Pfeiffer 
et al., 2019; Scheiter, Higgins, Beringer, & Hutley, 2015; Scheiter & 
Savadogo, 2016; Scheiter et al., 2019).

The Tuanmu and Jetz (2014) data set is provided at a 30-arc sec-
ond spatial resolution, and we aggregated the data to the 1° resolu-
tion used in simulations. We summed the respective areas occupied 
by different classes, and then re-converted the areas to fractions 
based on the grid cell area size of the 1° resolution used in simulations.

3  | RESULTS

3.1 | Vegetation state under current climate 
conditions

Large-scale patterns of simulated aboveground biomass and veg-
etation height in 2019 showed agreement with remotely sensed 
biomass and height (Figure 1; Figure S3), indicating that aDGVM2 
captured the main features of vegetation in tropical Asia. However, 

F I G U R E  1   Biomass (a–c) and tree height (d–f) derived from remote sensing (a, d; Saatchi et al., 2011; Simard et al., 2011) and simulated 
by adaptive dynamic global vegetation model version 2 (aDGVM2) under current conditions (b, e, year 2019). Panels (c, f) show model 
uncertainty, represented by the coefficient of variation. For aboveground biomass and height, we calculated mean and coefficient of 
variation for the ensemble of five different general circulation models for RCP8.5. Vegetation height of an ensemble member is represented 
by the 90th percentile of all woody plants. Results for RCP4.5 are provided in Figure S3. RCP, representative concentration pathway
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simulated aboveground biomass and height were lower than obser-
vations, primarily on the Indian peninsula. Land use is intense in this 
region (Figures S2, S4, S5), and explains data-model disagreement. 
Kumar, Pfeiffer, Gaillard, Langan, and Scheiter (2020) showed that 
excluding utilized areas for benchmarking improves data-model 
agreement.

In model simulations, Myanmar, Thailand, Cambodia and most 
of the Indian peninsula showed both deciduous and evergreen veg-
etation (Figure 2a; Figure S6a). Phenology in these areas was mostly 
triggered by water (Figure 2c; Figure S6c). Pakistan was covered by 
short woody vegetation, and Afghanistan by grasslands and short 
deciduous vegetation. Phenology was mostly water-triggered with 
small areas of light-triggered phenology. The mountainous areas of 
India, the eastern parts of mainland Southeast Asia, tropical China 
and the islands of Indonesia, the Philippines and New Guinea were 
covered by tall evergreen vegetation (Figure 2a; Figure S6a), and phe-
nology was triggered by both water and light (Figure 2c; Figure S6c).

Model results for different RCPs and GCMs varied considerably. 
We found variation between ensemble members with respect to the 
area covered by different biomes, and between ensemble members 
and the consensus maps of all ensemble members (Table 1; Table S1). 
For instance, in the ensemble mean for RCP4.5, 55.3% of the area 
was covered by the tall evergreen biome type under current con-
ditions with a range between 44.3% for GFDL-ESM2M and 58.2% 

for MIROC-ESM. Mean aboveground biomass varied between 
ensemble members (Table 2) and ranged between 122.0 t/ha for 
IPSL-CM5A-LR and 143.7t/ha for MIROC-ESM in RCP4.5, with an 
ensemble mean of 131.9 t/ha for 2000–2019.

For both aboveground biomass and vegetation height, the coef-
ficient of variation of ensemble members was highest in more arid 
and seasonal areas with short vegetation (Figure 1c,f; Figure S3c,f). 
With respect to biome types, we found high agreement between 
ensemble members in areas covered by tall evergreen vegetation, 
while in areas covered by deciduous vegetation, agreement was 
typically lower (Figure 2b; Figure S6b). The dominant phenological 
type showed less large-scale areas of agreement than biome type 
(Figure 2d; Figure S6d).

3.2 | Climate change impacts on biomass and height

Under future climate change, aboveground biomass in the study 
area showed substantial increases for both RCPs (Figure 3a; 
Table 2). In RCP4.5, ensemble mean aboveground biomass in the 
entire study region increased from 121.1 t/ha in the historic period 
(1950–1969) to 131.9 t/ha under current conditions (2000–2019), 
and to 148.7 t/ha under future conditions (2080–2099), represent-
ing a 22.8% increase between historic and future conditions and 

F I G U R E  2   Consensus biome types (a) and dominant phenology types (c) simulated by adaptive dynamic global vegetation model version 
2 under current conditions (year 2019). Panels (a, c) show consensus maps, (b, d) show uncertainty, represented by the number of ensemble 
members that simulate the consensus type. Simulations were conducted for RCP8.5. Results for RCP4.5 are provided in Figure S6. RCP, 
representative concentration pathway
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12.7% between current and future conditions (Table 2). In RCP8.5, 
aboveground biomass increased to 163.0 t/ha in the future period 
(2080–2099), representing an increase of 34.8% between historic 
and future conditions and an increase of 22.8% between current 
and future conditions (Table 2). Trend lines of interannual biomass 
change between consecutive years showed an increase until the 
2040s in both RCP4.5 and RCP8.5. However, while interannual 
biomass change then decreased until 2099 in RCP4.5, it remained 
stable in RCP8.5 (Figure 3b). When averaged for the entire study pe-
riod and all ensemble members, biomass changed by 0.29 ± 1.66 t/
ha in RCP8.5 and 0.19 ± 1.74 t/ha in RCP4.5 between consecutive 
years (Figure 4).

