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A B S T R A C T

The net primary productivity (NPP) of tropical forests is a key part of the global carbon cycle. Numerous studies
have estimated tropical forest NPP, yet most of them focus on how annual NPP dynamics vary over several years.
Little is known about how NPP responds to long-term climatic variation at the monthly or seasonal scales. We
estimated NPP at three-month intervals from 2009 to 2017 for a tropical seasonal rainforest in Xishuangbanna,
Southwest China using data from>2000 dendrometer bands and litter fall traps within a 20-ha permanent
forest dynamics plot. We asked which climatic factor has the greatest effect on forest NPP at the sub annual scale,
and how the relationships vary with seasonality. Calculations showed that NPP ranged from 12 to 20 t ha−1

yr−1, and that forest productivity showed a slight, but insignificant increase from 2009 to 2017. NPP was
significantly higher in the wet season than that in the dry season and was significantly related to precipitation
only when all data were concerned. During the dry season, precipitation had a significant positive influence on
NPP, but no effect during the wet season. We further identified that there was a threshold effect of precipitation
on NPP. Specifically, productivity increased more rapidly when monthly precipitation below 229 mm. In
summary, we conclude that periods of low rainfall strongly regulate the productivity in this tropical seasonal
rainforest which could guide the management design of water use efficiency in tree based land-use system, like
agroforestry ecosystems.

1. Introduction

Tropical forests store and cycle almost half of the world’s terrestrial
carbon (Bonan, 2008; Pan, 2011). Tropical rain forests also play im-
portant role in providing vital ecosystem services (Eitzel et al., 2013;
Geta et al., 2014). Carbon sequestration, soil, biodiversity and water
conservation are the main ecosystem service of tropical rain forest
which are safeguarded via proper forest management activities (Miura
et al., 2015; Tilman et al., 2012). Forest management is defined as“the
proper stewardship of land or forest for more than one purpose, such as
wood production, water quality, wildlife, recreation, aesthetics, and clean
air” (FAO, 2013). Protecting conserved forest areas (e.g., those in es-
tablished nature reserves) from anthropogenic disturbance is one of the
best forest management practices (Boncina, 2011), which ensuring the
provisioning of above mentioned ecosystem services from tropical
forest.

One prominent service of protected nature reserved tropical forests
is relative high level of net primary productivity (hereafter NPP) than

that of other terrestrial ecosystems (e.g. temperate forests or grasslands)
(Skovsgaard, and Vanclay, 2013). NPP is the net amount of organic
matter produced by live plants over a specific time interval, and is often
based on tree biomass calculations in a given area of forest (Clark et al.,
2001a,b). NPP in tropical rainforests alone account for about one-third
of total terrestrial NPP (Grace, 2004). NPP often affects terrestrial
ecosystem sustainability through its relationships with biodiversity
(Liang et al., 2016) and food chain length for various organisms in
forest ecosystem (Arim et al., 2007). NPP estimation is important for
carbon budget (Kim et al., 2017) and for assessing the dynamics of
carbon in forest ecosystems (Baishya and Barik, 2011). Quantifying
NPP over time gives forest stakeholders (e.g., forest managers, policy
makers and ecosystem service users) an idea of how the ecosystem
service potential of a forest is changing. For example, a reduction in
forest biomass or NPP over time due to disturbance or other type of
ecosystem stressor is directly related to a reduction in forest ecosystem
service provisioning, like soil carbon storage capacity (Fischer and
Günter, 2019). For these purpose, the United Nations FAO assessed
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global forest biomass change every 5–10 years and discusses its ecolo-
gical consequences (FAO, 2020). However, the FAO method lacks the
spatial and temporal detail, which is key to understand fine scale pro-
cesses affecting forest productivity.

