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Abstract
Purpose Knowledge of the effects of pasture degradation on soil organic carbon (SOC) and nitrogen (N) fractions in permafrost
soils on the Tibetan Plateau is limited. The aims of this study were (1) to evaluate the changes in SOC and N contents in density
fractions under Kobresia pasture due to degradation and (2) to explore the contributions of the changes of SOC and N in density
fractions to the changes of SOC and N in whole soil.
Materials and methods The impact of Kobresia pasture degradation on SOC and N fractions was investigated in the permafrost
region of the Tibetan Plateau. A continuously degraded pasture was identified and classified into three categories of vegetation
cover according to their degrees of degradation (i.e., vegetation cover decline from 90% ± 6.6% to 70% ± 8.3% and 45% ± 8.7%).
The SOC and N fractions were separated by using the density separation method.
Results and discussion The Kobresia pasture degradation significantly decreases SOC and N contents and stocks in soils. The
SOC and N contents in the whole soil were positively correlated with the SOC and N contents in the light and heavy fractions
(p < 0.001, respectively). The SOC and N contents were significantly correlated with soil pH and the contents of soil moisture,
clay, silt, and sand. The ratio of SOC to total N in the whole soil was positively correlated with the ratio of SOC to N in heavy
fractions (p < 0.001) rather than the ratio of SOC to N in light factions (p > 0.05). When pasture degraded from vegetation covers
90% to 45%, SOC stock at 0–40-cm soil layer decreased by 28.7% and N stock decreased by 39.2% in the whole soil; 56.6% and
47.6%, respectively, in the light fractions and 14.3% and 40.6%, respectively, in the heavy fractions. The depletion rates of N
were higher than those of SOC in the heavy fractions and whole soil. At all sites, more than 80% of the SOC and N stocks were
protected in heavy fractions.
Conclusions These results indicate that a decoupling depletion of SOC and soil N appearedwith theKobresia pasture degradation
in the permafrost region of the Tibetan Plateau. The Kobresia pasture degradation affects the SOC and N fractions differently and
thus regulates soil carbon and N cycling in the permafrost soils on the Tibetan Plateau.

Keywords Kobresia pasture . Soil organic matter . Heavy fractions . Light fractions . Tibetan Plateau

1 Introduction

The stocks and drivers of soil organic carbon (SOC) and ni-
trogen (N) in the permafrost region have attracted widespread
interests because of climate change and the potential of per-
mafrost thaw (Dutta et al. 2006; Evgrafova et al. 2018;
Hugelius et al. 2014; Mueller et al. 2015; Natali et al. 2014;
Ping et al. 2015; Tarnocai et al. 2009; Vogel et al. 2009). In the
Northern Hemisphere, SOC stored in the 0–3m is estimated at
1035 ± 150 Pg (Hugelius et al. 2014). In the Tibetan Plateau,
SOC stored in the permafrost-affected soils is estimated at
15.31 Pg in 0–3 m (Ding et al. 2016). During the past three
decades, the mean annual temperature of high-latitude and -
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altitude regions has significantly increased (IPCC 2013;
Schuur et al. 2015), and such increase has strongly affected
SOC decomposition in these regions (Ding et al. 2017;
Gentsch et al. 2015; Schadel et al. 2016; Schuur et al. 2015).
The corresponding release of greenhouse gases CO2 and CH4

may instigate a positive feedback on climate warming (Koven
et al. 2015; Natali et al. 2014; Schuur et al. 2011; Whiteman
et al. 2013). SOC decomposition depends not only on the
changes in soil environmental conditions but also on the con-
tribution of different SOC fractions (Gentsch et al. 2015;
Mueller et al. 2015; Schmidt et al. 2011; Yeasmin et al.
2017). Thus, studies on the stocks and site characteristics of
SOC and N fractions in the permafrost region are of great
importance (Dinakaran et al. 2018; Dorfer et al. 2013;
Gentsch et al. 2015).

