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Premise of research. Understanding the relationship between field-measured operating stomatal conduc-
tance (gop) and theoretical maximum stomatal conductance (gmax), calculated from stomatal density and ge-
ometry, provides an important framework that can be used to infer leaf-level gas exchange of historical, herbar-
ium, and fossil plants. To date, however, investigation of the nature of the relationship between gop and
theoretical gmax remains limited to a small number of experiments on relatively few taxa and is virtually unde-
fined for plants in natural ecosystems.

Methodology. We used the gop measurements of 74 species and 35 families across four biomes from a
published contemporary data set of field-measured leaf-level stomatal conductance in woody angiosperms and
calculated the theoretical gmax from the same leaves to investigate the relationship between gop and gmax across
multiple species and biomes and determine whether such relationships are widely conserved.

Pivotal results. We observed significant relationships between gop and gmax, with consistency in the
gop∶gmax ratio across biomes, growth habits (shrubs and trees), and habitats (open canopy and understory
subcanopy). An overall mean gop∶gmax ratio of 0.26 5 0.11 (mean 5 SD) was observed. The consistently
observed gop∶gmax ratio in this study strongly agrees with previous hypotheses that an ideal gop∶gmax ratio
exists.

Conclusions. These results build substantially on previous studies by presenting a new reference for a con-
sistent gop∶gmax ratio across many levels and offer great potential to enhance paleoclimate proxies and
vegetation-climate models alike.

Keywords: biome, habitat, operational stomatal conductance, theoretical maximum stomatal conductance,
woody angiosperms.

Online enhancements: supplemental tables and figure.
Introduction

Stomatal conductance is the exchange of carbon dioxide for
photosynthesis and water vapor via transpiration through mi-
croscopic pores called stomata on the areal parts of plants,
principally the leaf surface. Diffusion of water vapor through
stomata is 1.6 times that of carbon dioxide; therefore, transpi-
rational water loss from the leaf is a costly but unavoidable
trade-off between plants’ photosynthetic gain and productivity
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(Farquhar and Sharkey 1982) and their instantaneous water
use efficiency (ratio of rate of transpiration toCO2 uptake;Katul
et al. 2009;Manzoni et al. 2011; Buckley and Schymanski 2014;
Franks et al. 2015).

Stomata are highly sensitive to fluctuating environmental
conditions such as light, temperature, and CO2. The stomatal
pore is surrounded by two guard cells that are highly sensitive
to environmental signals such as changes in light intensity, tem-
perature and humidity, soil moisture and nutrient status, and
internal guard cell and mesophyll signals. Resulting changes
in turgor pressure in the guard cells adjust the stomatal opening
to regulate gaseous exchange, maximize CO2 uptake, and min-
imize water loss (Farquhar and Sharkey 1982; Schulze et al.
1994; Hutjes et al. 1998; Hetherington and Woodward 2003;
6.069.219 on February 12, 2020 18:52:43 PM
 and Conditions (http://www.journals.uchicago.edu/t-and-c).
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Mott 2009; Franks et al. 2013; Lawson and Blatt 2014; Mc-
Ausland et al. 2016). Through their short-term critical opening-
closing response to rapid environmental change, as well as the
longer-termdevelopmental downregulating in response to rising
atmospheric CO2, stomata have potential to greatly influence
ecosystem function and the global carbon and hydrologic cycles.
Therefore, they play a pivotal role in Earth system and plant-
climate feedbacks (Hetherington andWoodward 2003; Gedney
et al. 2006; Betts et al. 2007; Berry et al. 2010; Keenan et al.
2014; Schlesinger and Jasechko 2014; Lin et al. 2015; Ukkola
et al. 2015; Engineer et al. 2016; Li et al. 2016) and are critical
in determining vegetation response to environmental change
(Leakey et al. 2009; Medlyn et al. 2011).

Stomatal conductance, referred to here as “operational sto-
matal conductance” (gop; McElwain et al. 2016b), is a function
of the stomatal density (D) and the depth and degree of open-
ness of the stomatal pore (pamax) in response to internal and
environmental signals (Berry et al. 2010; Drake et al. 2013).
The theoretical maximum stomatal conductance (gmax) is calcu-
lated from measurements of the stomatal density and geometry
according to a diffusion equation (eq. [1] in “Material andMeth-
ods”; Parlange andWaggoner 1970; Franks and Beerling 2009).
These same stomatal traits ultimately determine gop (Franks and
Beerling 2009), yet the nature of the relationship between gop and
gmax remains largely unquantified beyond a small number of
growth chamber and greenhouse studies (Franks et al. 2009;
Dow et al. 2014; McElwain et al. 2016b).