Inter-annual variation in tropical forest NPP is mostly related to
annual variation in climate and long-term climate change. Some sa-
tellite-based studies have shown that forest NPP increases with in-
creasing in temperature and precipitation (Hicke et al., 2002; Wang
et al., 2016); while others demonstrated that forest NPP has been de-
clining in recent decades (Zhao and Running, 2010). At global scale,
Michaletz et al. (2014) showed that NPP was not affected by variation
in temperature and rainfall. However, Chu et al. (2015) provided some
evidence that climate has a direct influence on NPP at global scale. The
difference in these conclusions may be due to model uncertainty and
the difficulty in accurately estimating forest productivity. Chu et al.
(2015) recommended that onsite biometric measurements of tree bio-
mass at the local scale could help more-accurately evaluate climate-
forest productivity relationship. Cleveland et al. (2011) reported that
the observed change in global NPP over time was closely coupled with
climate change, and its dynamics lead to a change in terrestrial carbon
sequestration (Girardin et al., 2018; Nayak et al., 2013; Phillips et al.,
2009).

Long-term monitoring of forest dynamics plots, coupled with litter
fall measurements have some of the best potential to help understand
temporal dynamics of variation in NPP (Anderson-Teixeira et al., 2015).
Even though monitoring forest NPP dynamics through biometric mea-
surement of trees (i.e., measuring tree diameters) is crucial, many of the
emerging researches are remote sensing-based at large spatial and time
scales (Malhi et al., 2015; Tan et al., 2012; Zhao et al., 2018), which
often produce highly uncertain estimation. Given the strengthening of
current global climate change trends (IPCC, 2014), there is an urgent
need to clarify the relationships between local climate and forest pro-
ductivity using ground-based measurements. Moreover, previous stu-
dies are usually based on short term study intervals (i.e., those less than
5 years) (Chen et al., 2016; Kohl et al., 2015; Malhi et al., 2009; Olivier
et al., 2008; Phillips et al., 2009), and usually focus on how tempera-
ture, rainfall, atmospheric carbon dioxide influence NPP (Bazzaz, 1998;
Bonal et al., 2016; Bonan, 2008; Christiaan and Coops, 2016; Del
Grosso et al., 2008; Kurt et al., 1995; Shan et al., 2011); few studies has
explained the effects of solar radiation and humidity. As relative hu-
midity influences tree water use efficiency (Sellin et al., 2015) and
radiation potentially controls tree photosynthesis at the canopy-layer
(Park et al., 2018); we explicitly evaluate their effects on forest pro-
ductivity in this study. In summary, it remains a challenge to determine
how a certain climate parameter drives tropical forest productivity.
Therefore, to fully understand the relationship between forest perfor-
mance (e.g., productivity and radial stem growth) and environment,
fine temporal and spatial scale measurements are critical.

The influence of climate on forest NPP is scale-dependent. Previous
studies at different spatial scales present contrasting evidence on re-
lationships of climate and tropical forest productivity (Verduzco et al.,
2018). Recently, there was an effort of measuring temporal variability
of NPP in a tropical seasonal rainforest (Tan et al., 2015), but the total
temporal extent of this study was insufficient to test the significance of
the NPP-climate relationship. However, fine temporal scale or intra-
annual assessment of NPP dynamics may reveal more detailed effects of
climatic drivers, which were usually ignored by previous studies (Chi
et al., 2017). Moreover, there is a symmetrical seasonality shift in
Southeast Asia caused by monsoons from the Indian Ocean. This shift
may cause a change in which climatic factors limit NPP at finer tem-
poral (i.e. seasonal) scales. Yearly-based NPP studies in tropical forest
suggest that NPP increases with increasing rainfall in areas with up to
3000 mm/year mean annual precipitation, beyond which NPP declines
(Chuur, 2003; Cleveland et al., 2011; Hofhansl et al., 2014). To the best
of our knowledge, no study has reported threshold effect of precipita-
tion on NPP at a seasonal scale. Therefore, threshold analysis of NPP-

climate relationship using fine temporal scale with ground-based
measurement may help uncover how local climate drives NPP in tro-
pical seasonal rainforest.