Functional SOC pools, such as labile and stable pools,
have different turnover rates and protective mechanisms
(Dinakaran et al. 2018; Eze et al. 2018; Ramnarine et al.
2018; Whalen et al. 2000). SOC can be separated into
light fraction organic carbon (LFOC) and heavy fraction
organic carbon (HFOC) through physical density separa-
tion method (Six et al. 2002; Tan et al. 2007; Whalen
et al. 2000). LFOC is considered to be more sensitive to
change in soil environment than total SOC (Gong et al.
2009; Leifeld and Kogel-Knabner 2005; Li et al. 2018a).
Labile LFOC in permafrost soils have been studied in
many researches (Dorfer et al. 2013; Gentsch et al.
2015; Shang et al. 2016; Wu et al. 2018), whereas
HFOC is rarely examined in these soils (Dong et al.
2018; Gao et al. 2017; Ramnarine et al. 2018). The
HFOC also play an important role in SOC synthesis and
decomposition. Basing on 28 pedons across the Siberian
Arctic, Gentsch et al. (2015) suggest that HFOC represent
the vast majority of subsoil SOC and are affected by the
changes in soil conditions.

Soil N is highly interdependent with SOC as both are de-
rived from soil organic matter (Calazans et al. 2018; Liu et al.
2019). However, it has received less attention for the N frac-
tion dynamic in permafrost soils (Bingham and Cotrufo 2016;
Giannetta et al. 2018; Song et al. 2014). Soil organic matter
fractions vary in terms of their response to environmental
change because of their different protective mechanisms
(Giannetta et al. 2018; Song et al. 2014). Several studies
showed that different soil organic matter fractions have differ-
ent soil N contents and C/N ratios (Giannetta et al. 2018; Huo
et al. 2013; Ramnarine et al. 2018). Thus, not only the re-
sponse of total N to environmental change but also N content
in various fractions should be given attention (Bingham and
Cotrufo 2016; Giannetta et al. 2018). Doing so can improve
our understanding for the effect of environmental change on
soil carbon and N cycles, especially under the condition of
climate warming (Eze et al. 2018; Song et al. 2014; Zhong
et al. 2015).

The Kobresia pasture, often named alpine meadow, is veg-
etation dominated by sedge plants, such asKobresia pygmaea,
in the Tibetan Plateau and forms a tight root turf (Babel et al.
2014; Kaiser et al. 2008; Miehe et al. 2008). The Kobresia
pasture plays a vital role in the provision of ecology, environ-
ment, and social services in this region (Hopping et al. 2018;
Liu et al. 2018; Yang et al. 2018). However, owing to natural
and human factors, the Kobresia pasture is rapidly degrading
(Babel et al. 2014; Hopping et al. 2016; Hopping et al. 2018;
Lehnert et al. 2016). The process has distinct characteristics;
that is, the dominated sedge plants can be gradually replaced
by other functional plants, such as grasses and forbs (Wu et al.
2014). TheKobresia pasture degradation decreases vegetation
productivity and SOC and soil nutrient stocks (Dong et al.
2012; Li et al. 2014; Liu et al. 2017; Liu et al. 2018; Peng
et al. 2018; Wang et al. 2009a, b). Basing on 44 studies, Liu
et al. (2018) summarized that 42% of SOC and 33% of N
stocks are lost due to the pasture degradation on the Tibetan
Plateau. Recently, climate change has been identified as one of
the potential causes of pasture degradation (Hopping et al.
2018; Lehnert et al. 2016). In this context, studying carbon
and N dynamics under pasture degradation in permafrost eco-
systems has become urgent and important.

Many studies on the Kobresia pasture degradation focused
on vegetation characteristics, soil carbon pools, soil hydraulic
properties, greenhouse gas emissions, and soil microbial com-
munities. These studies provided important information about
the responses of vegetation and soil to grassland degradation
and promoted the restoration and protection of alpine grass-
lands. However, how SOC and N fractions respond to the
Kobresia pasture degradation is still unclear, especially in per-
mafrost soils. The Tibetan Plateau has a high altitude and
highly sensitive permafrost ecosystem (Yang et al. 2010).
Characterizing SOC and N fractions dynamics in the
Kobresia pasture is crucial for understanding the physical pro-
tection mechanisms of soil organic matter in the permafrost
region. Meanwhile, some studies about pasture degradation
were based on the method of ‘site represent time,’ that is, sites
with different microtopography, soil texture, vegetation type,
and even climatic characteristics were selected to indicate the
degradation gradient (Liu et al. 2018; Peng et al. 2018; Yuan
et al. 2019). The impact of pasture degradation can be better
explored in a relatively homogeneous microenvironment
(Dlamini et al. 2014; McHunu and Chaplot 2012; Yuan et al.
2019).