It has been observed that measured gop in field conditions
rarely achieves the maximum theoretical gmax limits, as defined
by leaf anatomical traits (Körner 1995; Lawson and Morison
2004; Dow and Bergmann 2014). Furthermore, because it is a
purely theoretical measurement, theoretical gmax is usually
greater than the observed gop by a large degree (Sack and
Buckley 2016). This disparity has propelled many areas of bo-
tanical research into establishing the basis for this (Franks et al.
2009; Dow et al. 2014; McElwain et al. 2016b). For example,
studies have explored the extreme variability in stomatal dis-
tribution across a leaf surface (Casson and Gray 2008) and
how stomatal development and, therefore, stomatal density
are heavily influenced by environmental conditions, particularly
light (Lake et al. 2001; Lomax et al. 2009) andCO2 (Woodward
1987; McElwain and Chaloner 1995; Woodward and Kelly
1995; Wagner et al. 1996). Alternatively, the mismatch between
gop and gmax might be due to the short-term behavioral re-
sponses of stomata to minimize transpiration and increase wa-
ter use efficiency by rapidly reducing their aperture, particularly
when evaporative demands are high during drought conditions
(Buckley 2005; Katul et al. 2012; Kollist et al. 2014). In addi-
tion, over the longer term, gmax of a leaf can be altered via
changes in size and density in response to protracted drought
(Franks et al. 2009, 2015) and/or rising atmospheric carbon di-
oxide concentrations (Woodward 1987; Ainsworth and Rogers
2007; Franks and Beerling 2009; Lammertsma et al. 2011;Gray
et al. 2016). This, in turn, imposes constraints on gop (McElwain
et al. 2016b). The sheer diversity of species-specific gmax and gop
responses to abiotic factors and their relationship to one an-
other also prompts us to ask whether a consistent relationship
between gmax and gop exists. A coordinated trade-off between
physiological (gop) and anatomical (gmax) control of stomatal
conductance has been suggested (Haworth et al. 2013), imply-
This content downloaded from 159.22
All use subject to University of Chicago Press Terms
ing that, if there is coordination, defining a relationship between
theoretical gmax and physiological gop should be possible. Stud-
ies have observed thatmeasured gop is between 20%and25%of
theoretical gmax, or in other words, the gop∶gmax ratio is between
0.2 and 0.25 (Franks et al. 2009, 2014; Dow et al. 2014;
McElwain et al. 2016b). It has been speculated that this is an
ideal level of gop, at which stomata are enabled to respond rap-
idly to environmental flux by opening or closing as conditions
dictate (Franks et al. 2012; Dow et al. 2014).
Over the past 10 years, experiments to determine a reliable re-

lationship between gop and gmax, or the gop∶gmax ratio, have
yielded broadly consistent results (Dow et al. 2014; Franks
et al. 2014;McElwain et al. 2016b); however, these studies have
been taxonomically limited and rarely included both measured
gop and calculated theoretical gmax parameters from the same
leaves. The aim of this study was to advance our current under-
standing of the nature of the relationship between gop and gmax
across multiple species and biomes to determine whether such
relationships are widely conserved. More simply put, we asked
whether theoretical gmax, which is calculated from stomatal
anatomy according to the diffusion equation (eq. [1]; Parlange
and Waggoner 1970; Franks and Beerling 2009), is a good pre-
dictor of gop measured in the field.
We explored the relationship between gop and gmax by mea-

suring gop in a wide range of woody angiosperm species in natu-
ral ecosystems and then calculating gmax from the same leaves on
which the gopmeasurements were taken to establish the nature of
the relationship at biological and ecological levels. Therefore, we
tested the relationship across many species, plant growth habits
(trees and shrubs), habitats (open canopy and understory sub-
canopy), and biomes (boreal forest, temperate rain forest, tropi-
cal rain forest, and tropical seasonal [moist] forest). If we can es-
tablish consistency in the nature of the relationship between gop
and gmax, this would be valuable for historical herbarium studies
and deep-time fossil studies because it would allow estimation of
physiological stomatal conductance fromobservationsofanatom-
ical stomatal traits. It would also have an important application
for climate andEarth systemmodels inwhich gop can be estimated
from the stomatal traits and, in turn, open up the possibility of
studying vegetation feedbacks on the hydrologic cycle.

Material and Methods

Biome and Species Selection

For this study, we used a published field data set of stomatal
conductance measurements of C3 woody angiosperm species
from seven biomes called STraits (Murray et al. 2019). We
chose the following four out of the seven biomes included in
the STraits data set for our current study on the basis that they
spanned wide geographic, climatic, and species ranges and are
the least well represented in the literature: boreal forest, temper-
ate rain forest, tropical seasonal (moist) forest, and tropical rain
forest. We selected 74 species from a total 136 species included
in the STraits data set across these biomes (Murray et al. 2019;
table 1). Based on the APG IV system of flowering plant classi-
fication (APG et al. 2016), our study covers 35 woody angio-
sperm families and 16 orders, all of which are from the Eudicot
clade,which includes theRosid andAsterid clades. Phylogenetic
coverage in this studyexcludes thebasal angiospermMagnoliids,
6.069.219 on February 12, 2020 18:52:43 PM
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the Chloranthales, gymnosperms, monocots, and ferns (APG
et al. 2016). One species, Sambucus racemosa, occurred in both
the boreal forest and the temperate rain forest andwas therefore
counted as two separate species occurrences, resulting in 75 sep-
arate species analyzed (table 1).
Leaf-Level Operational Stomatal Conductance Data