In RCP8.5, aboveground biomass changes by more than 10% 
between current and future climate were simulated in almost the 

entire study region, except for areas in tropical China (Figure 5a; 
Figure S10a–c). Vegetation height changed more than 10% in South 
Asia and western mainland Southeast Asia and less than 10% in 
areas where the model simulated tall vegetation under current 
conditions (Figure 5b; Figure S10d–f). Decreases in aboveground 
biomass and height were only detected in Pakistan and Afghanistan 
(Figure 5b). C3 aboveground grass biomass showed decreases in the 
entire study region, except in Pakistan and Afghanistan (Figure 5c), 
where C3 aboveground grass biomass was low (Figure S10g–i). C4 
grass biomass increased primarily in areas currently covered by de-
ciduous vegetation and decreased in areas covered by evergreen 
vegetation (Figure 5d; Figure S10j–l). The area affected by changes 
was smaller when a 50% threshold was used to detect changes 
(Figures S8, S9).

TA B L E  1   Cover of different biome types for current (2019) and future (2099) climate conditions for RCP4.5 and RCP8.5. Cover is 
provided as percentage of grid cells covered by different biomes. Cover fractions for all ensemble members and the ensemble mean are 
provided. Values for current conditions are provided two times, because simulations for RCP4.5 and RCP8.5 slightly diverge due to model 
stochasticity and differences in the climate data sets. Models: ‘M1’ GFDL-ESM2M; ‘M2’ HadGEM2-ES; ‘M3’ IPSL-CM5A-LR; ‘M4’  
MIROC-ESM; ‘M5’ NorESM1-M; ‘Ens’ ensemble mean. Table S1 provides cover fractions for biomes aggregated by height or phenology

Biome Time RCP M1 M2 M3 M4 M5 Ens

Desert Current 4.5 5.5 2.7 3.0 2.7 2.8 2.7

Future 4.5 3.9 3.0 4.1 2.7 3.0 2.8

Current 8.5 4.6 2.7 3.1 3.0 3.2 3.1

Future 8.5 4.8 3.0 3.6 3.0 2.8 2.8

C4 grassland Current 4.5 4.6 8.9 6.4 9.2 6.4 7.2

Future 4.5 6.2 8.2 6.1 8.6 6.4 7.3

Current 8.5 5.7 8.8 6.0 8.6 6.6 7.2

Future 8.5 4.7 7.8 5.7 7.1 6.3 6.4

C3 grassland Current 4.5 1.0 0.9 0.2 1.0 1.1 0.6

Future 4.5 0.7 0.7 1.1 0.7 0.9 0.6

Current 8.5 0.6 0.9 1.1 0.9 1.0 0.5

Future 8.5 0.7 0.6 0.9 1.0 0.6 0.7

Short deciduous Current 4.5 14.8 15.3 18.9 9.3 15.3 15.7

Future 4.5 12.5 13.2 16.4 8.7 12.3 12.4

Current 8.5 14.6 15.7 18.3 9.7 14.6 14.7

Future 8.5 13.6 12.5 16.5 8.4 11.9 12.6

Tall deciduous Current 4.5 28.0 12.6 14.2 14.6 13.0 15.8

Future 4.5 29.3 12.1 15.7 15.2 15.8 18.2

Current 8.5 28.8 11.5 13.7 14.3 13.2 15.9

Future 8.5 28.0 12.5 14.9 16.3 16.4 17.7

Short evergreen Current 4.5 1.9 4.4 4.6 5.1 3.3 2.7

Future 4.5 1.4 4.7 2.9 3.0 2.1 1.4

Current 8.5 1.7 4.1 4.7 4.3 3.5 2.8

Future 8.5 1.1 4.2 2.9 2.9 1.9 1.7

Tall evergreen Current 4.5 44.3 55.1 52.7 58.2 58.0 55.3

Future 4.5 46.0 58.1 53.7 61.1 59.5 57.4

Current 8.5 43.9 56.3 53.1 59.4 57.9 55.7

Future 8.5 46.9 59.5 55.5 61.4 60.1 58.0

Abbreviation: RCP, representative concentration pathway.
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The broad patterns of change in aboveground biomass and veg-
etation height in RCP4.5 were similar to the patterns in RCP8.5, 
yet the areas of increase were smaller (primarily in tropical China) 

while the areas of decrease were larger (primarily in Pakistan and 
Afghanistan, Figures S7, S11).

Variation in absolute aboveground biomass and biomass 
change between different ensemble members was substantial 
between 1950 and 2099 (Table 2). In RCP8.5, mean aboveground 
biomass in the study region ranged between 142.9 t/ha for ISPL-
CM5A-LR and 179.1 t/ha for MIROC-ESM in 2099. Biomass change 

TA B L E  2   Aboveground vegetation biomass in the study region for different GCMs and RCPs and changes between different time periods 
(historic: 1950–1969; current: 2000–2019; future: 2080–2099). Biomass values for each ensemble member and the ensemble mean are 
provided. Models: ‘M1’ GFDL-ESM2M; ‘M2’ HadGEM2-ES; ‘M3’ IPSL-CM5A-LR; ‘M4’ MIROC-ESM; ‘M5’ NorESM1-M; ‘Ens’ ensemble mean; 
Δ indicates percentage aboveground biomass changes between time periods

