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Limiting climate change to less than 2°C is the focus of international policy under 
the climate convention (UNFCCC), and is essential to preventing extinctions, a 
focus of the Convention on Biological Diversity (CBD). The post-2020 biodiversity 
framework drafted by the CBD proposes conserving 30% of both land and oceans 
by 2030. However, the combined impact on extinction risk of species from limiting 
climate change and increasing the extent of protected and conserved areas has not been 
assessed. Here we create conservation spatial plans to minimize extinction risk in the 
tropics using data on 289 219 species and modeling two future greenhouse gas con-
centration pathways (RCP2.6 and 8.5) while varying the extent of terrestrial protected 
land and conserved areas from <17% to 50%. We find that limiting climate change to 
2°C and conserving 30% of terrestrial area could more than halve aggregate extinction 
risk compared with uncontrolled climate change and no increase in conserved area.
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planning, extinction risk
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Introduction

Preventing human-driven extinctions of the species sharing the 
planet with us is among the greatest environmental challenges 
of our time (Ehrlich and Mooney 1983, Rockström  et  al. 
2009). The Convention on Biological Diversity (CBD) has 
been agreed by 195 nations to require ‘…maintenance and 
recovery of viable populations of species’ for the conserva-
tion of biodiversity (Convention on Biological Diversity 
1992). In the first draft of the post-2020 biodiversity frame-
work developed by the CBD, extinction risk reduction is a 
goal for 2030 to achieve the longer-term 2050 vision of a 
world of ‘living in harmony with nature’ (CBD Secretariat 
2020). Global extinction rate is a benchmark for planetary 
boundaries, defining both the sixth mass extinction event 
and a possible boundary for the Anthropocene geological  
epoch (Rockström  et  al. 2009, Dirzo  et  al. 2014,  
Ceballos et al. 2015).

Conservation of natural areas and sustainable use of 
nature are recognized as important instruments with which 
extinctions and other loss of biodiversity may be avoided 
(Convention on Biological Diversity 1992). A key target of 
the draft post-2020 biodiversity framework is to conserve 
sites of importance for biodiversity through protected and 
conserved areas covering at least 30% of land and ocean 
(CBD Secretariat 2020). On land, both conservation and 
sustainable use are currently challenged by increasing large-
scale monoculture and industrial developments, (Austin et al. 
2017) making some form of conservation or land-use man-
agement essential to realizing these aims in most regions. 
Without such conservation, loss of species’ habitats will result 
in increased extinction risk.

In addition to the local-to-global benefit of reducing 
extinctions and maintaining biodiversity, maintaining natural 
systems provides a wealth of benefits at all scales. A well-man-
aged system of conserved areas can provide vital ecosystem 
services, such as water purification and retention, erosion 
control, the reduction of flooding, maintaining river base 
flows and opportunities for ecotourism as well as minimiz-
ing extinctions (Dudley and Stolton 2003, Mulongoy and 
Gidda 2008). For example, protected areas containing forests 
provide an important supply of drinking water to more than 
a third of the world’s 100 largest cities (Dudley and Stolton 
2003). The conservation and effective management of natu-
ral areas is currently recognized as an important nature-based 
solution for climate change mitigation (Griscom et al. 2017, 
Dudley et al. 2018, Marquet et al. 2019); these areas account 
for approximately 20% of the CO2 sequestered by all terres-
trial ecosystems (Melillo et al. 2016).

Climate change is now altering ecological conditions 
across the planet, both on land and in the oceans, and spe-
cies are shifting their distributions in response to these new 
conditions (Bellard et al. 2012, Urban 2015, IPBES 2019). 
Species’ distributions are determined by a combination of 
climatic and other niche tolerances (including edaphic), 
geographical barriers and competition, so shifting climatic 

conditions result in changes in the areas occupied by species, 
altering representation in conserved areas and changing or 
reducing ecosystem benefits (Foden et al. 2007, Lenoir et al. 
2008, Pecl et al. 2017). Climate change is causing some spe-
cies to shift their distributions out of existing conserved areas 
(Araújo et al. 2004, Heller and Zavaleta 2009, Johnston et al. 
2013, Urban 2015), while also enabling some species to colo-
nize new areas (Chen et al. 2011, Angelo and Daehler 2013). 
Species’ climate niches are unique, meaning that species move 
individualistically in response to climate change. Species 
will be moving at different rates and in different directions,  
resulting in altered combinations of species in any one  
location over time.