In this study, we investigate the effects of the Kobresia
pasture degradation on SOC and N fractions in homogeneous
soils in the permafrost region of the Tibetan Plateau. Our aims
were to (1) evaluate the changes in SOC and N contents and
stocks in light and heavy fractions with the Kobresia pasture
degradation and (2) explore the contributions of the changes
of SOC and N in light and heavy fractions to the changes of
SOC and N in whole soil.
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2 Materials and methods

2.1 Study area

The study was carried out at Kaixinlin basin (92.35°E,
33.96°N, 4627 m a.s.l.) near the Qinghai-Tibet Railway
on the Tibetan Plateau, Qinghai Province, China (Fig. 1).
This area is located at the permafrost region of the Tibetan
Plateau (Wu et al. 2012). The mean annual temperature in
this area is − 3.8 °C. The mean annual precipitation is 347
mm, 90% of which occurs from April to October. The
active layer thickness is about 2.4–3.4 m and has obvious
increasing trend (Wu et al. 2012). The vegetation type in
the experimental site is alpine meadow and is dominated

by the sedge species (Kobresia pygmaea C.B. Clarke).
The other plant species are Elymus nutans, Festuca ovina,
Polygonum L., Oxytropis glacialis, and Astragalus
polycladus (Yuan et al. 2019).

At the Kaixinling site, the Tibetan Plateau railway runs
parallel to the highway, with an interval of about 800 m.
Near the railway or highway, the vegetation of Kobresia
pasture has gradually degenerated because of construction
activity, such as vehicle driving and construction tram-
pling. Vegetation degradation can change from nearly in-
tact root mat to highly degraded root mat due to the
strength of construction activity (Fig. 1), which is a com-
mon degradation gradient of the Kobresia pasture along
the railway or highway in the Tibetan Plateau.

Fig. 1 The location and vegetation condition for the experimental site on the Tibetan Plateau, China. COV90 represents the site with vegetation cover by
90% (± 6.6%); COV70 represents the site with vegetation cover by 70% (± 8.3%); COV45 represents the site with vegetation cover by 45% (± 8.7%)
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2.2 Experimental design

At the end of July 2016, we selected a relatively flat (slope
gradient ≤ 4°) and continuously degraded pasture that has a
surface area of more than 100 m × 500 m (Fig. 1). In this area,
we identified and classified three categories of vegetation cov-
er according to their degrees of degradation, that is, COV90
(90% ± 6.6%), COV70 (70% ± 8.3%), and COV45 (45% ±
8.7%; Fig. 1). These categories represent a continuous gradi-
ent of pasture degradation that allow us to explore the effects
of pasture degradation in a relatively homogeneous environ-
ment. The area has normal grazing by livestock (yaks and
sheep) and wild animals (such as wild ass, Tibetan antelope,
and Mongolian gazelle). The grazing intensity is low in this
area as the Chinese government strengthens its efforts to pro-
tect the ecological environment. The grazing intensity is lower
than that in the wetter areas in the southeastern of the Tibetan
Plateau (such as the Zoigê area) based on the number of graz-
ing sheep and yaks, and the situations of plant aboveground
biomass and excrements (Shi et al. 2013; Yang et al. 2018).
These areas have been long used as grasslands and have never
been used for other land utilization such as farmland. No ad-
ditional disturbance, such as mowing, fertilization, and soil
digging, has been recorded in the experimental sites since
the Qinghai-Tibet Railway has been opened in 2006, except
for herders grazing and wild animals eating.

In each vegetation cover category, three sampling plots (10
m × 10m)were set up at least five meters from one another. At
each plot, ten randomly quadrats with an area of 0.5 m × 0.5 m
were placed to determine vegetation cover and total above-
ground biomass of plants. Vegetation cover was determined
by using the grid method. Total aboveground biomass was
determined through the oven-drying method. Soil samples
for soil layers of 0–20 cm and 20–40 cm were collected at
each quadrat with a tube auger (5.0 cm in diameter). Soil bulk
densities were determined by using the cut ring method. The
diameter of the ring is 50.46 mm and the volume is 100 cm3.
Triplicate soil samples at each plot were used.