The term “operational stomatal conductance” (gop) used here
refers to stomatal conductance as it performs under natural field
conditions, following the definition of McElwain et al. (2016b).
The gop data used in this study are taken from the published
STraits data set of Murray et al. (2019). In Murray et al.
(2019), stomatal conductance measurements were obtained by
the author using an SC-1 steady-state leaf porometer (Decagon
Devices, Pullman, WA) over the course of three summer grow-
ing seasons between 2013 and 2015, when atmospheric CO2
concentrations ranged from396.5 to 400.8 ppm.Measurements
were made on the abaxial surface of sun leaves located at the
canopy edge or, in the case of naturally occurring understory
shrub species, on the abaxial surface of leaves exposed to sun
flecks. Mean species gop was calculated from an average total
of 12gopmeasurements per species (i.e., a single gopmeasurement
taken from one leaf of each of three individuals on three or four
consecutive days). This yielded a total 854 measurements on
243 individual leaves (table 1). Measurements were taken be-
tween 0830 and 1400 hours at each site under ambient environ-
mental conditions to capture natural day-to-day variability in
photosynthetically active radiation (PAR), temperature, and va-
por pressure deficit (VPD), a modification of the variance proto-
col described in McElwain et al. (2016b). Detailed methods are
available in Murray et al. (2019).

All mean conductance values reported in Murray et al.
(2019) were subsequently corrected using a relationship estab-
lished between stomatal conductance measurements taken by
porometry and measurements on the same individuals taken
by infrared gas analysis (IRGA).
Measurement of Morphological Traits
and Calculation of Theoretical gmax

The same 243 leaves on which gop was measured were used
for measurement of stomatal morphology (density and size)
and for calculation of theoretical gmax. A leaf section of 1-cm2

area was cut from approximately the same location on the leaf
where gop measurements were made, yielding a total 243 leaf
sections. These were fixed abaxial side up on glass slides
without mounting medium and gently secured with a cover slip
and tape. Six photomicrographs per leaf section were captured
using a Leica DFC300 FX digital color camera mounted on a
Leica DM2500 microscope with a #20 objective lens (#200
magnification; Leica Microsystems, Wetzlar, Germany). Visu-
alization of the stomatal anatomy of most species was achieved
via autofluorescence of stomatal complexes under epifluores-
cence using a range of excitation fluorescence filters (green:
500–570 nm; yellow and orange: 570–610 nm). In the very
few instances in which epifluorescence did not yield clear images,
leaf epidermal impressions were made by applying clear nail var-
nish to the abaxial leaf surface of each leaf, approximately where
This content downloaded from 159.22
All use subject to University of Chicago Press Terms
gop measurements were taken. The resulting epidermal impres-
sionwas then peeled off the leaf using clear Sellotape, transferred
directly to microscope slides, and photomicrographed under
transmitted light. Leaves on which stomata were obscured by
dense trichomes, thick cuticle wax, and/or papillae that could
not easily be removed and leaves with stomata not clearly visible
under microscopy were not included in the study. Micrographs
were generated using Auto-Montage Pro Syncroscopy software
(Synoptics, Frederick,MD). A 0.09-mm2 grid and scale bar were
superimposed on each micrograph using AcQuis (ver. 4.0.1.10,
Syncroscopy, Cambridge, UK). Stomatal density was estimated
using the Cell Counter in ImageJ version 1.49 software (http://
imagej.nih.gov/ij) following Poole and Kürschner (1999). Sto-
matal dimensions—pore length (mm) and guard cell width
(mm)—were measured on 10 open stomata randomly selected
from the six photomicrographs of each species using ImageJ
and converted to meters for gmax calculation. Calculations of
theoretical gmax were then made using the following equation
(Parlange and Waggoner 1970; Franks and Beerling 2009):

gmax p
(dw=v) ⋅D ⋅ pamax

pd1 (p=2)  ⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(pamax=p)

p , ð1Þ

where dw, diffusivity of water vapor at 257C (0.0000249 m2 s21),
and v, molar volume of air (0.0224 m3 mol21), are constants;D is
stomatal density (m22); pamax constitutes maximum stomatal
pore area (m2) calculated as an ellipse (Lawson et al. 1998) using
stomatal pore length (m) as the long axis and l/2 as the short
axis; and pd is stomatal pore depth (m), assumed to be equiva-
lent to the width of one fully turgid guard cell (Franks and
Beerling 2009b).