Accurate NPP estimation requires the use of allometric equations for
tree biomass calculations. Most of the biometric-based NPP studies in
tropical forests are only based on a few generalized allometric equa-
tions, which are developed for tropical forest regions regardless of in-
trinsic interspecific variation between species (Brown et al., 1989;
Chave et al., 2005; Clark et al., 2001a,b; Tan et al., 2015). Using the
general allometric equations, which are not site specific and do not
allow for tree organ-base inference (i.e., stem, root vs. leaf NPP frac-
tions), is one potential shortcoming when it comes to the accuracy of
NPP estimates. In all, there is hardly NPP study using site/organ-based
allometric equations. There have been numerous efforts to study the
above ground biomass of trees in the highly diverse tropical seasonal
rainforests of Southeastern Asia (Hua, 2006; Kira, 1991; Zhang et al.,
2014; Zheng et al., 2006), but information about NPP across seasons
with long-term dataset is limited.

To address the fine scale temporal dynamics of forest productivity,
we estimated the NPP over 9 year’s duration (2009–2017) with three-
month intervals observation, and analyzed the effects of climatic dri-
vers in a 20 ha tropical seasonal rainforest plot, Xishuangbanna,
Southwest China. Specifically, we tested two hypotheses: (1) Local
climate drivers (precipitation, temperature, radiation and relative hu-
midity) have a significant influence on forest NPP during the study
periods. This is due to the fact that trees are physiologically active to
respond and adjust their phenology and growth rhythms for the chan-
ging climate. (2) Clear variation of NPP across season is detected, i.e.,
NPP is higher in rainy season than that in dry season.

2. Materials and methods

2.1. Study site

The study was carried out in Xishuangbanna National Nature
Reserve, Southwestern China. It is free from long-term human anthro-
pogenic disturbance. Hence, the study area was characterized by high
diversity of native trees species with long life spans. This region is
dominated by a typical monsoon climate with distinct dry and rainy
seasons. The mean annual temperature and precipitation are 21 °C and
1,532 mm respectively. More than 80% of precipitation occurs from
May to October (rainy season), and the rest occurs in dry season from
November to April (Lan et al., 2009). Specifically, this study was con-
ducted in a 20-ha tropical forest plot (101°35′07″E and 21°37′08″N),
established in 2007 where all trees with stem diameters ≥ 1 cm are
measured, mapped, identified. The plot (Fig. 1) is rectangular
(400 m × 500 m) in shape with elevation ranging from 709 to 869 m
above sea level (Cao et al., 2008; Lan et al., 2012). A total of 95,834
individuals were recorded at the first census (2007), belonging to 468
species, 214 genera and 70 families (Cao et al., 2008; Lan et al., 2012).
The vertical structure of this forest is complex and roughly categorized
into 5 canopy strata (Cao et al., 2008). The emergent layer (> 45 m),
upper layer (30–45 m), lower layer (20–30 m), understory layer
(10–20 m) and tree lets (5–10 m), which are mainly dominated by
Parashorea chinesis of Dipterocarpaceae; Sloanea tomentosa, Pometia to-
mentosa and Barringtonia pendula; Garcinia cowa, Knema furfuracea and
Nephelium chryseum; Baccaurea ramiflora and Dichapetalum gelonioides;
Pittosporopsis Kerri, Mezzettiopsis creaghii and Saprosma ternate; respec-
tively.

2.2. Dendrometer and litter fall

Dendrometer tree-growth bands were installed on> 2000 in-
dividuals with stem diameters ≥5 cm in January of 2009 (Fig. 1). Each
dendrometer consists of a custom-fashioned stainless-steel band secured
with spring. A measurement window between the trailing end of the
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band and measurement notch allows for the precise measurement of
tree bole diameters over time. The initial width of the window was
recorded, and as tree diameter increases the window widens. Dend-
rometer windows have been measured with a Vernier caliper every
3 months (February, May, August, and November) since 2009. How-
ever, not all the individuals with dendrometer bands survived through
the whole time period (2009–2017). Some individuals died due to
various reasons (e.g., wind or pathogen). Our major purpose was to
clarify the relationship between local climate and biomass increment of
big trees, including their litter fall, the death trees were removed from
the NPP calculation, and therefore we ignore their effect on NPP.