The interaction between climate change and com-
plex landscapes makes knowing where to conserve species 
more complicated. Conservation plans that minimize area 
requirements based on species’ current locations and habi-
tat requirements will no longer be effective as those locations 
and habitats change. Establishing protected and conserved 
areas in the right places to facilitate species’ distributional 
shifts through time can help avoid extinctions due to cli-
mate change (Williams  et  al. 2005, Hannah  et  al. 2007, 
Phillips et al. 2008, Alagador et al. 2016, Bagchi et al. 2018). 
Until now it is unknown how much extinction risk reduction 
is possible under different extents of conserved area consider-
ing the effects of both land use change and climate change 
(though see Baillie and Zhang 2018).

To address these questions, we created conservation spa-
tial plans for 289 219 tropical plant and vertebrate species 
that minimized both present and modeled future extinction 
risk under two greenhouse gas concentration pathways – 
RCP2.6 and 8.5 – across varying area of terrestrial conser-
vation, from current levels up to 50% conserved, including 
30% conserved as suggested in the draft post-2020 frame-
work (CBD 2020). We used widely available vertebrate dis-
tribution and occurrence data as well as the most up-to-date 
compilation of terrestrial plant data (Enquist  et  al. 2019). 
Extinction risk results are expressed as the mean, maximum 
and minimum of our 10-climate model ensemble. Extinction 
risk can be assessed in multiple ways. The IUCN Red List 
classifies species into different categories of relative extinc-
tion risk, while multiple modeling approaches exist for esti-
mating probability of extinction including the species area 
relationship (SAR). The Zonation conservation planning 
software (Moilanen et al. 2014) incorporates SAR theory to 
produce estimates of extinction risk for every species. We sum 
these values across species to calculate an aggregate extinc-
tion risk (AER), ranging from 0 if no species are at risk to 1 
if all species have gone extinct). We thensummarize this for 
three major tropical biogeographic regions – the Neotropics, 
Afrotropics, and Southeast Asian tropics for both climate sce-
narios and conservation from present to 50% of terrestrial 
area. This allows us to assess, for the first time, which natural 
areas are required to minimize extinction risk of tropical spe-
cies in the face of climate change and how much extinction 
risk we may avoid by conserving additional area.
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Material and methods

Overview

We modelled present and future geographic ranges of  
94 337 plant species and 9722 vertebrate species across the 
Neotropics, Afrotropics and Southeast Asian tropics. Our 
methods are described in detail below, under the following: 
1) climate models and RCPs – we used 10 GCM selected to 
be consistent across the three regions and two RCP (2.6 and 
8.5) to provide low and high brackets of future climate; 2) 
spatial planning algorithm – we used Zonation conservation 
planning software with settings customized to accommodate 
range shifts under climate change; 3) extinction risk calcula-
tion – we used an AER index equal to the sum of individual 
species’ extinction risks, based on SAR; 4) species distribu-
tion models – we used Maxent (Phillips  et  al. 2006) to fit 
species distribution models at 30 arc-second (~1 km) resolu-
tion then project distributions into baseline climate all future 
climate scenarios at 2.5 arc-minutes (~5 km) for analysis; 5) 
environmental predictor variables – were taken from stan-
dard WorldClim variables plus a custom aridity index; 6) soils  
data – global soilgrids variables; 7) land use and land cover 
data – from global consensus landcover dataset; 8) plant data 
– we used botanical occurrence data assembled and standard-
ized within the BIEN database; 9) vertebrate data – we used 
publicly available occurrence records verified with IUCN 
expert range polygons. Details are given below for each of  
these methods.