Time RCP M1 M2 M3 M4 M5 Ens

Historic (t/ha) 4.5 117.8 116.5 112.0 133.8 125.2 121.1

Current (t/ha) 4.5 125.1 128.9 122.0 143.7 140.0 131.9

Future (t/ha) 4.5 145.7 142.8 134.4 159.0 161.7 148.7

ΔHistoric to current (%) 4.5 6.2 10.6 8.9 7.4 11.8 8.9

ΔCurrent to future (%) 4.5 16.5 10.8 10.2 10.6 15.5 12.7

ΔHistoric to future (%) 4.5 23.7 22.6 20.0 18.8 29.2 22.8

Historic (t/ha) 8.5 118.0 116.1 111.2 134.3 124.7 120.9

Current (t/ha) 8.5 126.4 129.9 121.2 148.2 137.8 132.7

Future (t/ha) 8.5 159.1 156.6 142.9 179.1 177.7 163.0

ΔHistoric to current (%) 8.5 7.1 11.9 9.0 10.3 10.5 9.8

ΔCurrent to future (%) 8.5 25.9 20.6 17.9 20.9 28.7 22.8

ΔHistoric to future (%) 8.5 34.8 34.9 28.5 33.4 42.3 34.8

Abbreviations: GCM, general circulation model; RCP, representative concentration pathway.

F I G U R E  3   Aboveground vegetation biomass (a) and interannual 
biomass change between consecutive years (b) in model ensemble 
between 1950 and 2099 for tropical Asia. Thin lines in panel 
(a) represent mean annual aboveground biomass in simulations 
with different general circulation models, bold lines represent 
annual ensemble means for RCP4.5 and RCP8.5, and shaded areas 
represent the range (minimum and maximum) of the ensemble in 
both RCPs. Thin lines in panel (b) represent ensemble means, thick 
lines represent smoothed lines using ‘lowess’. RCP, representative 
concentration pathway
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F I G U R E  4   Histograms of interannual aboveground biomass 
change between two consecutive years for (a) RCP8.5 and  
(b) RCP4.5. Histograms were plotted for all years between 1950 
and 2099 for all ensemble members. The solid red line indicates 
the average of all changes, the dashed red lines indicate standard 
deviation. Time series of ensemble means of these changes are 
provided in Figure 3b. RCP, representative concentration pathway
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between current and future conditions ranged between 10.2% 
(IPSL-CM5A-LR) and 16.5% (GFDL-ESM2M1) for RCP4.5, and be-
tween 17.9% (IPSL-CM5A-LR) and 28.7% (NorESM1-M) for RCP8.5 
(Table 2).

3.3 | Climate change impacts on 
phenology and biomes

The aDGVM2 simulated changes in community composition under 
future climate conditions, specifically regarding the abundances 
of deciduous and evergreen vegetation (Figure 6). In RCP8.5, we 
found increases in the abundance of light-triggered (Figure 6a–c) 
and water-triggered (Figure 6d–f) evergreen plants and decreases 
in the abundance of water-triggered deciduous plants in mainland 
Southeast Asia, central India and Pakistan (Figure 6g–i). In southern 
India, water-triggered evergreen plants decreased to the benefit of 
deciduous water-triggered plants. Similar patterns were simulated 
for RCP4.5 (Figure S12).

Changes in aboveground woody biomass and the abundances 
of phenological types caused biome transitions, predominantly 
from small to tall, and from deciduous to evergreen biome types 
(Figure 7a,b; Figure S13a,b). This trend was most pronounced in 

India and mainland Southeast Asia. Vegetation on the islands was 
stable, that is, aDGVM2 simulated tall evergreen vegetation for 
all ensemble members and time periods. The area affected by 
biome transitions varied within the ensemble (Table 1; Table S1). 
In the consensus biome map, aDGVM2 simulated biome transi-
tions for 8.4% of the study region in RCP4.5 and 8.3% in RCP8.5, 
with values ranging between 7.9% and 10.0% among ensemble 
members (Table 3; Figure 7c). The area where at least one ensem-
ble member projected a biome transition between current and 
future conditions was larger and 28.5% for RCP4.5 and 30.4% for 
RCP8.5, respectively (Table 3; Figure 7d). These areas covered 
most of India and Pakistan and large areas in mainland Southeast 
Asia.

When cultivated and managed land was considered (Figure S2; 
Tuanmu & Jetz, 2014), areas that were subject to biome transitions 
were smaller. These areas include grasslands and short vegetation in 
the west of the study region, tall vegetation in the east of the Indian 
peninsula and tall vegetation in mainland Southeast Asia (Figure 7e,f; 
Figure S13e,f).

Despite changes in the abundances of phenological strat-
egies, we found that patterns of dominant phenological types 
were more stable between current and future climate conditions 
than the patterns of state variables and biome types (Figure 8; 

F I G U R E  5   Areas where aboveground tree biomass and height change by more than ±10% between current (year 2019) and future (year 
2099) conditions in RCP8.5. For biomass, we used tree aboveground biomass (a), C3 grass biomass (c) and C4 grass biomass (d) in a grid cell, 
for vegetation height (b), we used the 90th percentile of all trees simulated in a grid cell. Results for RCP4.5 are provided in Figure S7. RCP, 
representative concentration pathway
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Figure S14). In the consensus map, only 2.7% and 3.5% of the 
simulated grid cells showed changes in the dominant phenolog-
ical type in RCP4.5 and RCP8.5 respectively (Table 3). Values in 
ensemble members ranged between 1.7% and 5.0%. Phenology 
changes in at least one ensemble member were predicted for 
13.4% of the study area in RCP4.5 and 15.8% in RCP8.5. The 
most frequent type of phenology change was from deciduous 

water-triggered to evergreen water-triggered phenology, and 
these changes were mostly projected in warm areas with inter-
mediate mean annual precipitation between ca. 500 mm and 
2,000 mm (Figure 9; Figure S15). Masking of cultivated and man-
aged land (Figure S2; Tuanmu & Jetz, 2014) reduced the area 
where transitions in dominant phenology occurred (Figure 8e,f; 
Figure S14e,f).