Litter fall (L) was sampled with square litter traps (0.75 × 0.75 m)
located in the center of randomly-selected subplots within the larger
forest dynamics plot (151 in total). Each litter traps consists of a 1 mm
nylon netting supported by a PVC frame with four poles. The effective
area of each trap, discounting the frame edges, is 0.5 m2. Fallen litter is
collected every 2 weeks to avoid significant losses to decomposition. All
litter is transferred to the laboratory, where it was separated into leaf,
twig, reproductive parts, and miscellaneous, dried, and weighed.

2.3. Climatic data

A weather recording instruments, which is 14 km away from the 20-
ha plot, have long been installed for recording monthly temperature
and precipitation in Mengla County. For monthly radiation and relative
humidity, we take from weather recording station located in 500 m
away from the 20-ha plot and but the data were available since October
2014 (Fig. 2).

2.4. Data analysis

2.4.1. Prediction of radiation and relative humidity
To predict unknown values of monthly radiation and relative hu-

midity from 2009 to 2014, we consider two things for modeling. First,
we assumed that monthly temperature and precipitation could poten-
tially predict both radiation and relative humidity. Accordingly, we fit
linear modeling (lm), time series linear model (tslm) and dynamic
linear model (dynlm) based on the actual observed climatic variables
using data from 2014 to 2017 (Eq. (1)) and we confirmed that all of this

time series models performance is the same. Second we hypothesized
that, instead of temperature and precipitation, the observed monthly
radiation and relative humidity at time “t” depends on previous time
(t − 1) value of its own, called autoregressive integrated moving
average modeling (Eq. (2)) and we used “auto.arima” function. Finally
we plot all predicated models (lm, tslm, dynlm and auto.arima) vs ac-
tual observations and auto.arima was selected as best fit (see supple-
mentary information, Fig. S1). Therefore, monthly lag values of relative
humidity and radiation were generated back to 2009–2013, using lag
function.

= + + + = + + +RD α β T β RF ε and RH α β T β RF εt t t t t t t t0 1 0 1 (1)

= + + = + +− −RD α β RD ε and RH α β RH εt t t t t t0 1 0 1 (2)

where RD and RH are a monthly radiation and relative humidity re-
spectively, T and RF direct record of monthly temperature and rainfall
from a nearby climate (Mengla) station respectively. All analysis was
performed in R statistical software (V.3.6.1; www.r.project.org) (R Core
Team, 2019) using the lm, tslm, dynlm and auoto.arima functions.

We used actual observed precipitation and temparture from Mengla
station, as a proxy for our study plot. We described the detailed nine
years monthly characterstics of local climate (Fig. 3).

2.4.2. Estimation of NPP of the forest
Since NPP represents the major energy storage of forest ecosystems

(Sala and Austin, 2000), accurate estimation is the main concern. The
partitioning of NPP by tree organs (i.e., leaf production, stem, re-
productive materials, and roots) is common (Clark et al., 2001a,b).
Quantifying all of these NPP components separately is difficult and
confounded by challenging methodologies (Clark et al., 2001a,b). Ty-
pically, precise temporal measurement of tree diameters is coupled with
collections from litter fall traps. The diameter measurements can be
converted to whole tree biomass using allometric equations, and the
collected litter fall can be used to estimate leaf and reproductive ma-
terial production. Total NPP is commonly calculated as the sum of each
of the organ-based compartments, or tree biomass flux plus litter fall
(leaf & productive), defined as NPPpartial (Clark et al., 2001a).

= +NPP Δ B Lpartial (3)

where ΔB is the biomass change between two successive tree diameter
censuses, and L is the total ecosystem litter fall production during that
time interval (Fang et al., 2007; Tan et al., 2010). To estimate the ΔB
more precisely, we separately estimated the biomass of different tree
organs at different DBH sizes with the Xishuangbanna-specific allo-
metric equation developed by Lv et al., 2007. Total tree biomass was
the sum of biomass of all tree organs. They developed these equations
using destructive sampling method and took samples from each organ.
They measured the biomass of leaves, branches, stems and roots to
come up with the following allometric equation (Table 1).