Climate models and RCPs

We used 10 GCMs and two climate scenarios for the 2060–
2080 timeframe. The GCMs used to drive our biological 
models include Access 1.0, BCC-CSM1.1, CNRM-cm5, 
GFDL-cm3, MOHC-HADGEM2-es, NCAR-CCSM4, 
LASG-FGOALS-g2, NCC-NORESM-m, MIROC-ESM 
and MPI-ESM-lr. We used a low forcing scenario, RCP2.6, 
to approximate climate change consistent with meeting the 
Paris Agreement target of 2.0°C global mean temperature 
change, and RCP8.5 to approximate business-as-usual, no 
action on climate change.

Spatial planning algorithm

We used the Zonation Conservation Planning Software 
(‘Zonation’), a tool that allows for simultaneous prioritization 
of many thousands of conservation features (Moilanen et al. 
2005, Moilanen 2007). We applied Zonation at a horizontal 
spatial resolution of 2.5 arc-minutes (~5 km). Zonation can 
be used for conservation prioritization under climate change. 
This configuration of Zonation allows for simultaneous pri-
oritization of a species current range, its modelled future 
range, and the connectivity between the two limited by a spe-
cies’ capacity to disperse. The protocol for running Zonation 

under climate change projections is described in Kujala et al. 
(2013). Species current ranges were linked to projected future 
ranges through an interaction layer (Kujala et al. 2013). This 
layer is transformed by a dispersal kernel with a parameter 
to limit the interaction to the species total capacity to dis-
perse over the period of analysis. Total dispersal capacity was 
assumed to be 100 km for vertebrates (roughly 1 km year−1) 
and 10 km for vascular plants (roughly 0.1 km year−1) follow-
ing previously published studies (Warren et al. 2013). Species 
with too few occurrence records to produce a model were 
included as point locations (Zonation term = ‘species of spe-
cial interest’ or SSI) where the range was defined as each grid 
cell containing ≥1 occurrence record. Equal weighting was 
used for all conservation features.

Extinction risk calculation

Zonation/climate seeks to maximize biodiversity represen-
tation – both present and future – and thereby minimize 
extinction risk, at each area increment, based on a power-
law species area relationship (SAR) parameter that can be set 
for each conservation feature. Here we used the default SAR 
parameter (z = 0.25) for all areas in order to transform of the 
proportion of species ranges conserved at each step of the 
solution to the per species extinction risk where:

Extinction risk 1 Proportion conserved 0.25= - ( )^   

To summarize over all species at different time steps, we cal-
culated aggregate extinction risk (AER) at each step as the 
sum of individual species’ remaining extinction risk across all 
species normalized by the total number of species.

Species distribution models

Species distribution models were produced with Maxent 
(Phillips  et  al. 2006) for species with >10 unique occur-
rence records (i.e. unique 1 km grid cells in the modelling 
domain) (van Proosdij et al. 2016). Maxent settings followed 
the recommendations of Merow et al. (2013, 2014) to pro-
duce relatively less complex models (e.g. limiting features to 
linear, quadratic, and product functions) to minimize overfit-
ting. Modelling domains were limited to a spatial buffer of 
within 500 km of any valid occurrence record. This likewise 
limited the projected ranges to within 500 km of any verified 
observation. Background sampling was a random sample of 
10 000 points within the buffered modelling domain. Five 
model replicates were used in fitting the model and an aver-
age of the five replicates was used for the final species model. 
Parameters from the final model were used to project spe-
cies suitability for both baseline and future climate scenarios. 
Default values for regularization coefficients were used and 
30% of occurrence records were randomly reserved to assess 
model performance.
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Environmental predictor variables

We chose the following bioclimatic variables from downscaled 
20-year normals (Hijmans et al. 2005) baseline (1960–1990) 
and future (2060–2080) climates based on pan-tropical cor-
relation analysis: mean annual temperature (BIO1), mean 
diurnal temperature range (BIO2), seasonality of tempera-
ture (BIO4), minimum temperature of the coldest month 
(BIO6), mean annual precipitation (BIO12), seasonality of 
precipitation (BIO15). We also used an accumulated aridity 
index that is the sum of the monthly aridity (annual precipi-
tation – PET) for the maximum run of consecutive months 
where (PET > precipitation). Accumulated aridity index is 
derived from global monthly extra-terrestrial solar radiation 
data from Trabucco and Zomer (2019) and monthly maxi-
mum temperature, minimum temperature and precipitation 
from Worldclim ver. 1.4 (Hijmans et al. 2005).