F I G U R E  6   Relative abundance of 
different phenological strategies under 
current (year 2019) and future (year 2099) 
conditions, as well as change within this 
time period. Phenological strategies are 
evergreen light-triggered (a–c), evergreen 
water-triggered (d–f), deciduous water-
triggered (g–i) and deciduous light-
triggered (j–l). Simulations for current 
conditions (a, d, g, j), future conditions (b, 
e, h, k) and changes between current and 
future conditions (c, f, i, l) are provided. 
The maps show ensemble means for 
RCP8.5. Results for RCP4.5 are provided 
in Figure S12. RCP, representative 
concentration pathway
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F I G U R E  7   Consensus map of current 
(a, year 2019) and future (b, 2099) biome 
distribution in RCP8.5 for the ensemble. 
Areas where biome shifts between 
2019 and 2099 were simulated for the 
consensus map (c, e) and in at least 
one of the ensemble members (d, f) are 
highlighted without land use impacts  
(c, d) and with land use impacts (e, f). Land 
use was derived from Tuanmu and Jetz 
(2014). Results for RCP4.5 are provided 
in Figure S13. RCP, representative 
concentration pathway
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In the ensemble mean, transpiration showed a decrease of ap-
proximately 4% between 1950 and current conditions (Figure S16), 
despite increases in aboveground biomass. In RCP4.5, aDGVM2 

simulated increases of transpiration to values similar to 1950 by 
the end of the century. In contrast, transpiration stabilized at the 
reduced value in RCP8.5.

TA B L E  3   Percentage of simulated grid cells in tropical Asia affected by transitions in biome type and in dominant phenology type for 
different GCMs and RCPs. Changes represent the period between current (year 2019) and future (year 2099) conditions. Models: ‘M1’ GFDL-
ESM2M; ‘M2’ HadGEM2-ES; ‘M3’ IPSL-CM5A-LR; ‘M4’ MIROC-ESM; ‘M5’ NorESM1-M; ‘Ens’ ensemble mean; ‘Ova’ overall change of all 
GCMs, that is, area where at least one GCM simulates a transition

RCP M1 M2 M3 M4 M5 Ens Ova

Biome type 4.5 8.2 8.0 10.0 7.9 8.3 8.4 28.5

Biome type 8.5 8.1 9.3 9.5 9.2 9.9 8.3 30.4

Phenology 4.5 2.9 3.6 1.7 3.1 3.6 2.7 13.4

Phenology 8.5 3.5 3.6 1.9 5.0 3.5 3.5 15.8

Abbreviations: GCM, general circulation model; RCP, representative concentration pathway.

F I G U R E  8   Consensus map of current (a, year 2019) and future (b, 2099) distribution of dominant phenological types in RCP8.5 for the 
ensemble. Areas where phenology shifts between 2019 and 2099 were simulated for the consensus map (c, e) and in at least one of the 
ensemble members (d, f) are highlighted without land use impacts (c, d) and with land use impacts (e, f). Land use was derived from Tuanmu 
and Jetz (2014). Results for RCP4.5 are provided in Figure S14. RCP, representative concentration pathway
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4  | DISCUSSION

4.1 | Biomass increase and CO2 fertilization

Previous modelling and remote sensing studies have shown increased 
vegetation productivity (Haverd et al., 2020) and greening trends (Piao 
et al., 2020) globally, and that the biosphere has acted as a carbon sink 
during recent decades (Le Quere et al., 2018; Liu et al., 2019). Model 
simulations with aDGVM2 also showed increases in aboveground 
vegetation biomass for historic and future periods, indicating that re-
gions covered by natural vegetation will remain a carbon sink until 
2099. This trend was robust for an ensemble of two climate change 
scenarios and five GCMs. In RCP8.5, trends of interannual biomass 
changes between consecutive years remained almost constant until 
2099, indicating that the carbon uptake rate and the sink potential of 
natural vegetation remain stable. In contrast, in RCP4.5 interannual 
biomass change decreased between the 2030s and 2099. This result 
agrees with Hubau et al. (2020), who found sink saturation in tropical 
forests in Africa and Amazonia. However, our results indicate later 
saturation in RCP4.5 than reported by Hubau et al. (2020). In most of 
our study area, aboveground woody biomass increase exceeded 10%. 
Exceptions were found for some patches of evergreen forest in tropi-
cal China and the islands of Indonesia, Malaysia, the Philippines and 
New Guinea, where aboveground biomass was already high under 
current climate conditions. Biomass decreases exceeding 10% oc-
curred only in arid areas with low aboveground biomass.