Because the dried leaves for this study were not rehydrated
by any means, it is possible that leaf area reduced in some spe-
cies because of shrinkage caused by the drying process (Blonder
et al. 2012). The degree of leaf shrinkage varies with plant func-
tional type (PFT; Blonder et al. 2012). We tested for shrinkage
in the two PFTs in this study—woody angiosperm evergreen
and deciduous—by applying the correctionmean shrinkage sug-
gested by Blonder et al. (2012) for these PFTs of 15% for ever-
green leaves and 27% for deciduous leaves to the individual leaf
stomatal morphological (guard cell width and pore length) and
density measurements. We then calculated the new gmax (ta-
ble S1; tables S1–S8 are available online). It is worth noting that
the mean area shrinkage for evergreen types is also the reported
mean for all woody species (15%; Blonder et al. 2012). A
Kruskal-Wallis test for equal medians determined no significant
difference between the gmax used in this study and the gmax cal-
culated from the applied shrinkage factors (table S1). Therefore,
all analysis was carried out using gmax calculated from the orig-
inal uncorrected stomatal morphological and density data.
Statistical Analysis

All statistical analysis was carried out using IRGA-corrected
species mean gop (as outlined above). Each species mean gop value
ina givenbiomewasweighted against the total number of individ-
ual gop measurements for that biome according to the following:

n species gop=n biome gop ⋅ species gop,
6.069.219 on February 12, 2020 18:52:43 PM
 and Conditions (http://www.journals.uchicago.edu/t-and-c).
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where n species gop is the total number of individual gop mea-
surements per species, n biome gop is the total number of spe-
cies gop measurements for a given biome, and species gop is the
mean gop for a given species. The gop∶gmax ratios were thus cal-
culated from the weighted mean gop and mean gmax values
(weighted gop/gmax). Normality tests (Shapiro-Wilk W-test and
Anderson-Darling A-test) and post hoc tests (Levene’s test
for homogeneity of variance frommeans, Tukey’s honest signif-
icant difference test for normal data, and the Kruskal-Wallis test
for equal medians for nonnormal data) were carried out as nec-
essary on all data and data groups. Reduced major axis (RMA)
regressions were performed to investigate the relationship be-
tween gop and gmax and to determine r2 and statistical signifi-
cance (P < 0:05). Boxplots were generated to determine data
distribution and differences between groups. All statistical anal-
yses were performed using Past version 3.14 (http://folk.uio.no
/ohammer/past/). Figures were generated using R statistical
package version 3 (R Core Team 2015).
Results

The gop : gmax Ratio across Biomes

Overall, across 74 species and four biomes, the gop∶gmax
ratio was 0.26 (see table 2 for a comparison of recent in-
vestigations into the gop∶gmax ratio). The tropical seasonal
(moist) forest displayed the smallest mean gop∶gmax ratio
(0.23), while the highest gop∶gmax ratio was found in the tropical
rain forest (0.31; table 1). High variability in species-level
gop∶gmax ratio was observed between species within and across
all biomes, from a minimum 0.08 in Neea buxifolia from the
tropical seasonal (moist) forest to a maximum 0.6 in Sambucus
racemosa from the boreal forest (table 1). There was no signifi-
cant difference in median biome gop∶gmax ratios x2p 4:976,
P p 0:17) with mean and median values among biomes in close
agreement (fig. 1A; tables 3, S2).
The gop : gmax Ratio in Habitat Groups

Species data were categorized according to two habitat
groups: open canopy and understory subcanopy. Overall, the
biome-wide mean gop∶gmax ratio in both the open-canopy
(n p 26) and the understory-subcanopy (n p 49) habitats
was the same, with a calculated ratio of 0.28 (P p 0:319;
fig. 1; tables 3, S3).

In the open-canopy habitat, there was no significant difference
in overall mean gop∶gmax ratio between biomes (F p 0:157,
P p 0:924; fig. 1; table S4). In the understory-subcanopy hab-
itat, there was a significant difference inmean gop∶gmax ratio be-
tween the tropical rain forest and both the temperate rain forest
and the tropical seasonal (moist) forest biomes (P p 0:005 and
P p 0:026, respectively; Tukey’s honest significant difference
test), with the tropical rain forest displaying the highest mean
gop∶gmax ratio in both habitats across all biomes at 0.32 (fig. 1;
table S5).

In the boreal forest, tropical seasonal (moist) forest, and trop-
ical rain forest, there was no significant difference between the
mean gop∶gmax ratio of the open-canopy habitat and that of
the understory-subcanopy habitat (P > 0:05; fig. 2). Only the
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temperate rain forest displayed a significant difference between
habitat groups (F p 6:692, P p 0:02).
The gop : gmax Ratio in Growth Habit Groups

Species data were also categorized according to plant growth
habit (tree and shrub) within each biome. The overall mean
gop∶gmax ratio was 0.25 for shrubs (n p 34) and 0.27 for trees
(n p 41; table S6). Overall, there was no significant difference
in the gop∶gmax ratio between shrub and tree growth habits
x2 p 0:509, P p 0:476; table S6).
No significant difference was observed in either the mean

shrub gop∶gmax ratio or the mean tree gop∶gmax ratio between
biomes (ANOVA P p 0:2789 and Kruskal-Wallis x2p3:768,
P p 0:288, respectively; fig. 1C; tables 3, S7). Within biomes,
there was no statistically significant difference between mean/
median shrub and tree gop∶gmax ratios (P > 0:05).
Relationship between gop and gmax