Soils data

Soils variables used in species distribution models were depth 
to bedrock, pH, clay proportion, silt proportion and bulk 
density. All soil-related variables were obtained from Soilgrids 
ver. 1.0 (accessed February 2018) (Hengl  et  al. 2017). 
Variables with multiple strata available are the mean of the 
top 1 m (strata 1–4). Soils variables were included as it has 
been shown that climate change analyses that do not incor-
porate soils variability can misrepresent edaphic specialists 
(Corlett and Tomlinson 2020).

Land cover and land use data

Areas of existing built up land or intensive agriculture were 
removed from the analysis and therefore those cells are not 
part of the prioritization solution. Built up and agricultural 
areas were defined as >50% of pixel coverage for ‘urban’ and 
‘agriculture’ classes from the 1 km resolution global consen-
sus land cover dataset produced by Tuanmu and Jetz (2014) 
that were aggregated to match the 2.5 arc-minute resolution 
of analysis. Existing protected areas (IUCN and WCMC 
2018) were solved first using a hierarchical mask so that 
the conservation priorities take the effects existing protec-
tion into account. The analysis domain was limited to the 
Afrotropics, Neotropics and Indo-Malayan biogeographic 
realms with the Indonesian plus Papua New Guinea portion 
of the Australasian realm also included in the Asia domain 
(Dinerstein et al. 2017).

Plant data

Vascular plant data was extracted from the BIEN ver. 4.1 
database using the RBIEN package (Maitner  et  al. 2018). 
Occurrence records with geographic information were 
obtained for 275 372 species of which we modelled 94 
337. The BIEN data mainly comprise herbarium collec-
tions, ecological plots and surveys (DeWalt  et  al. 1999, 
Wiser et al. 2001, Enquist & Boyle 2012, Enquist et al. 2016,  

Fegraus 2012, Peet et al. 2012, Forest Inventory and Analysis 
National Program 2013, Anderson-Teixeira et al. 2015). For 
details of specimen data sources see Maitner  et  al. (2018). 
A full listing of the herbaria data used are given in the 
Acknowledgements section. The observations in the BIEN 
database are the product of contributions by 1076 different 
data contributors, including numerous individual herbaria, 
and data indexers of herbarium or plot data. Of the her-
baria, 550+ are listed in Index Herbariorum. Additionally, 
BIEN 4.1 includes data from RAINBIO, TEAM, The Royal 
Botanical Garden of Sydney, Australia, and NeoTropTree. 
Plot data within BIEN are from the CVS, NVS, SALVIAS, 
VEGBANK, CTFS, FIA, MADIDI, and TEAM data net-
works and datasets (< http://bien.nceas.ucsb.edu/bien/
data-contributors/all/ >).

Vertebrate data

Point occurrences for tropical vertebrate species were compiled 
from GBIF (GBIF download 2019; accessed through R pack-
age ‘rgbif ’) and restricted range bird species records (Birdlife 
International 2018) were combined for a total of 13 847 trop-
ical species, 9722 of which had sufficient occurrence records 
(>10) for modelling (van Proosdij et al. 2016). Occurrences 
were filtered to include only those with specific georeferenc-
ing coordinates, observations more recent than 1950, and 
human observations only (no fossil records or museum speci-
mens). Additionally, spatial outliers (more than 500 km from 
IUCN range polygon or >98th percentile of latitude + longi-
tude) were removed prior to modelling. IUCN and Birdlife 
International range map polygons for all available terrestrial 
mammals, birds, reptiles were used to generate the species 
list and as a means of occurrence record validation (Birdlife 
International 2018, IUCN and UNEP WCMC 2018).