Simulated aboveground woody biomass increase is, in aDGVM2, 
primarily driven by CO2 fertilization effects of plant growth. We 
already found and quantified CO2 fertilization in the predecessor 
model version aDGVM (Higgins & Scheiter, 2012; Martens et al., 
under review; Scheiter & Higgins, 2009; Scheiter et al., 2015). Kumar, 
Pfeiffer, Gaillard, Langan, and Scheiter (2020) and Langan (2019) 
confirmed CO2 fertilization effects for aDGVM2 for South Asia and 
Amazonia, respectively, by conducting simulations with CO2 fertil-
ization effects enabled or disabled.

Several lines of empirical evidence support these modelled 
effects of elevated CO2 on vegetation. First, open-top chamber 
experiments in different ecosystems showed increases in pho-
tosynthetic rates and water use efficiency at leaf or plant level 
(Kgope, Bond, & Midgley, 2010; B. S. Ripley and S. Raubenheimer, 
personal communication, March 2019). Free air carbon enrichment 
(FACE) experiments in different ecosystems revealed ecosys-
tem-level responses to elevated CO2. Ecosystem responses were 
ecosystem-specific (Hickler, Rammig, & Werner, 2015) and variable 
over time, often with strong responses at the beginning of eCO2 
treatments but weaker long-term responses. CO2 enrichment ex-
periments in the study region are scarce. Deng et al. (2010) and Liu 
et al. (2008) used open-top chambers to study soil respiration and 
nutrient dynamics in tropical forests in China. FACE experiments 
are currently missing in the study region, and there is an urgent 
need for such experiments.

Second, greening trends have been observed in tropical Asia 
and globally during recent decades (Piao et al., 2020). These have 
been attributed, among other drivers, to elevated CO2. Haverd 
et al. (2020) attributed 30% of the increase in gross primary pro-
ductivity since 1990 to CO2 fertilization. Piao et al. (2015) used 
satellite-derived leaf area index (LAI) and modelling techniques to 
show greening trends in China, and identified elevated CO2 and ni-
trogen deposition as the most likely drivers. Yet, Piao et al. (2015) 
also included anthropogenic afforestation as a factor driving 
greening, and not only natural vegetation dynamics. Greening is 
typically quantified by remotely sensed indicators such as the nor-
malized difference vegetation index or LAI. These indicators are 
proxies for leaf biomass and leaf productivity, but do not neces-
sarily imply increases in carbon sequestration or sink potential. 
Chen et al. (2019) argued that increases in LAI and CO2 fertilization 
accounted for 12.4% and 47% of the terrestrial carbon sink since 
1981, respectively, indicating links between greening and carbon 
sequestration.

Third, woody encroachment is observed in many savanna regions 
globally (Stevens, Lehmann, Murphy, & Durigan, 2017). In South 
African savannas, encroachment has often been attributed to CO2 
fertilization (Buitenwerf, Bond, Stevens, & Trollope, 2012; Kgope 
et al., 2010). Woody encroachment has also been observed in Indian 
savannas and the central dry zone of Myanmar, where alien shrub 
species such as Lantana camara, Chromolaena odorata and Prosopis ju-
liflora rapidly invade native vegetation (Hiremath & Sundaram, 2005; 
Kannan, Shackleton, & Uma Shaanker, 2013; Oo & Koike, 2015; 
Ratnam et al., 2016). These studies attributed encroachment to 

F I G U R E  9   Transitions of dominant phenology in precipitation-
temperature space for the RCP8.5 ensemble. Origin and end of arrows 
indicate location of a grid cell in climate space in 2019 and 2099; 
colours indicate different dominant phenological strategies and if a 
transition in the phenology was projected (red arrows) or not (other 
colours). Results for RCP4.5 are provided in Figure S15. MAP, mean 
annual precipitation; RCP, representative concentration pathway
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anthropogenic activities such as fire suppression or overgrazing 
rather than to elevated CO2. It remains to be tested to what degree 
CO2 effects reinforce other anthropogenic impacts or drive en-
croachment. Generally, CO2-induced woody encroachment has been 
less studied in tropical Asia than in southern Africa (e.g. Bond, 2008; 
Bond, Midgley, & Woodward, 2003; Buitenwerf et al., 2012; Midgley 
& Bond, 2015). One explanation for the lack of study is that tropi-
cal Asia has a higher human population than other tropical regions. 
Human impacts associated with deforestation, or conversion of natu-
ral vegetation to cropland may override any CO2 or climate change ef-
fects on vegetation. Further, Asian savannas are often misinterpreted 
as degraded forest and management policies aim at afforestation 
rather than at the conservation of these landscapes (Kumar, Pfeiffer, 
Gaillard, Langan, Martens, et al., 2020; Ratnam et al., 2016). In this 
context, woody encroachment might be interpreted as a desired tran-
sitional stage towards forest expansion and as successful afforesta-
tion, rather than as a threat to biodiversity.

Our results largely agree with previous DGVM studies for trop-
ical Asia that reported greening under future climate conditions. 
For instance, Sitch et al. (2008) compared different DGVMs for 
IPCC SRES A1F1 and showed that the models simulate stability or 
increases in vegetation carbon and woody cover in tropical Asia be-
tween 1860 and 2100. Yu, Wang, Parr, and Ahmed (2014) analysed 
a global ensemble run for RCP8.5 with 19 GCMs using CLM-CN-DV 
and found that net primary productivity is likely to increase in trop-
ical Asia until the end of the century. Woody vegetation cover was 
projected to increase in most of the study area, except along the 
Himalayas and northern Indonesia (Yu et al., 2014). Using aDGVM, 
the predecessor of aDGVM2, we simulated substantial transitions 
from grasslands to savannas and from savannas to forests until 2100 
in South Asia (Kumar & Scheiter, 2019).