2.3 Soil analysis

The density fractionation method was used to separate light
and heavy soil organic matter fractions (Gregorich and Ellert
1993; Yuan et al. 2016). Before the density fractionation, the
soil samples were air-dried and passed through a 2-mm steel
sieve. After sifting, 10 g of soils was transferred to a centrifuge
tube and dispersed in 50 mL of NaI solution (1.8 g cm−3).
After being shaken for 10 min on a horizontal shaker (300
rpm), the centrifuge tubes were centrifuged for 30 min (3000
rpm). The supernatant was collected with a Whatman mem-
brane filter after NaI was removed by CaCl2 solution and
distilled water. The fraction in the supernatant was as the light
fraction organic matter. The additional light fractions in the

centrifuge tube were collected again. The residue of soil sam-
ples was centrifuged for 15 min (5000 rpm) with 100 mL
distilled water three times. After the centrifugation, the heavy
fraction organic matter was collected from the residue of soil
samples. The light and heavy fractions were finely ground for
the analysis of SOC and N contents after being dried at 60 °C.

The SOC contents in light fractions (LFOC), heavy fractions
(HFOC), and whole soil (SOC) and the N contents in light frac-
tions (LFN), heavy fractions (HFN), and whole soil (total N)
were analyzed through dry combustionmethod. Beforemeasure-
ments, samples were acidified with 0.5 M HCl to remove car-
bonates and washed thrice with distilled water. An elemental
analyzer (Elementar Analy sensysteme GmbH, German) was
used. The ratios of SOC to N in the light fractions
(LFOC/LFN), in the heavy fractions (HFOC/HFN), and inwhole
soil (SOC/TN) were calculated for each soil sample. A laser
diffraction instrument was used to measure soil particle distribu-
tion. Selected soil physical properties and SOC and N contents
are shown in Table 1.

2.4 Calculation of SOC and N stocks

The SOC and N stocks (kg m−2) in light fractions, heavy
fractions, and whole soil were calculated using Eq. (1)
(Yang et al. 2008):

S ¼ C � BD� T � 1−Pð Þ � 0:01 ð1Þ
where S is the SOC and N stocks in light fractions, heavy
fractions, and whole soil (kg m−2); C is the SOC and N con-
tents in light fractions, heavy fractions, and whole soil (g
kg−1); BD is the bulk density (g cm−3); T is the soil thickness
(cm); and P is the percentage (%) of the fraction > 2 mm.

Changes in SOC stocks under degraded sites relative to the
SOC stock under a non-degraded site were calculated and
used to represent the changes in SOC stocks along the pasture
degradation gradient (Dlamini et al. 2014; Yuan et al. 2019).
Changes in SOC stocks were calculated using Eq. (2)
(Dlamini et al. 2014):

SOCsc ¼ SOCn−SOCd

SOCn
� 100 ð2Þ

where SOCsc, SOCn, and SOCd are the changes in SOC stocks
(%), SOC stock in the non-degraded soils (COV90), and SOC
stock in degraded soils (COV45 and COV70), respectively.
The changes in SOC and N stocks in light fractions, heavy
fractions, and whole soil were calculated by using this
equation.

2.5 Statistical analysis

Two-way ANOVAs were applied to assess the effects of pas-
ture vegetation coverage and soil sampling depth on soil
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physical properties and SOC and N contents and stocks. One-
way ANOVAs were performed to evaluate the differences
among different pasture degradation degrees at the same soil
layer on (1) SOC and N contents and stocks and (2) the por-
tions of SOC and N stocks in different fractions relative to
whole soil. Linear regressions were used to relate SOC and
N contents in the light and heavy fractions to SOC and N
contents in whole soil, respectively. Linear regressions were
also used to relate SOC and N contents to soil pH, moisture,
clay, site, and sand contents. The SPSS 20.0 statistical pack-
age was used to perform these analyses (SPSS Inc., Chicago,
IL, USA).

The relationships among the SOC and N fraction contents
were investigated through principal component analysis with
CANOCO 4.5 software (ter Braak and Smilauer 2002).
Correlations among SOC and N fractions in the principal
component analysis were adjusted by multiple correlations
via using the SPSS software.