Results

Our results show that a large reduction in extinction risk can 
be achieved by moving to a world in which 30% or 50% of 
terrestrial area is conserved, corresponding to the proposed 
action targets of the first draft post-2020 CBD framework 
(CBD 2020). Figure 1 illustrates the modeled reduction in 
aggregate extinction risk with increasing area conserved, for 
the Neotropics, Afrotropics and SE Asian tropics respectively. 
The reduction in extinction risk of up to 82% (ensemble 
mean) results from both reduced loss of habitat due to land 
use change and better representation of changing habitats 
for species moving in response to climate change. Outside of 
fully natural landscapes, achieving these minimum extinction 
results requires matching land uses to the habitat needs of 
species at risk of extinction in a particular area. For instance, 
shade coffee may provide habitat for many bird species, but 
not for understory tree species. Actual extinction risk may 
be somewhat higher because multiple-use or sustainable use 
landscapes may not provide suitable habitats for all species.
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The spatial distribution of natural areas needed to achieve 
these reductions in extinction risk is illustrated for each of 
the three major tropical regions in our study in Fig. 2A–C. 
Many areas highlighted are recognized as global biodiver-
sity hotspots (Myers  et  al. 2000), indicating the continued 
importance of conserving these regions of high endemism. 
Many also correspond to areas recently identified as plant 
rarity hotspots (Enquist et al. 2019). Mountain ranges and 
other areas of high topographic diversity feature prominently, 
likely due to existing high biodiversity, high endemism, 
and comparatively high climate and microclimate diversity 
(Rahbek et al. 2019a, b) coupled with the comparatively low 
velocity of climate change in these areas (Loarie et al. 2009). 
However, as the core area algorithm used (Moilanen 2007) 
prioritizes representation of all species, and will try to link 
niche-tracking to areas already conserved to the greatest 
degree possible, spatial priorities capture many distinct eco-
systems and climate types including lowland habitats.

The areas our prioritization highlighted as important for 
species on the move include many areas that are also high 
conservation priority under current climate. This is because 
conserving a species from present to future begins with con-
servation of the species’ current range, since this serves as 
the starting point for any future dispersal. Restricted-range 
species are concentrated in mountainous areas (Rahbek et al. 
2019a, b), where species’ movements in response to climate 
change will generally be upslope with warming temperatures 
(Peters and Darling 1985, Halpin 1997) or into nearby areas 
with suitable microclimates in complex terrain (Hannah et al. 
2014, Rahbek et al. 2019b). Low velocity of climate change 

in mountains (Loarie et al. 2009) and decreasing area with 
elevation mean that species’ upslope movements will occur 
over shorter distances in mountains (Serra-Diaz et al. 2014), 
further concentrating restricted-range species near current 
montane centers of endemism (Enquist et al. 2019).

We observe a steep drop-off in modeled AER with 
increasing conservation of (primarily montane) natural area  
(Table 1). If conservation is limited to existing protected 
areas, AER is projected to be high under both climate change 
scenarios – ranging from 60 to 77% under both RCP 8.5 and 
2.6. Moving to 30% land conservation combined with lower-
ing climate change (RCP2.6) results in reduction of modeled 
AER by 52–68% (ensemble mean) across all regions when 
compared with existing levels of conservation and higher 
(RCP8.5) climate change. Unsurprisingly, the greatest extinc-
tion risk reduction could be achieved by conserving 50% of 
terrestrial area with a low climate change scenario; this com-
bined action reduces modeled extinction risk by 72–82% in 
the ensemble mean (Table 1). Conserving 30% or 50% of 
land but with high climate change (RCP8.5), reduces mod-
eled extinction risk between 46–66% and 62–76% respec-
tively across the three regions under business-as-usual climate 
change (RCP 8.5) in the ensemble mean. Reducing climate 
change from business as usual (RCP 8.5) to the RCP 2.6 
scenario which is more consistent with limiting mean global 
temperature change to 2.0° could reduce extinction risk 
5–6% more under 30% land conservation. In contrast, with 
no increase in existing conservation area (<17% area), the 
same climate policy is projected to result in roughly −2 to 
12% additional decrease in ensemble mean extinction risk.