Since not all tree individuals within the 20-ha plot had installed
dendrometers; we needed to scale our measurements of total tree in-
dividual biomass (B) from the sampled individuals which did have
dendrometer band. We did so with the following equation:

= ∗B BS
N n

0.02
(4)

where B = biomass of all trees in a 20 ha, BS = biomass of sampled
individuals, N is roughly estimated total number of individuals (esti-
mated as 90,000) in a 20 ha plot, n is number of sampled individuals,
0.02 is fraction coefficient to scale the equation to tone/ha from a 20 ha
plot. BS was determined according to size class allometric regression
equation (Table 1). Before biomass calculation for each individual, we
removed tree diameter values larger than the 95th percentile and
smaller than the 5th percentile in each inventory period. This step re-
moved noisy data that might have been caused by recording or data
entry errors. The biomass increment of each year for forest ecosystem

Fig. 1. The distribution of trees with Dendrometer band in the 20 ha
Xishuangbanna forest dynamics plot. Colors show quadrat elevations in meters
above sea level. Circle sizes denote tree stem diameters.
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Fig. 2. Time series observed radiation and relative humidity since 2014 to Nov 2017.

Fig. 3. Monthly precipitation and temperature between years 2009–2017.
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was determined by adding biomass increment of all trees with in each
inventory period with in the year. Litter fall is also the dry mass litter
within this specified time.

3. Statistical analysis

3.1. Auto-regressive model

We tested time series autocorrelation in NPP. Prior to modeling, all
continuous predictor variables were standardized and normality of re-
sidual errors was also checked. An autoregressive modeling approach
was recently used for timescales based tree growth and NPP analysis by
Macias-fauria et al. (2016). Therefore, we carried out autocorrelation
function (ACF) test to determine how many lag periods affect the
measured NPP based on ACF-lag plot. We found a clear time auto-
correlation at lag 2 and we incorporated in the regression model,
meaning that NPP at the beginning of measurement year (Feb.2009) is
influenced by the previous month’s NPP (NPPt−2). Since the measure-
ments take place at three-month intervals, we generated two lagged
NPP time series (6 months back to Feb 2009) using lag function to
consider in modeling.

The full time series model for the fitting NPP value looks like the
following (Vlam et al., 2013).

= + + + + + +−NPP α β NPP β T β TRF β RD β RH εt t t t t t t0 1 1 2 3 4 (5)

where t refers to time in months where NPP is calculated (usually every
three-month interval since Feb 2009), α is the intercept, β0–β4 is the
predictor coefficient for the climate and lag effect of NPP itself and ε is
the error term. Finally from all possible candidate linear regression
models, the best one was chosen based on AIC value using the “re-
gsubsets” function (Bolker et al., 2009).

3.2. Threshold analysis

As precipitation increases, its influence on NPP might weak beyond
a certain threshold, which was the level of some quantity needed for a
process to take place or a state to change. Here we examined the rainfall
threshold level in order to understand at which rainfall level NPP shows
more drastic responses based on three-month interval data. To identify
whether there was a threshold effect of precipitation, we applied
threshold regression with “chngpt” package in R (Fong et al., 2017).

3.3. Seasonal NPP variation analysis

We also partitioned NPP analysis in to two seasons (dry and rainy)
and tested for significant differences between seasons using a t-test.
Multiple regressions for each season was executed separately to

examine whether the key climatic factors underpin the NPP was dif-
ferent between the two seasons or not.

3.4. Inter-annual local climate and NPP temporal trend analysis

We tested the temporal trend association between time in months
and local climate variables using Pearson correlation (r) and similarly,
between time and NPP. A negative and positive Pearson coefficient
showed the decreasing and increasing trend respectively with in the
study periods.

4. Results

4.1. Temporal trends of local climate and NPP

According to the Pearson correlation test between time (in months)
and local climate variables (temperature, precipitation, radiation and
relative humidity), there was no significant relationship between time
and any local climate variable. The general trend showed that tem-
perature and radiation decreased over time, but this trend was not
significant. The minimum monthly temperature was 16.23 °C and the
maximum 26.23 °C since 2009–2017 (Fig. 3), while radiation ranged
from 149 to 161 W/m2. Trends in precipitation and relative humidity
showed a slight increase over time. The maximum annual rainfall event
was recorded in 2017 (1941.9 mm) and 2013 (1758.7 mm), while the
lowest events were recorded in 2009 (1224.5 mm) and 1282.9 mm in
2014 (Fig. 3).