3 Results

3.1 Changes of SOC and N contents

Pasture degradation and soil sampling depth had signifi-
cant effects on SOC and N contents in whole soil, light
fractions, and heavy fractions (Table 1). The contents of
SOC and N had significantly decreased trends with the
decline of vegetation cover (Fig. 2). They were signifi-
cantly higher at the COV90 site than at the other two sites
(Fig. 2). The SOC/TN and HFOC/HFN at both soil layers
increased with vegetation cover reduction and were sig-
nificantly higher at the COV45 site than at the other two
sites (Fig. 2g and i). LFOC/LFN represented an opposite
trend with SOC/TN (Fig. 2h). SOC/TN was positively
correlated with HFOC/HFN (r = 0.82, p < 0.001) and was
not statistically significantly correlated with LFOC/LFN
(p > 0.05; Fig. 3).

3.2 Relations of SOC and N contents with selected soil
properties

SOC and total N had positive correlations with LFOC, LFN,
HFOC, HFN, and LFOC/SOC (Fig. 4). They were negative-
ly correlated with SOC/TN and HFOC/HFN (Fig. 4). They
did not have statistically significant correlation with LFOC/
LFN (Fig. 4). Soil pH and clay and silt contents were neg-
atively correlated with SOC and N contents (p < 0.001,
respectively; Fig. 5). Soil moisture and sand contents were
positively correlated with SOC and N contents (p < 0.05,
respectively; Fig. 5).Ta
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3.3 Changes in SOC and N fraction stocks

The stocks of SOC and N in whole soil, light fractions, and
heavy fractions decreased with pasture degradation (Fig. 6).
At soil depth of 0–40 cm, pasture degradation from 90 to 45%
showed losses by as much as 3.89 kgm−2 for SOC, 1.3 kgm−2

for LFOC, and 2.18 kg m−2 for HFOC (Fig. 6), which
corresponded to depletion rates of 28.7%, 56.6%, and
14.3%, respectively (Fig. 7). The pasture degradation from
90 to 45% showed losses by as much as 0.47 kg m−2 for total

N, 0.07 kg m−2 for LFN, and 0.38 kg m−2 for HFN (Fig. 6),
which corresponded to depletion rates of 39.2%, 47.6%, and
40.6%, respectively (Fig. 7).

In whole soil and heavy fractions, the depletion rates of N
were significantly higher than those of SOC (Fig. 7). In the
light fractions, the depletion rate of N was significantly lower
than the depletion rate of SOC (Fig. 7). At each site, the HFC
and HFN stocks contributed more than 80% to the SOC and
total N stocks, respectively (Fig. 8). The proportion of LFOC
stock decreased, and the proportion of HFOC stock increased

Fig. 2 Soil organic carbon and nitrogen contents (mean ± SD) in the Kobresia pasture with different degradation gradient. Means with different letters
differ significantly among sites at each soil depth. For the abbreviations, please see Table 1

Fig. 3 The relationship between soil organic carbon (and nitrogen) content in whole soil and soil organic carbon (and nitrogen) content in density
fractions. For the abbreviations, please see Table 1
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with the decline of vegetation cover (Fig. 8). The proportions
of LFN and HFN stocks had no significant difference among
the sites (Fig. 8).

4 Discussion

The SOC and total N contents had significantly decreased
trends with vegetation cover reduction in this study (Table 1,
Figs. 2, 3, and 4) and which were consistent with some previ-
ous studies (Cao et al. 2016; Dlamini et al. 2014; Dong et al.
2012; Gao et al. 2013; Li et al. 2014, Li et al. 2018a, b; Wang
et al. 2009a, b). The SOC is mainly determined by the balance
between carbon input and output in the soils in a given period
(Kuzyakov 2010; Piñeiro et al. 2010). Therefore, factors
linked to this balance may affect SOC dynamics (Piñeiro
et al. 2010; Stockmann et al. 2013; Wiesmeier et al. 2019).
Vegetation traits and soil properties (Table 1) can be notice-
ably changed with pasture degradation (Dong et al. 2012;
Hopping et al. 2018; Peng et al. 2018; You et al. 2014; Yuan
et al. 2019). First, decline in biomass and vegetation cover
with pasture degradation leads to the decrease in soil organic
matter input to soils (You et al. 2014; Peng et al. 2018; Wang
et al. 2014). Second, the variations in species composition in
plant communities with pasture degradation potentially affect
the level of soil carbon fixation, particularly during the re-
placement of sedges by grasses (Mou et al. 2018; Wu et al.
2014; Yuan et al. 2019). Third, the decomposition of soil
organic matter can be accelerated owing to the changes in soil
microenvironment, especially in soil temperature, moisture,
and pH (Li et al. 2018b; Liu et al. 2017; Peng et al. 2018;
Wang et al. 2008; Yuan et al. 2019). In this study, soil pH, clay,
and silt contents were negatively and soil moisture and sand
contents were positively correlated with SOC and N fractions