Figure 1. Modeled extinction risk reduction with increasing land conservation. Ensemble mean Aggregate extinction risk (AER) versus % 
terrestrial area conserved under RCP 2.6 (dashed lines) and RCP 8.5 (solid lines) for the Afrotropics (blue), Neotropics (red) and Asia 
Tropics (green). Vertical lines show the aggregate extinction risk curve intersection with 17%, 30% and 50% terrestrial area conserved. AER 
is the mean of individual species extinction risk at each increment of conserved natural land and is scaled from 0 to 1 (zero probability of 
extinction to likely extinct).
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Figure 2. (A–C) Spatial prioritizations for land conservation to minimize extinction risk. Zonation spatial solutions to minimize extinction 
risk in the Afrotropics (A), SE Asia tropics (B) and Neotropics (C). AER values in Fig. 1 are derived from these spatial solutions. Areas of 
darkest green are highest priority areas to minimize extinction risk at 17% land conservation. Successively lighter shades of green represent 
areas that minimize extinction risk at 30% and 50% land conservation. Existing conserved areas registered in the World Database of 
Protected Areas are shown in yellow. Priorities are selected to maximize representation of all species in both baseline (1960–1990) and future 
ranges (RCP8.5 2060–2080).
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Discussion

Our analysis suggests that 30% land conservation combined 
with climate change action could reduce extinction risk by 
half or more across multiple conservation/climate combi-
nations in all three tropical regions. Models show that even 
without lowered climate change (RCP8.5), 30% land con-
servation could reduce AER by at least half in the ensemble 
mean, except in the Neotropics. The lower levels of modeled 
reduction in the Neotropics are likely due to the high number 
of rare species in the Andes, distributed over a relatively large 
area that can not be completely captured with 30% land con-
servation. 30% land conservation could therefore pay major 
benefits to biodiversity conservation and is a strong target for 
CBD post-2020 consideration.

The analysis also suggests that 50% land conservation 
could lead to an even larger decrease in extinction risk, result-
ing in over 80% reduction in all regions when coupled with 
lower climate change (RCP2.6). Roughly half of the world’s 
ecoregions have already lost 50% or more of their original 
natural habitat (Dinerstein et al. 2017) so this longer-term 
vision of 50% land conservation would require restoration 
in many areas. Careful targeting of this restoration can have 

important long-term benefits for biodiversity. Geographic 
targeting at coarse scales can be accomplished by selecting 
priority areas indicated in Fig. 2A–C. Finer-scale priorities 
can be further elaborated by conducting local systematic 
spatial planning for climate change using methods similar  
to this study.

Natural areas can be conserved through a wide range of 
mechanisms, from government-designated protected areas 
to multiple-use land management such as community con-
servancies and other effective area-based conservation mea-
sures (OECM) (Dudley et al. 2018, Dinerstein et al. 2019). 
Which approach is the most appropriate will depend on the 
local environmental and social context (Brown et al. 2003). 
What is clear is that large-scale industrial land uses, particu-
larly monoculture and plantations, are becoming increasingly 
prevalent, so achieving the results reported here will require 
active policy or land use management intervention to main-
tain natural areas in high priority locations of highest value to 
species’ present and future ranges.

The modeled reductions in extinction risk we report 
depend on specific spatial configurations in our conserva-
tion solutions that in turn depend on GCM and species 
model variants. The uncertainty associated with our GCM 

Table 1. Aggregate extinction risk (AER) under varying land conservation areas and climate change. Ensemble mean, maximum and mini-
mum AER for high (RCP 8.5) and low (RCP 2.6) climate scenarios and three levels of land conservation (existing protected areas, 30% land 
conservation and 50% land conservation) for Asia, Africa and the Neotropics. Values are summed extinction risk across all species, scaled 
0 (zero extinction risk for all species) to 1 (100% extinction risk for all species). The ‘change’ columns represent the percent difference in 
AER relative to the current protected areas under RCP 8.5. The extinction risk values in Table 1 are presented in continuous form in Fig. 1.