While simulated aboveground biomass and vegetation height re-
flected broad patterns of remote sensing data, we also found areas 
where data and model disagree. For example, aDGVM2 underesti-
mates biomass and height in areas highly affected by land use, such 
as the Indian peninsula. Further, aDGVM2 does not simulate some 
of the dipterocarp forests, with biomass of more than 400 t/ha and 
giant trees which can exceed 70 m in height and store large biomass. 
This mismatch can be explained by aDGVM2 not representing such 
giant trees, and by the coarse resolution of aDGVM2 simulations 
that ignores observed spatial heterogeneity. Conducting higher 
resolution simulations and replicate runs for model grid cells might 
capture heterogeneity and extremes of biomass and height at local 
scale. However, we expect that such additional simulations would 
not influence our general results.

4.2 | Ecological strategies, biomes and ecosystem  
functions

The community assembly processes implemented in aDGVM2 
allow the simulation of a diversity of distinct ecological strategies 
at local scale, as well as their responses to climate change (Langan 

et al., 2017; Scheiter et al., 2013). Thus, simulated vegetation at local 
scale was characterized by the coexistence of deciduous and ever-
green plants, water- and light-triggered plants, single-stemmed trees 
and multi-stemmed shrubs, small and tall plants, as well as grasses 
and woody plants. The aDGVM2 selected for high grass biomass and 
dominance of water-triggered deciduous woody plants on the Indian 
peninsula, Pakistan and Afghanistan, and for tall evergreen woody 
vegetation in tropical China, the islands of Indonesia, the Philippines 
and New Guinea, as well as in the Himalayas. Interestingly, aDGVM2 
simulated a mixture of light- and water-triggered phenology in most 
of the tall evergreen biomes of southern China, mainland Southeast 
Asia and the islands. We explain this mixture by high resource availa-
bility. While light-triggered evergreen plants are filtered out in more 
arid and seasonal regions, they can persist and coexist with water-
triggered evergreen plants if water availability is high. Whether 
plants are triggered by water or light might not have substantial 
impacts on vegetation dynamics and ecosystem functions in these 
areas.

A representation of vegetation as a mixture of various eco-
logical strategies with overlapping climatic envelopes in aDGVM2 
agrees with reality. For instance, distributions of C3 and C4 grasses 
typically overlap rather than being disjoint (Still, Berry, Collatz, & 
DeFries, 2003). Ge and Xie (2017) found overlapping distributions 
of evergreen and deciduous trees in tropical China, and open woody 
ecosystems such as savannas are mixtures of grasses, shrubs and 
trees (Ratnam et al., 2011, 2016), ranging from low to high tree cover 
(Sankaran et al., 2005).

Our simulations revealed climate change impacts on the relative 
abundance of different ecological strategies, the biome type and the 
dominant phenological type. As expected, aDGVM2 mainly simu-
lated transitions from small to tall biome types and from deciduous 
to evergreen biome types. Changes in height structure can be ex-
plained by CO2 fertilization and associated increases in growth rates 
and aboveground biomass of woody plants. Changes in phenology 
from water-triggered to light-triggered types can be explained by 
increasing precipitation and reduced transpirational demand in C3 
plants (Figure S16). A meta-analysis by Soh et al. (2019) showed that 
increases in intrinsic water use efficiency in response to elevated 
CO2 are higher in evergreen plants than in deciduous plants, which 
may explain a relative advantage of evergreen plants over decidu-
ous plants under elevated CO2 in aDGVM2. Phenology of simulated 
vegetation in the Himalayas was predominantly evergreen (Ralhan, 
Khanna, Singh, & Singh, 1985) and not influenced by climate change. 
Whether future temperature increase will influence phenology in 
these regions remains unclear as temperature does not directly trig-
ger phenology in aDGVM2. Temperature may influence phenological 
strategies indirectly via impacts on the carbon balance and mortality 
and associated selection for certain strategies. Predictive under-
standing of plant phenology is still challenging. Further model devel-
opment is required to integrate triggers such as water, temperature, 
nutrients, radiation or day length (Adole, Dash, & Atkinson, 2018; 
Piao et al., 2019), for example to account for the effects of tempera-
ture increase on phenology and growing season length in alpine 
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vegetation in the Himalayas, or to predict widely observed pre-rain 
greening (Adole et al., 2018).

Transitions from deciduous to evergreen vegetation simulated 
by aDGVM2 agree with previous modelling studies. Ravindranath 
et al. (2006) used the BIOME4 model to simulate the responses 
of Indian forest to SRES A2 and B2 simulated by the Hadley 
Centre model (HadRM3). In addition to changes towards ever-
green phenology, their study reported increases in savanna veg-
etation and decreases in more xeric vegetation types. The effects 
were attributed to CO2 fertilization and associated increases in 
net primary productivity (Ravindranath et al., 2006). Chaturvedi 
et al. (2011) found transitions towards evergreen forests using the 
IBIS model.