Linear regressions were performed using RMA to account
for errors in both x and y variables. Across the total 75 C3
woody angiosperm species and four biomes, the best-fit linear
relationship between gop and gmax was gop p 0:26 ⋅ gmax2
5:56 (r2 p 0:304, P < 0:001; table 3; fig. 1). Within each of
the four study biomes, there was a significant positive relation-
ship between gop and gmax, with no significant difference be-
tween slopes x2p5:375, P p 0:146; table 3; fig. 2).
Relationships between gop and gmax in both the open-

canopy and understory-subcanopy habitat groups were signif-
icant (r2 p 0:262, P p 0:009 and r2 p 0:238, P < 0:001, re-
spectively; table 3; fig. 2). In both the tree and the shrub
groups, the relationships between gop and gmax were also sig-
nificant (r2 p 0:209, P < 0:001 and r2 p 0:318, P p 0:007,
respectively; table 3; fig. 2), with no difference between slopes
x2p3:252, P p 0:07; table 3). There was significant differ-
ence in the slopes of the open-canopy and understory-
subcanopy habitats x2p 3:986, P p 0:0459; table 3; fig. 2).
Stomatal Traits

Stomatal density. There was wide species variation in the
range of estimated D across all four biomes, from a minimum
average D of ~65 mm22 in the boreal forest (S. racemosa) to a
maximum average of 928 mm22 in the tropical seasonal forest
(Eugenia axillaris; table 1). There was no statistically signifi-
cant difference in mean D between boreal forest and temper-
ate rain forest species (P p 0:172). There was also not a sig-
nificant difference in D between the tropical rain forest and
the tropical seasonal (moist) forest (P p 0:72). A significant
difference was observed between the boreal forest and both
the tropical rain forest (P p 0:0002) and the tropical seasonal
(moist) forest (P p 0:0004) and, likewise, between the tem-
perate rain forest and both the tropical rain forest and the
tropical seasonal (moist) forest (P p 0:001 and P p 0:002,
respectively; table 1).
Stomatal pore area. Overall, stomatal pore length ranged

from a mean minimum 2.9 mm (E. axillaris) in the tropical
seasonal (moist) forest to a mean maximum 18.1 mm (Populus
6.069.219 on February 12, 2020 18:52:43 PM
 and Conditions (http://www.journals.uchicago.edu/t-and-c).



Ta
bl
e
2

M
os
t
R
ec
en

t
In
ve
st
ig
at
io
ns

of
th
e
R
el
at
io
ns
hi
p
be

tw
ee
n
O
pe

ra
tio

na
l
St
om

at
al

C
on

du
ct
an

ce
(g

o
p
)

an
d
Th

eo
re
tic

al
M
ax
im

um
St
om

at
al

C
on

du
ct
an

ce
(g

m
ax
)
an

d
Ex
pe

ri
m
en

t
D
et
ai
ls
,
w
ith

D
et
er
m
in
ed

g o
p
∶
g m

ax
R
at
io
s

St
ud

y
St
ud

y
ty
pe

Pl
an

t
ty
pe

E
nv

ir
on

m
en
t/
pr
ot
oc
ol

Sp
ec
ie
s
(n
)

Po
re

(c
al
cu
la
te
d
as
)

g o
p
∶
g m

ax
E
qu

at
io
n

Fr
an

ks
et

al
.
20

09
Si
ng

le
sp
ec
ie
s

W
oo

dy
an

gi
os
pe
rm

(E
uc
a-

ly
pt
us

gl
ob

ul
us

se
ed
lin

gs
an

d
co
pp

ic
e
sh
oo

ts
)

Fi
el
d
ex
pe
ri
m
en
t

1
C
ir
cl
e

.2
g w

m
a
x
p

(d
⋅D

⋅a
m
a
x
)=
(v

⋅(
l1

(p
=
2)

⋅
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi

(a
m
a
x
=
p
)

p
))

D
ow

et
al
.
20

14
Si
ng

le
sp
ec
ie
s

H
er
ba

ce
ou

s
(A

ra
bi
do

ps
is

th
al
ia
na

m
at
ur
e
ro
se
tt
e

le
av
es
)

G
ro
w
th

ch
am

be
r

1
(6

ge
no

-
ty
pe
s)

E
lli
ps
e

.2
A
na

to
m
ic
al

g s
m
a
x
p

(d
⋅D

⋅a
m
a
x
)=
(v

⋅(
l1

(p
=
2)

⋅
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi

(a
m
a
x
=
p
)

p
))

Fr
an

ks
et

al
.
20

14
T
he
or
et
ic
al

m
od

el
..
.

..
.

..
.

C
ir
cl
e

.2
g w

m
ax

p
(d

⋅D
⋅a

m
a
x
)=
(v

⋅(
l1

(p
=
2)

⋅
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi

(a
m
a
x
=
p
)

p
))

M
cE

lw
ai
n
et

al
.