Ensemble mean
Mean ensemble 

change Ensemble max
Max ensemble 

change Ensemble min
Min ensemble 

change

Neotropics
 RCP8.5
  Existing protected area* 0.686 – 0.765 – 0.631 –
  30% land conservation# 0.370 −46.1 0.468 −38.8 0.332 −47.4
  50% land conservation 0.259 −62.2 0.368 −51.9 0.219 −65.3
 RCP2.6
  Existing protected area 0.693 −2.6 0.735 −3.4 0.675 −0.8
  30% land conservation 0.332 −51.6 0.400 −58.2 0.301 −62.3
  50% land conservation 0.192 −72.0 0.269 −74.9 0.159 −74.8
Afrotropics
 RCP8.5
  Existing protected area 0.628 – 0.657 – 0.601 –
  30% land conservation 0.234 −62.7 0.267 −60.2 0.195 −67.6
  50% land conservation 0.171 −72.8 0.217 −71.8 0.140 −76.7
 RCP2.6
  Existing protected area 0.639 1.8 0.653 −0.6 0.629 4.7
  30% land conservation 0.197 −68.6 0.220 −66.5 0.178 −70.4
  50% land conservation 0.114 −81.8 0.140 −78.7 0.097 −83.9
Asia Tropics
 RCP8.5
  Existing protected area 0.756 – 0.771 – 0.745 –
  30% land conservation 0.261 −65.5 0.300 −61.1 0.227 −69.5
  50% land conservation 0.182 −75.9 0.223 −71.1 0.152 −79.6
 RCP2.6
  Existing protected area 0.671 −11.2 0.762 −1.2 0.614 −17.6
  30% land conservation 0.314 −58.5 0.360 −69.2 0.231 −69.0
  50% land conservation 0.259 −65.7 0.313 −80.5 0.143 −80.8

* IUCN categories I–VI.
# IUCN categories I–VI + OECM.
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variants is relatively low. Across 10 general circulation models 
(GCM), the average ratio of ensemble mean to maximum is 
0.85 and of ensemble mean to minimum is 1.17 for the 30% 
conserved area target. Species modelling uncertainty is higher 
than the uncertainty associated with climate models (Araújo 
and Guisan 2006). Modeling a large number of species over 
a broad spatial domain at relatively fine resolution requires 
substantial compute resources, which is then multiplied 
when several GCMs and climate pathways are considered. It 
is an acknowledged limitation of this study that we report the 
results of only one species distribution model method, as it 
has been found that choice of modeling method is often the 
largest source of variation in species range projections (Diniz-
Filho et al. 2009, Garcia et al. 2012). Exploring solution space 
with multiple species models is important and is a priority 
for our research group and we recommend that the results 
presented here be vetted against alternative species modeling 
techniques. Use of ensemble species modeling methods and 
the uncertainties they represent is a key recommendation of 
recently agreed upon standards for biodiversity assessments 
(Araújo et al. 2019) and is therefore an opportunity to refine 
the results presented here. Indeed, the approach described in 
Kujala  et  al. (2013) which was followed this study offers a 
template to incorporate species model uncertainty as well as 
climate model uncertainty in the prioritization.

Despite this limitation, there are multiple reasons for us 
to believe that these results, using only one species distribu-
tion model method (Maxent) are likely robust at the scale 
of our analysis. First, our conservation planning algorithm, 
Zonation, seeks solutions that minimize extinction risk, 
which means minimizing range loss in rare species. Rare spe-
cies are concentrated in tropical and Mediterranean moun-
tains (Enquist  et  al. 2019, Rahbek  et  al. 2019a, b). These 
areas will emerge as high priority under current and future 
climate, regardless of species model. Second, we include spe-
cies that have too few records to be modeled. These species 
are included in the conservation prioritizations with their 
current occurrences set equal to their future occurrences. 
Since most species are rare (Enquist et al. 2019), nearly one-
third of the species driving our priorities are these rare species 
with too few occurrences to model. These species and the 
spatial priorities to conserve them are independent of species 
models. Third, species will be predominantly moving upslope 
in tropical mountains, so while exact locations of conserva-
tion importance for individual species may be dependent on 
species models, general tropical montane locations, becom-
ing even more concentrated as climate changes, dominate our 
general global results. Since rare plant species are common 
and >90% of our modelled species are plants, including non-
modelled species reduces the biases associated with exclusive 
reliance on the more widespread species with enough records 
to model. Finally, Rare species are concentrated where past 
climate change could be tracked with limited movement 
(Sandel et al. 2011), likely reflecting frequent limited disper-
sal ability in these species (Foden et al. 2013) so at the spatial 
resolution of our study, their future ranges are likely to be 