(Fig. 5), suggesting that SOC and N stocks in the alpine mead-
ow can be significantly affected by soil physical properties.
The increasing degradation of the Kobresia pasture consider-
ably reduces carbon uptake and increases carbon loss (Babel
et al. 2014; Liu et al. 2017; Peng et al. 2018). Furthermore, the
reduced ability of soil aggregates to protect organic matter and
the aggravated runoff and erosion due to vegetation reduction
can cause soil organic matter transfer and erosion (Mchunu
and Chaplot 2012; Zhu et al. 2011). Therefore, the SOC and N
stocks can suffer losses due to the synthesis effects of the
changes in vegetation and soils with pasture degradation
(e.g., Peng et al. 2018; Yuan et al. 2019).

The results indicate that vegetation degradation in the
Kobresia pasture leads to SOC and N losses not only in light
fractions but also in heavy fractions (Figs. 2, 3, and 4). The
conversion of grassland to farmland has suggested reducing
the proportion of light fractions and increasing the proportion
of heavy fractions to total organic matter (Jin et al. 2008;
Ramnarine et al. 2018; Singh and Benbi 2018; Tan et al.
2007). Wang et al. (2009a, b) suggested that about 57%
SOC and 43% N in heavy fractions and 84% SOC and 79%
N in light fractions were lost from originally alpine meadow to
degraded sites in the Tibetan Plateau. The light fractions had
higher SOC and N depletion rates but lower absolute mass
loss than the heavy fractions in this study (Fig. 4). The prin-
cipal component analysis also suggests that SOC and total N
contents had positive correlations with LFOC, LFN, HFOC,
and HFN (Fig. 4). Therefore, not only the light fractions but
also the heavy fractions contribute to SOC andN losses during
the Kobresia pasture degradation.

Some studies showed that change in land use alters SOC
and total N but does not alter soil C/N ratio (Liu et al. 2018;
Xu et al. 2016). However, other studies showed that change in
land use alter soil C/N ratio (Li et al. 2014; Liu et al. 2019;
Groppo et al. 2015). In this study, the C/N ratios in whole soil
and heavy fractions significantly increased with vegetation
cover reduction (Fig. 2g–i). This result is in line with the
results of some previous studies (Dlamini et al. 2014; Dong
et al. 2012). Song et al. (2012) indicated that experimental
warming decreased C/N ratios in whole soil and heavy
fractions in a temperate steppe of China. Liu et al. (2019)
indicated that there was a decoupling of SOC and N accumu-
lation and the soil C/N ratio increased in the initial stage of
revegetation in a karst region of China. The C/N ratio in whole
soil was significantly correlated with the C/N ratios in the
heavy fractions rather than the C/N ratios in the light fractions
(Figs. 3 and 4), indicating that the change in C/N ratio in
whole soil was mainly caused by the change in C/N ratios in
the heavy fractions. This result can be also confirmed by the
fact that the depletion ratio of N is higher than the depletion
ratio of SOC in heavy fractions with pasture degradation (Fig.
7). The SOC and N depletion rates can be similar and were
nearly at 1:1 ratio in many pasture studies (Liu et al. 2018).

Fig. 4 Principal component analysis (PCA) showed the relations among
SOC and N fractions contents. For the abbreviations, please see Table 1
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However, SOC and N had different loss pathways particularly
during decomposition and leaching (Liu et al. 2018; Piñeiro
et al. 2010). The differences in SOC and N losses in whole soil
and the heavy fractions reflect the differences in the physical
protectivemechanisms and the possible loss pathways of SOC
and N. Therefore, our results suggest that a decoupling of
SOC and N losses occurs in the degradation process of the
Kobresia pasture and is mainly related to the disproportionate
losses of SOC and N in the heavy fractions.