20
16

b
M
ul
ti
sp
ec
ie
s

M
ix
ed

ph
yl
og

en
ie
s:

an
gi
o-

sp
er
m

(w
oo

dy
an

d
he
r-

ba
ce
ou

s)
;
gy
m
no

sp
er
m

(c
on

if
er

an
d
cy
ca
d)

G
la
ss
ho

us
e
an

d
gr
ow

th
ch
am

be
r

18
E
lli
ps
e

.2
5

g m
ax

p
(d

w
=
v)

⋅D
⋅p

a m
ax

pd
1
(p
=
2)

⋅
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi

(p
a m

ax
=p

)
p

M
ur
ra
y
et

al
.
20

19
M
ul
ti
sp
ec
ie
s,

m
ul
ti
bi
om

e
W
oo

dy
an

gi
os
pe
rm

s
(e
ve
r-

gr
ee
n
an

d
de
ci
du

ou
s)

N
at
ur
al

(v
ar
ia
nc
e

pr
ot
oc
ol
)

74
E
lli
ps
e

.2
6

g m
ax

p
(d

w
=
v)

⋅D
⋅p

a m
ax

pd
1
(p
=
2)

⋅
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi
ffiffiffi

(p
a m

ax
=p

)
p

This content downloaded from 159.226.069.219 on February 12, 2020 18:52:43 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



MURRAY ET AL.—CONSISTENT RELATIONSHIP BETWEEN gop and gmax ACROSS FOUR BIOMES 149
balsamifera) in the boreal forest. Stomatal pore length differed
significantly between all biomes except between the tropical rain
forest and the tropical seasonal (moist) forest, which shared the
samemeanandmedianstomatalpore lengthvalues (P p 0:6796).
Calculated mean maximum stomatal pore area (pamax) values
C

R

O
B

H

P
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reflected mean stomatal pore length values and ranged from a
mean minimum pamax of 3.3 mm2 (E. axillaris) in the tropical
seasonal (moist) forest to a mean maximum of ~129 mm2 (P.
balsamifera) in the boreal forest. There was a significant differ-
ence in pamax between most biomes (P p 3:25#1028) except
Fig. 1 Boxplots showing the ratio of operational stomatal conductance to theoretical maximum stomatal conductance (gop∶gmax) for biomes
(A), habitats (B), and plant growth habits (C). Boxes represent the interquartile range (IQR), horizontal lines within the boxes represent medians,
red circles represent means, whiskers extend to 1.5 times the IQR, and black circles are outliers. In B, letters above boxplots indicate pairwise
comparison for the understory-subcanopy habitat across biomes (Tukey’s honest significant difference test), and letters below boxplots indicate
significant differences in the two habitats for temperate rain forest. All other comparisons show no significant difference across or within biomes.
Table 3

alculated Ratios of Operational Stomatal Conductance to Maximum Theoretical Stomatal Conductance (gop∶gmax) and Reduced Major Axis
Regression Equations for the Relationship between gop and gmax at Biome, Habitat, and Plant Growth Habit Levels
egression level, data group
 n
 gop∶gmax ratio
 gop
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P (same slope)
verall
 75
 .26
 .256 · gmax 2 5.561
 .304
 .000
 . . .

iome:

Boreal forest
 13
 .27
 .155 · gmax 1 52.845
 .326
 .042
 x2 p 5.375

Temperate rain forest
 19
 .25
 .245 · gmax 2 7.809
 .323
 .011
 P p .146

Tropical rain forest
 22
 .31
 .2997 · gmax 2 7.587
 .244
 .019
 . . .

Tropical seasonal forest
 21
 .23
 .309 · gmax 2 41.366
 .463
 .001
 . . .

abitat:

Open canopy
 26
 .28
 .265 · gmax 2 2.603
 .262
 .009
 x2 p 3.986

Understory subcanopy
 49
 .25
 .310 · gmax 2 24.222
 .238
 .000
 P p .046

lant habit:

Tree
 41
 .27
 .222 · gmax 1 17.237
 .318
 .000
 x2 p 3.252

Shrub
 34
 .26
 .323 · gmax 2 40.385
 .209
 .007
 P p .071
).
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between the tropical rain forest and the tropical seasonal (moist)
forest where there was no significant difference (P p 0:51).
Relationship between Anatomical
Measurements and Calculated gmax

A significant strong relationship between gmax and D was
found among tropical rain forest taxa (gmax p 1:2185 ⋅D1
121:91; r2 p 0:684, P < 0:0001), and a moderately strong
and significant relationship between gmax and D was found in
the temperate rain forest (gmax p 3:7912 ⋅D2 122:01; r2 p
0:518, P p 0:001; fig. 3). No significant relationship between
gmax and D was observed in either the boreal forest (gmax p
3:526 ⋅D1 176:87; r2 p 0:009, P p 0:77) or the tropical sea-
sonal (moist) forest (gmax p 0:817 ⋅D1 226:13; r2 p 0:15,
P p 0:085; fig. 3). Overall, when all taxa from all biomes were
lumped together, no relationship was evident. There was no dif-
ference in slopes between the boreal forest and the temperate
rain forest or between the tropical rain forest and the tropical
seasonal (moist) forest (P p 0:84 and P p 0:113; fig. 3).