within the same selection unit as their present range, reduc-
ing or eliminating the uncertainty that arises from lack of 
ability to simulate their future range.

The AER and spatial results reported here show that on 
coarse scales and across broad domains, we know where to 
conserve to be most effective in meeting international con-
servation goals, even as climate changes. Conserving the areas 
highlighted in our results can pay large dividends in carbon 
sequestration to reduce climate change, as well as provid-
ing other ecosystem services while reducing extinction risk 
and maintaining biodiversity. However, the converse is not 
necessarily true – maximizing carbon sequestration may not 
automatically conserve these critical biodiversity and cli-
mate priorities (Di Marco  et  al. 2015). Carbon sequestra-
tion, both above-ground and below-ground, may be higher 
in lowland ecosystems. A strategy to maximize per unit area 
carbon sequestration by pushing agriculture and other devel-
opment into more marginal uplands will require clearing 
more habitat to meet production needs, in the very habitats 
that are most important to conserve (Di Marco et al. 2015, 
Rahbek  et  al. 2019a, b). In some cases, a strategy of con-
serving more upland area (to sequester the same amount of 
carbon) could meet the same carbon goal, provide substantial 
ecosystem services such as watershed protection, while having 
much greater biodiversity benefit and potentially, as tradeoff, 
allowing some lowland areas with high agricultural potential 
to be developed.

Achieving these multiple biodiversity and ecosystem ser-
vice benefits in the real world requires continuous, iterative 
planning. No set of priorities can be completely or instanta-
neously realized in a world of multiple competing develop-
ment interests that play out over time. Rather, in the real 
world, conservation and development planning moves incre-
mentally and often imperfectly. So while the spatial priorities 
presented here can greatly reduce extinction risk, real world 
planning to reduce extinction risk will need to accept com-
promises and reorder priorities as choices (many times less 
than optimal) are made. More important than a perfect set 
of priorities is an ongoing planning process that considers 
climate change effects on biodiversity and ecosystem services. 
Such a process can ensure that at every decision point about 
which areas are to remain natural or to be developed, the 
highest priority areas for biodiversity under climate change 
are identified. While the highest priority area may not always 
be conserved, systematic bias towards the highest priority 
remaining sites will progressively drive solutions towards 
reduction of extinction risk. For this reason, it is important 
to establish systematic conservation planning for biodiver-
sity and climate change as a key process within government 
offices in charge of conservation and development planning, 
as they should continuously update priorities for conserva-
tion as solutions are implemented, as well as when knowledge 
of changes in species distributions and other effects of climate 
change increases.

Ongoing systematic conservation planning allows for 
assimilation of new data and improved climate models. For 
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the conservation of biodiversity, uncertainties need not stand 
in the way of action. By building systematic planning pro-
cesses that serve communities and nations for decades, pro-
gressive reduction in uncertainty will result in continually 
improved conservation and development outcomes. The per-
fect should not be the enemy of the good; our land use plans 
will never be perfect, but they can be good, they can incor-
porate consideration of conservation and species movements 
due to climate change and they can continually improve. 
Doing so can help ensure that all of the species that share this 
planet with us will continue to thrive, and provide benefits to 
people, even as climate changes.

Data availability statement

Data are available from the Figshare Digital Repository: doi: 
10.6084/m9.figshare.c.4868019 (Hannah et al. 2019).
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