There was an insignificant variation in annual NPP across years and
the general trend showed an increasing pattern (P = 0.18, t = 1.48),
with NPP increasing by 0.41 t ha−1 year−1. The highest NPP was re-
corded in 2013 (20.61 t ha−1), whereas the lowest was 12.58 t ha−1 in
2009 and details of three-month interval and yearly NPP value is in-
dicated in the figure below (Fig. 4).

4.2. Local climate effects on NPP

After applying model selection on the NPP with all the climatic
variables and autocorrelation variable models, we found that only
precipitation was chosen in the parsimonious model
(NPP = 1.985 + 0.006*precipitation, R2 = 0.59, p < 0.001). To
discern the seasonal effect, we conducted model selection for NPP in
rainy and dry seasons, separately. Model selection in both seasons
showed a consistent pattern that only precipitation was chosen in the
parsimonious models. However, the precipitation showed significant
and insignificant effects in dry (NPP = 0.271 + 0.021*precipitation,
R2 = 0.600, p < 0.001) and rainy
(NPP = 3.129 + 0.004*precipitation, R2 = 0.190, p = 0.07) season,
respectively. This seasonal difference suggested that there may be an
existence of a threshold response of forest productivity to increasing
precipitation. To verify our assumption, we implemented a segmented
continuous threshold regression on NPP using only precipitation as a
predictor variable.

The model uncovered a significant threshold in NPP with pre-
cipitation (Fig. 5(a)). The change point of precipitation was 229.2 mm
(95% confidence interval, 81.8–376.6 mm), and the threshold effect
was significant with a p-value<0.001 by bootstrap test (Fig. 5(b)). Our
results suggested that precipitation could facilitate the NPP but weaken
when reaching its maximum threshold.

The maximum NPP value in rainy season and dry season is 8.26 t/ha
and 7.61 t/ha respectively. The minimum mean value is 2.95 t/ha and
0.1 t/ha in rainy and dry season respectively. The mean in rainy and dry
season is 5.60 and 2.98 respectively, shows a higher significant seasonal
variation based on two-sampled test (t = 4.98, 95% confidence in-
terval = (1.55–3.69) and P < 0.001). Violin plot below showed dis-
tribution of NPP in the two seasons (Fig. 6).

Table 1
Tree layer biomass allometric equations of the tropical seasonal rain forest in
Xishuangbanna, Southwest China (Lv et al., 2007).

DBH classes Organs Regression biomass
equation
(D = diameter)

Correlation
coefficient
(p < 0.001)

2 cm ≤ DBH ≤ 5 cm Stem 0.0733 (D) 2.5884 0.803***
Branch 0.0135 (D) 2.5158 0.536***
Leaf 0.0394 (D) 1.456 0.456***
Root 0.028 (D) 2.399 0.683***

5 cm ≤ DBH ≤ 20 cm Stem 0.1086 (D) 2.3169 0.894***
Branch 0.0186 (D) 2.4685 0.743***
Leaf 0.0455 (D) 1.6636 0.589***
Root 0.0242 (D) 2.4205 0.876***

DBH > 20 cm Stem 0.0401 (D) 2.6752 0.934***
Branch 0.0829 (D) 2.0395 0.835***
Leaf 0.0979 (D) 1.3584 0.636***
Root 0.0111 (D) 2.6801 0.938***
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5. Discussion