There was a moderately strong but significant relationship
between gmax and pamax in the boreal forest (gmax p 7:439 ⋅
This content downloaded from 159.22
All use subject to University of Chicago Press Terms
pamax 1 46:884; r2 p 0:452, P p 0:012); however, no rela-
tionship between gmax and pamax was established in the other
biomes: temperate rain forest (r2 p 0:073, P p 0:262), trop-
ical rain forest (r2 p 0:022, P p 0:508), and tropical seasonal
(moist) forest (r2 p 0:0192, P p 0:55; fig. 3). There was no
difference in slopes between the boreal forest and the temperate
rain forest or between the tropical rain forest and the tropical
seasonal (moist) forest (P p 0:56 and P p 0:99, respectively;
fig. 3).

Relationship of gmax to Environmental Data

Correlation regressions between all species’ gmax, gop, and
gop∶gmax ratios and environmental variables of temperature,
PAR, and VPD showed no significant relationships (fig. S1,
available online).

Discussion

gop : gmax Ratios and Relationships

We find a consistent relationship between theoretical gmax
calculated from stomatal anatomy and field-measured gop,
Fig. 2 Scatterplots showing the scaling relationship between species’ averaged operational stomatal conductance (gop) and maximum the-
oretical stomatal conductance (gmax) of C3 woody angiosperms for biomes (A), habitats (B), and plant growth habits (C). Lines corresponding
to the legend color are the fitted reduced major axis regressions. The dashed line is the 1∶1 relationship (refer to table 3 for the regression
equations and P values). Only in C is there significant difference in slope between shrub and tree, but all other comparisons in A and B show
no significant difference in slopes (P < 0:05).
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with an overall mean gop∶gmax ratio of 0.26. At the biome
level, woody angiosperm species in the field tend to operate
between 23% and 31% of their calculated gmax, which is in
good agreement with previous, but less taxonomically exten-
sive (~15 species), studies in a mix of glasshouse, chamber,
and field experiments (Franks et al. 2009, 2014; Dow and
Bergmann 2014; McElwain et al. 2016b; see table 3 for the
most recent studies). This is significant, considering the diver-
sity in species and climate/environments covered in this study
and between all studies to date. It confirms the existence of an
apparent ideal gop∶gmax ratio, as was suggested in previous
studies (Dow et al. 2014; Franks et al. 2014; McElwain et al.
2016b). The wide-ranging interspecific variation in gop∶gmax
ratios we observed (between 0.08 and 0.57) is also consistent
with reported maximum gop∶gmax ratios of between 0.15 and
0.98 across species using a variance protocol (McElwain et al.
2016b). Despite such wide-ranging gop∶gmax ratios across spe-
cies within each biome, no statistical difference between overall
biome-level gop∶gmax ratios was observed.
Habitat Groups

This pattern of consistency in the gop∶gmax ratio was also
noted in two habitat groups: open canopy and understory
subcanopy. Considering the different environmental condi-
tions experienced by plants in these two habitats, including
lower PAR and VPD values exhibited in the understory-
subcanopy habitat than in the open-canopy habitat, as well
as lower gop demonstrated by the understory-subcanopy plants
(Murray et al. 2019), the consistency in the gop∶gop ratio be-
tween these two habitats is noteworthy. It is surely interesting
that such consistency has emerged from this study despite high
environment-driven species variability in each and further sup-
ports the theory that plants operate at an ideal gop∶gmax ratio.
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Plant Growth Habit

The gop∶gmax ratio was again demonstrated between tree
and shrub plant growth habits. Previous studies have investi-
gated in total around 20 different species comprising different
growth habits, including herbaceous plants, woody shrubs, and
trees (table 3). It is not clear from these studies, however, whether
growth habit had any influence on the gop∶gmax ratio. This
study of 33 shrub and 42 tree species determined that growth
habit does not appear to have any influence on overall gop∶gmax
ratio. This once again reinforces our discovery of a consistent
macrolevel gop∶gmax ratio.
Stomatal Morphological Traits