Modelled transition rates of biomes and dominant phenology 
types might be overestimated compared to real transition rates. 
While it has been shown that species and biomes might not be 
able to keep pace with climate change (Loarie et al., 2009; Scheiter, 
Moncrieff, Pfeiffer, & Higgins, 2020), most DGVMs ignore seed 
dispersal and associated migration lags (Corlett & Westcott, 2013). 
Models assume that local seed pools contain all functional types 
or ecological strategies that persisted during model spin-up, and 
that climate change or other disturbances influence the relative 
abundance of these types. This modelling approach represents an 
establishment bottleneck that prevents or delays invasion of infe-
rior ecological strategies or functional types into local communities, 
but at the same time it represents a full dispersal scenario (Thuiller, 
Lavorel, Araujo, Sykes, & Prentice, 2005). While this caveat is well 
known (Blanco et al., 2014; Corlett, 2009; Corlett & Westcott, 2013; 
Scheiter et al., 2020), it has rarely been addressed in DGVMs (but 
see Sato & Ise, 2012). Reasons include the mismatch between the 
coarse resolution of DGVM studies (typically 0.5° or coarser) and 
shorter dispersal distances, and knowledge gaps about dispersal 
distances, probabilities and pathways (Corlett, 2009). Modelling dis-
persal and migration is particularly challenging in highly fragmented 
and heterogeneous landscapes (Nabel, Zurbriggen, & Lischke, 2013) 
such as the Himalayas or the islands of tropical Asia.

4.3 | The ensemble approach

Simulated aboveground biomass, vegetation height and biome pat-
terns differed between ensemble members under both current and 
future climate conditions. These differences can be attributed both 
to stochastic processes in aDGVM2 that cause differences between 
model runs even for similar environmental forcing, and to differ-
ences between environmental forcing data in the ISIMIP climate data 
ensemble (Warszawski et al., 2014; Figure S1). Deviation between 
aDGVM2 ensemble members was higher in more arid regions. In 
these regions, environmental conditions showed higher interannual 
variation and stochastic processes in aDGVM2, such as fire occur-
rence or demographic processes, had a greater effect on vegetation 
dynamics. This model behaviour confirms a previous aDGVM result 
indicating that fire-driven and open ecosystems are more variable 

and take longer to reach an equilibrium state with prevailing environ-
mental conditions than forest (Scheiter et al., 2020).

Projecting future climate using GCMs, particularly patterns of 
precipitation, is challenging. Differences between GCMs explain 
variation in climate data within the ISIMIP ensemble. For instance, 
simulations of the monsoon and associated variability in precipita-
tion are still uncertain in models. Raghavan, Liu, Nguyen, Vu, and 
Liong (2018) compared CMIP5 simulations of historical rainfall to 
observations for Southeast Asia and found that none of the models 
represented observations particularly well. The benefit of using en-
sembles of climate change scenarios is therefore that a wide range 
of potential climate change impacts is covered, and that most likely 
vegetation changes can be identified.

4.4 | Anthropogenic impacts and implications 
for management

Our results have important implications for management and conser-
vation under climate change. First, we showed that areas in tropical 
Asia covered by natural vegetation are likely to remain carbon sinks 
until 2099, when ignoring land use changes. This provides support 
for forest conservation and restoration as climate change mitigation 
strategies (Graham, Laurance, Grech, McGregor, & Venter, 2016). 
However, the carbon sink potential also implies possible transitions 
from ancient grasslands and savannas into forests, both due to natu-
ral processes and due to deliberate afforestation. Transitions to for-
ests may lead to conflicts of interest between stakeholder groups 
promoting carbon sequestration by afforestation, and those pro-
moting conservation of biodiversity and traditional land use prac-
tices in grassland and savanna ecosystems (Bond, Stevens, Midgley, 
& Lehmann, 2019). Reaching compromises between these interest 
groups and the resident communities will be challenging but neces-
sary to balance biodiversity conservation against successful climate 
change mitigation and adaptation.

Second, we found substantial differences between RCPs and 
GCMs. This underlines that the ensembles of climate scenarios and 
vegetation models are necessary to cover a wide range of possi-
bilities required for the development of sustainable management 
strategies. Relying on a single set of climate forcing data may con-
strain the range of possible vegetation states and lead to inappro-
priate management decisions. Utilization of regionally adapted 
vegetation models (Moncrieff, Bond, & Higgins, 2016; Moncrieff, 
Scheiter, Langan, Trabucco, & Higgins, 2016) and high-resolution cli-
mate forcings that capture the local climate phenomena are highly 
recommended.

Third, our results indicate a trade-off between monitoring past 
and future vegetation changes by continuous state variables, such 
as aboveground biomass or tree cover, and classifying vegetation 
into biomes. The advantage of biome classification is that biomes 
reflect the status of multiple state variables and the associated 
ecosystem functions (Higgins et al., 2016; Moncrieff, Bond, et al., 
2016; Moncrieff, Scheiter, et al., 2016). Biome transitions indicate 
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simultaneous changes in multiple features of vegetation. Biomes are 
a compelling framework to understand large-scale biogeographic 
patterns, and to communicate model results in an aggregated way. 
A caveat of using biomes is that biome transitions may suggest fun-
damental vegetation changes, species turnover or non-linear tip-
ping-point behaviour. In fact, biome transitions might be triggered 
by smooth and moderate changes in variables used to define biome 
types.