5.1. Local climate and NPP temporal dynamics

In our study plot, all local climate variables and NPP didn’t show
statistically significant temporal variation from 2009 to 2017, but the
NPP increased over time (Fig. 4). A three years interval study since
1969–2012 in Paosh forest, Malaysia shows a decrease in NPP, due to
logging disturbance (Yoneda et al., 2016). Similarly, another study
from Malaysian tropical rainforest with four years observation period
(1994–1998) reported that, NPP decreased through time due to mor-
tality (Hoshizaki et al., 2004). Whereas, our study rainforest has been
free of any human disturbance for more than 50 years since it was
designated as a nature reserve, which contributes for the increased
productivity over years. Our study shows a slight variation from pre-
viously monitored NPP from the same forest (Tan et al., 2015). Dif-
ferences in the our results and Tan et al (2015) are likely due to our use
of specific allometric equations based on tree sizes and organs. Our
mean value of NPP is within the range of values reported from different
tropical forests (Table 2). Differences in NPP estimates are mainly at-
tributed to the following reasons. Differences in species richness and
stem densities (Flombaum and Sala, 2008; Gross et al., 2014; Morin
et al., 2011), species difference response ability to climate change,
temporal and spatial climate variability (Schelhaas et al., 2003;
Terradynamic et al., 2006; Wang et al., 2003), variation in the method
of NPP estimation (remote sensing based and direct biometric field
measurement) (Luyssaert et al., 2009; Ohtsuka et al., 2009).

5.2. The precipitation effect on NPP

Climate influence on forest productivity is scale dependent. Linear
regression model results suggested that precipitation was the only and
most important factor in driving the dynamics of NPP in Xishuangbanna
tropical seasonal rainforest 20-ha plot. Similarly, at local scale, the
studies in tropical forests (Cao et al., 2015; Del Grosso et al., 2008;
Toledo et al., 2011; Wagner et al., 2014; Wang et al., 2016) showed that
precipitation was more strongly linked to NPP than other climatic and
edaphic factors. The increase in precipitation across years resulted in
rising of soil moisture, increasing in photosynthesis and productivity of
vegetation (Brazeiro et al., 2016; Gustafson et al., 2017; Nayak et al.,

Fig. 4. (a) Three-month interval based NPP and its increasing trend since February 2009- December 2017, and (b) Annual NPP dynamics at Xishuangbanna dynamic
plot, South-west China.

Fig. 5. (a) The scatterplot of NPP vs. precipitation. The red line is the fitted segmented model. (b) The scatterplot of statistic vs. threshold and the optimal value in
dashed line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. NPP distribution across seasons.
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2013) in some parts of tropical regions, and this offers a possible ex-
planation for the strong relationship between precipitation and NPP
(Table 2). On the contrary, temperature was a more important predictor
for NPP than precipitation (Cleveland et al., 2011; Dura et al., 2018;
James et al., 2006; Reich et al., 2014; Sun, 2018; Williams et al., 2013).
Studies from Amazonian and tropical Asian rain forests showed that the
increase in net primary production and tree growth are owing mainly to
decreased cloud cover and the resulting increase in solar radiation
(Dong et al., 2012; Nemani et al., 2014), but radiation didn’t play a
significant role globally (Churkina and Running, 1998). In summary,
because of the complex nature of tropical forests, it is difficult to gen-
eralize that a certain climate factor drives tropical forests ubiquitously.
Therefore, temporal and spatial fine scale measurement is important to
fully understand the relationship between forest performances (e.g.,
productivity, tree mortality, and radial stem growth) and environment.

Tropical seasonal rainforest productivity response to precipitation is
scenario dependent. Interestingly in our study, we further identified a
significant threshold effect of precipitation on the NPP. NPP increase
more quickly until reaching a threshold level, which is 229 mm (Fig. 5).
There are no study reports with such fine temporal scale (three-month
interval) threshold level elsewhere. Some studies only showed yearly
threshold level. Example, in Hawaiian forest NPP decreased with in-
creased mean annual precipitation from 2000 to 5000 mm (Schuur and
Matson, 2001). Similarly, in tropical wet forest ecosystem, the re-
lationship between NPP and precipitation was negative beyond
2445 mm/year as threshold (Chuur, 2003), and no relationship found
in a Costa Rican tropical wet forest with mean annual rainfall 4000 mm
(Clark and Clark, 1994). Our study forest is characterized by a mean
annual precipitation less than 1600 mm, far below the standard of a
typical rainforest, rainfall of which is usually more 3000 mm/year.
Such optimum levels of rainfall in our study forest may promote soil
aerobic condition (Schuur and Matson, 2001), accelerate soil nutrient
uptake by plants and increase forest productivity (Cleveland et al.,
2010; Cusack et al., 2009; Liptzin et al., 2015). Alternatively, forests
with rainfall more than 3000 mm/year may experience lower solar
radiation due to increased cloudiness, potentially limiting photo-
synthetic rates (Graham et al., 2003) and leads to reduce forest pro-
ductivity.