In the cool higher-latitude biomes of the boreal forest and
the temperate rain forest, stomatal pore size influences gmax
to the greatest extent (fig. 3B). On the other hand, in the
warmer biomes of the tropical rain forest and the tropical sea-
sonal forest, this is not the case, and stomatal density is most
influential in these biomes (fig. 3A). The much larger pore size
observed in the boreal forest may reflect greater overall ge-
nome size in the boreal biome taxa than in the other biomes,
as guard cell size frequently scales with genome size (Beaulieu
et al. 2008). Our results may reflect the pressures that climate
exerts on leaf stomatal development in each biome. For in-
stance, in the hotter biomes, which require greater evapora-
tive cooling, this is clearly attained via higher D and smaller
stomata (fig. 3): smaller stomata have been observed to re-
spond more rapidly to environmental stimuli (Drake et al.
2013). Our results from the tropical rain forest corroborate
findings in Eucalyptus globulus, in which higher rates of gas
exchange were achieved by a greater density of small stomata
(Franks et al. 2009). The opposite is true for the most north-
ern latitude biomes, where fewer larger stomata ensure high
Fig. 3 Scatterplots of theoretical maximum stomatal conductance (gmax) and stomatal density (D; A) and maximum stomatal pore area
(pamax; B) for biomes. Lines corresponding to the legend color are the fitted reduced major axis regressions. In both A and B, there are no sig-
nificant differences in relationships between the boreal forest and the temperate rain forest (D: P p 0:84; pamax: P p 0:56, respectively) or be-
tween the tropical rain forest and the tropical seasonal (moist) forest (D: P p 0:11; pamax: P p 0:99, respectively).
6.069.219 on February 12, 2020 18:52:43 PM
 and Conditions (http://www.journals.uchicago.edu/t-and-c).



152 INTERNATIONAL JOURNAL OF PLANT SCIENCES
gmax to exploit the short window of opportunity for carbon
gain experienced in the boreal forest.
Species-Level Variability in the gop : gmax Ratio

In competition and in association with neighboring species,
plants can optimize physiological processes, such as stomatal
conductance, toward proper growth, development, and repro-
duction; this results in their occupying a particular niche
space (Sterck et al. 2011; McElwain et al. 2016b). This might
account for the diversity of species-specific gop∶gmax ratios
that we find within each biome investigated here. While a sin-
gle species experiment in the “natural” environment may
yield a low gop∶gmax ratio, such a monocultural ecosystem
may function very differently from the truly natural environ-
ment of very mixed vegetation types in unmanaged forests.
From our results, such ecosystems yield widely diverging spe-
cies gop∶gmax ratios, which may also be constantly changing in
dynamic response to environmental fluxes. The minimum
gop∶gmax ratio we observed in our study was 0.08 (Neea
buxifolia) in the tropical seasonal (moist) forest, and the highest
value was 0.57 (Sambucus racemosa) in the boreal forest. De-
spite wide species-level variability, however, at the biome level,
the average gop∶gmax ratio is highly consistent across all four
biomes investigated. The variety of stomatal density and size
combinations among species appears to facilitate each species’
gmax requirements in response to localized community composi-
tion andmicroenvironmental fluxes (Franks and Beerling 2009)
and, perhaps, enables the coexistence of diverse species (Mc-
Elwain et al. 2016), as in the tropical rain forest.

The gop∶gmax data presented here is a broad representation
of C3 woody angiosperm species common within each biome
(Murray et al. 2019). We set out to investigate the nature
of the relationship between gop and gmax in as many biome-
representative species as possible within the limits of the study;
however, a complete picture of gop may not have been captured,
since it was not possible tomeasure the diurnal courses of gop for
every measured leaf. Nonetheless, despite these limits to our
sampling and thewide interspecies variability in the relationship
between gop and gmax, there is consistency in the gop∶gmax ratio
across biomes, habitats, and growth habits presented here, pro-
viding an important new reference for studies at the biome, hab-
itat, and growth habit levels of woody angiosperm species of un-
known gop∶gmax ratio in the natural environment. A potential
future study might incorporate relative abundance data to
quantify a community-weighted gop∶gmax ratio to further under-
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stand whether there is any departure from the gop∶gmax ratio so
far observed.

Conclusion

Until now, there were few reference points for the relation-
ship between gop and gmax and no studies in natural ecosystems.
This study using the variance protocol (McElwain et al. 2016b;
Murray et al. 2019) presents in one data set the gop∶gmax ratios
of 74 woody angiosperm species in their natural habitats from
across four biomes. We have shown compelling evidence for
consistency in the ratio between physiological gop and anatom-
ical gmax among biome-representative woody angiosperms at
the levels of biome, habitat, and plant growth habit. This new
data set provides a valuable contemporary calibration reference
for woody angiosperms in vegetation-climate and paleoclimate
models. For paleobotanists striving to understand plant macro-
evolutionary patterns and paleoecophysiological function from
measurable fossil traits (Franks et al. 2014; McElwain et al.
2016a) where nomodern equivalents exist, our results nowoffer
a valuable reference for the gop∶gmax ratio at the biome, habitat,
and plant growth habit levels for woody Eudicots. In such cases,
the discovery of a best estimate of the gop∶gmax ratio is a good
starting point for the foundation of sound paleoclimate proxies
for further understanding plants’ role in mediating climate past
and present. In their chapter on the capture of CO2 by leaves and
stomata, Williams et al. (2004), while conceding a large degree
of uncertainty, suggested that species-level differences, though
great, may not ultimately be important considering the observed
conformity in gmax response found at the PFT level (Williams
et al. 2004). We argue the same for the relationship between
gop and gmax: while there is almost the full breadth of disparity
among species, at the levels of growth habit, habitat, and biome,
the relationship is consistent.
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