The advantage of using continuous state variables is that even 
small changes in the vegetation state can be detected. Such changes 
might not necessarily modify the biome state but nonetheless influ-
ence the vegetation state and ecosystem functions. Keeping track 
of simultaneous changes in multiple state variables and interpreting 
the implications for ecosystem functioning might be more difficult 
than using a biome approach (Conradi et al., 2020). There is no sin-
gle consensus biome classification scheme that adequately covers 
all biome types globally (Moncrieff, Bond, et al., 2016; Moncrieff, 
Scheiter, et al., 2016; Mucina, 2019), and that can be applied in mod-
elling studies, remote sensing and other observational studies. We 
argue that biome classification schemes should be tailored to spe-
cific research questions to ensure that they reflect targeted vegeta-
tion states and ecosystem functions. Inappropriate classification of 
vegetation may misguide decision-making (Kumar, Pfeiffer, Gaillard, 
Langan, Martens, et al., 2020).

Finally, we showed that areas with deciduous vegetation are 
most susceptible to climate change. They included grasslands in 
Afghanistan and Pakistan, as well as deciduous vegetation on the 
Indian peninsula and in mainland Southeast Asia. However, large pro-
portions of these areas have already been transformed into managed 
land, and the areas not affected by direct anthropogenic effects are 
mostly small and scattered. This result highlights an urgent need to 
conserve and protect remaining patches of natural vegetation that 
are exposed to both anthropogenic pressure and climate change. 
Future high-resolution and region-specific modelling studies can 
help to identify migration corridors for different vegetation types 
and inform planning of protected areas, human-assisted migration 
(Corlett, 2009), and the establishment or restoration of habitat con-
nectivity (Corlett & Westcott, 2013), while accounting for climate 
change impacts on vegetation. Here, we focused on natural vegeta-
tion and implications for remaining areas of undisturbed vegetation. 
Future studies should include more detailed land use scenarios to 
better account for historic and future land use change in the study 
region, including various scenarios for changes in plantations, crop 
production, urbanization or pollution and their impacts on vegeta-
tion growth. This can be achieved by using large-scale products such 
as the harmonized land use scenarios (Hurtt et al., 2011), by con-
sidering Shared Socio-economic Pathways (Popp et al., 2017), and 
also by considering local-scale land use activities such as grazing, fire 
management or fuelwood harvesting. Some of these factors have 
been included into aDGVM and aDGVM2 previously, and their im-
pacts on vegetation structure or regional-scale vegetation patterns 
have been investigated (Pfeiffer et al., 2019; Scheiter et al., 2015, 
2019; Scheiter & Savadogo, 2016).

Despite recent developments in vegetation modelling, there is 
still a need to further improve our projections of future vegetation 
and biogeochemical cycles in order to provide reliable information 
for decision-making. First, we need an improved understanding of 
the effects of elevated CO2 on vegetation, and how CO2 fertilization 
is influenced by source or sink dynamics (Körner, 2015), microbial 
communities (Terrer, Vicca, Hungate, Phillips, & Prentice, 2016), 
nutrient limitation and temperature or drought stress. Open-top 
chamber experiments or FACE experiments are required in the study 
region to enhance our knowledge. Second, the topography of trop-
ical Asia is complex and heterogeneous in comparison to Africa or 
lowland rain forests of tropical South America. Tropical Asia includes 
numerous islands and the Himalayas. This complexity also implies 
high diversity of species and biome types (Kumar & Scheiter, 2019). 
Improving vegetation models by including, for example, slope and 
aspect, and associated impacts on radiation balance, hydrology, 
dispersal and migration, will improve our understanding of future 
vegetation. Third, high-resolution climate data from process-based 
downscaling and accurate soil data are required to account for en-
vironmental heterogeneity. Fourth, vegetation models require a 
capacity to represent the various vegetation types forming biomes 
of tropical Asia. Vegetation types such as bamboo thickets or man-
groves are typically not included in DGVMs, and aDGVM2 does not 
simulate giant trees present in Asian forests. Kumar and Scheiter 
(2019) proposed concepts on how to model these vegetation types. 
Finally, changes of the land surface due to simulated vegetation and 
phenology change or land use change modify albedo, as well as the 
water and carbon cycle. These changes influence the climate system 
via complex feedbacks (Bonan, 2008). Assessments of such feed-
backs require coupling of aDGVM2 with climate models.

5  | CONCLUSIONS

We found that climate change and CO2 fertilization will likely in-
crease woody biomass in tropical Asia until 2099. This trend was 
robust for an ensemble of different climate change scenarios and 
different climate models. Changes in aboveground biomass were 
associated with changes in phenology and vegetation structure, 
particularly with transitions from small deciduous vegetation to tall 
evergreen vegetation. These findings indicate that natural vegeta-
tion in tropical Asia will remain a carbon sink until 2099 with a high 
potential for carbon sequestration. Any human conversion of such 
natural vegetation into cropland might pose a threat to the carbon 
sink, as croplands and plantations typically store less carbon than 
natural vegetation. However, the trend towards more vegetation 
biomass also implies a risk for ecosystems with low woody cover, 
such as ancient grasslands or savannas. These ecosystems were 
most vulnerable to climate change impacts in our simulations, and 
a decrease in their extent and associated losses of biodiversity is 
likely. Conservation of these ecosystems is therefore required. Our 
results indicate a high potential for carbon sequestration initiatives, 
and at the same time indicate a high risk of vegetation change in 
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ecosystems with low woody cover in protected areas. A careful bal-
ance of biodiversity conservation against carbon sequestration ini-
tiatives in the context of climate change adaptation and mitigation 
is mandatory.
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