Seasonality in NPP is one typical characteristic of this studied forest.
We found that NPP is strongly seasonal and the same result was re-
ported from lowland forest of Amazonia (Taylor et al., 2013). High
degree of seasonal climatic variation, leads to seasonality of forest
productivity in tropical forests (Girardin et al., 2018). Our result shows
that, there is no single climatic variable influencing the NPP in rainy
season. However, during dry season, precipitation is the most important
factor that facilitates NPP. This is due to the strong water demands of
trees during dry season and this suggests that the major limiting factor
for NPP in this season is water. The overall annual NPP climatic driver
is consistent with the dry season NPP, which showed that dry season
was more responsible to drive ecosystem productivity than rainy
season. Previous studies in this forest also reported that, NPP is higher
in rainy season than dry season, but statistically insignificant (Tan

et al., 2015). Similarly, recent study in tropical forests found that sea-
sonal precipitation positively correlated to forest productivity (Brazeiro
et al., 2016; Wagner et al., 2016; Xu et al., 2018). Another study in
tropical Asian forest showed that, forest productivity (growth) was
significantly and negatively correlated with temperatures, and posi-
tively correlated with dry season precipitation levels (Vlam et al.,
2013). Study in semiarid tropical Brazil forest showed that, rainfall
explained much of the variation in plant productivity, and its influence
is strong in extreme dry year (Salimon and Anderson, 2018), in line
with our study during dry season. In Bolivian tropical lowland forests,
the higher rainfall with a shorter and less intense dry period led to
higher tree growth rates (Toledo et al., 2011). To summarize, this study
demonstrates that forest productivity rates vary widely among seasons
in the seasonal tropical rainforest.

6. Conclusion

This 9 year (2009–2017) case study revealed that NPP increased
overs time; hence it is a sink of carbon. Precipitation is the only local
climate that drives NPP in this rainforest and it showed a significant
threshold effect at the rainfall change point of 229 mm/three months.
The observed clear variation of NPP between rainy and dry season
demonstrates that, forests productivity is highly seasonal in tropical
rainforest of Xishuangbanna, China. In all, our finding showed that
climate is a key to NPP dynamics at the sub annual scale in the tropical
seasonal tropical forests of southwestern China, which strengthens our
understanding of the dynamics of NPP. As a result, this study is a po-
tential reference resource for tropical forest managers and ecologists to
compare NPP between well conserved forests and more-disturbed for-
ests (e.g., fragmented forest). The threshold effect of precipitation on
NPP that we present is a strong theoretical guidance for water use ef-
ficiency management to sustainably manage and design tree based
land-use ecosystems. Future research is needed to determine if rainfall
thresholds are present in wetter or drier tropical forest and how they
change with local climate. Understanding the factors that control
rainfall thresholds in tropical forest productivity can potentially help
reduce uncertain in the forecasts of future tropical forest productivity in
the climate change era.
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Table 2
Comparison of our study site NPP with other tropical forest.

Site NPP(t ha−1 yr−1) Duration Reference Mean annual Precipitation (mm)

Xishuangbanna 17.17 2009–2017 This study 1527.2
Xishuangbanna 18.38 2010–2013 (Tan et al., 2015) 1631.5
Costa Rica 15.18 2007–2010 (Cao et al., 2015) 1391
Amazon 17.74 2003–2007 (Girardin et al., 2010) na
Borneo, Malaysiaa 30 1992–2008 (Kho et al., 2013) 2540
Pasoh, Malaysiaa 27 1971–1973 (Kira et al., 2013) 2054
Khao chong, Thilanda 28.6 1962–1965 (Kira et al., 2013) 2312
Chinese forestb 14.4 1989–1993 (Ni et al., 2003) 1250

Note: a = including loss to herbivore, b = country wise estimation, na = data not available.
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