The C/N ratio in soils can be used to indicate the mineral-
ization of organic matter and the supply of available N
(Schipper and Sparling 2011). The decomposition of soil or-
ganic matter can be accelerated and the mineralization of soil
N can be increased when soil C/N ratio is low (< 15) and the
activities of soil microorganisms can be limited and the

decomposition rate of soil organic matter can be reduced when
soil C/N ratio is high (> 15; Springob and Kirchmann 2003).
In this study, the C/N ratio significantly increased (Fig. 2) and
the stocks of SOC andN fractions significantly decreased with
vegetation cover reduction (Fig. 6), indicating that the degrad-
ed site (COV45) had relative lower organic matter decompo-
sition rate and available N supply capacity than the relative
intact site (COV90). In the initial stage of vegetation degrada-
tion, high soil organic matter stock (such as light fractions)
provides a large amount of nutrients needed by plants and
microorganisms. During degradation, the mass of light frac-
tions in soils decreases, the decomposition rate of soil organic
matter slows down, soil available N supply decreases, and C/
N ratio increases. Additionally, soil microorganisms and
plants compete for available N. The competition further

Fig. 5 Relationships of soil organic carbon and nitrogen fractions with selected soil physical properties. For the abbreviations of SOC and N fractions,
please see Table 1
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decreases soil available N and increases soil C/N ratio. These
changes lead to a feedback pathway in which soil C/N ratio
regulates the decomposition rate of organic matter by soil
available N and microorganisms in the N-limited Kobresia
pasture. The decreasedmicrobial biomass carbon and inorgan-
ic N contents with vegetation degradation further support the
finding mentioned above (Yuan et al. 2019). The change in C/
N ratio in this study can also be supported by some previous
studies, which suggested that the C/N ratio can be increased
by the N limitation increases in soils (de Graaff et al. 2006; Liu
et al. 2019).

At all the sites, more than 80% of SOC and N in soils were
stored in the heavy fractions (Fig. 8). The results are similar
with those in some studies in the Tibetan Plateau (Dorfer et al.

2013; Huo et al. 2013; Shang et al. 2015;Wang et al. 2009a, b;
Wu et al. 2018) and in other regions (Eze et al. 2018; Gentsch
et al. 2015; Giannetta et al. 2018). For instance, previous stud-
ies found that 30% of SOC can be associated with the light
fractions whereas 70% of the SOC can be associated in the
heavy fractions in a swamp meadow on the Tibetan Plateau
(Huo et al. 2013; Shang et al. 2015). Gentsch et al. (2015)
suggested that the SOC in heavy fractions constitute 55% of
the overall SOC stocks in the Siberian Arctic region.
Compared with the light fraction, the heavy fraction is a stable
organic matter form and has a long mean residence time (Eze
et al. 2018; Leifeld and Fuhrer 2009). In this study, the SOC
stock reaches 10 kg m−2 at 0–40-cm soil layer and is mainly
stored in the form of heavy fractions. Such high HFOC stock

Fig. 6 Soil organic carbon and nitrogen stocks (mean ± SD) in the Kobresia pasture with different degradation gradient. Means with different letters
differ significantly among sites at each soil depth. For the abbreviations, please see Table 1

Fig. 7 The changes (mean ± SD) of soil carbon and nitrogen stocks in
whole soil and density fractions at soil depth of 0–40 cm with Kobresia
pasture degradation. *, **, and *** respective indicate significant at the

0.05, 0.01, and 0.001 level between the changes of SOC and N stocks at
that site. For the abbreviations, please see Table 1
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in the Kobresia pasture can play an important role in mitigat-
ing climate change in this permafrost region.

5 Conclusions

The effects of Kobresia pasture degradation on SOC and N
fractions were investigated in the permafrost region on the
Tibetan Plateau. This study demonstrated that SOC and N
respond differently to the Kobresia pasture degradation.
The data presented supports the following conclusions: (1)
the SOC and TN losses caused by pasture degradation are
found in both the light and heavy fractions, (2) soil N had
significantly higher depletion rate than SOC in whole soil
and heavy fractions, and (3) the SOC and N stocks in these
soils were mainly protected in heavy fractions. The results
suggest that a decoupling of SOC and N depletion occurs
during pasture degradation, and the depletion is strongly
related to the losses of them in heavy fractions. The results
will help clarify how SOC and N respond to environmental
change in the fragile and sensitive permafrost ecosystem on
the Tibetan Plateau.
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