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ABSTRACT. To further reveal the structural characteristics of moss mitochondrial genomes from the still
unexplored orders, we sequenced and assembled the mitogenome from the granite moss Andreaea
wangiana (Andreaeaceae, Andreaeales). The newly generated genome consisted of 117,857 base pairs with
an average GC content of 42%. The gene contents and gene order were found to be identical to those
previously published from mosses, reconfirming the hypothesis of structural conservatism in this lineage.
Comparison of the newly generated mitogenome with those published suggested an evolutionary trend
towards size reduction of mitogenomes across the tree of mosses. The pattern was largely caused by
hierarchical loss of introns and/or shortening of intergenic spacers. We found evidence to support a
positive correlation between GC content and genome size in bryophytes. Furthermore, we identified 233
putative RNA editing sites for all protein-coding genes and 60 simple sequence repeats in this
mitogenome. By reporting the complete mitogenome from an important early diverging lineage of
mosses, this study provided valuable data for further studies to explore the mechanisms maintaining the
stability of genome structure during nearly 400 Ma of independent adaptation to changing terrestrial
environments. The study further identified a few highly variable regions that could be used as DNA
markers to clarify the genetic diversity of granite moss populations.

KEYWORDS. Andreaeaceae, reduction of mitogenome size, RNA editing sites, Setaphyta, simple repeat
sequence, structural conservatism.

^ ^ ^

Our understanding of the evolutionary dynamics of
mitochondrial genomes in the tree of land plants has
been greatly improved as a consequence of a
number of phylogenomic/genomic studies (e.g.,
Dong et al. 2019; Guo et al. 2016a,b; Hecht et al.
2011; Liu et al. 2011, 2014a,b; Palmer et al. 2000;
Xue et al. 2010; Zervas et al. 2019). The diversity of
mitogenome sizes across the phylogeny of land
plants is arguably one of the most intriguing and
long-standing topics (Alverson et al. 2010; Liu et al.
2014b; Schneider & Ebert 2004). Compared to the
remarkable variations of mitogenome size observed

in seed plants—ranging from 220 kb to over 2.7 Mb

(Chang et al. 2011; Rodrı́quez-Moreno et al. 2011),

length variation appears to be limited in the three

bryophyte lineages with the hornworts showing a

range from ~185 kb to ~242 kb, liverworts from ~
143 kb to ~187 kb and mosses from ~100 kb to

~141 kb (Supplementary Table S1). These results

could be considered in the context of the putative

monophyly of bryophytes or the Setaphyta hypoth-

esis (de Sousa et al. 2019; Morris et al. 2018; Puttick

et al. 2018) as evidence for structural conservatism

of mitochondrial genomes during the phylogenetic

history of these plants. Several factors have been

proposed to influence the plastome or mitogenome

size, such as duplication of genes, expansion or loss
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of introns, replication of repetitive DNA, a diverse
set of foreign sequences through horizontal or
intracellular transfer, resource allocation, and a
trade-off between GC content and genome size
(Alverson et al. 2010; Goremykin et al. 2012; Liu et
al. 2012a; Rice et al. 2013; Veleba et al. 2014).
Nevertheless, the processes maintaining the stability
of bryophyte mitogenomes in terms of the structural
conservation and limited size variations remain
unclear (Liu et al. 2011, 2014b; Wang et al. 2009).
Resolving these mysteries first requires extensive
sampling of mitogenome sequences from all major
clades of bryophytes. However, neither the taxon
sampling density nor the lineage sampling of these
plants is currently sufficient to sustain testing these
hypotheses.

Mosses, with a worldwide distribution and ca.
13,000 species, 122 families and 32 orders, are
arguably the most successful bryophyte lineage
(Goffinet & Buck 2019). Using a genome-wide
dataset, this group was well supported as sister to
liverworts (de Sousa et al. 2019; Morries et al.
2018; Puttick et al. 2018) rather than as sister to
the remaining land plants excluding liverworts
(Lemieux et al. 2016; Ruhfel et al. 2014; Zhong et
al. 2013). An increasing number of moss mitoge-
nomes has been published (as of Sept. 2019, a total
of 42 moss mitogenomes covering 17 families and
13 orders have been published; see Supplementary
Table S1). These data do not only provide useful
genetic characters to resolve the phylogenetic
relationships of these taxa, but also greatly
improve our understating of the mitogenome
evolution in mosses. Specifically, the improved
sampling enhances our ability to test three key
hypotheses, which expect that (1) bryophyte
species share a similar gene assembly of mito-
chondrial genomes, (2) the size variation is
correlated with the length change of non-coding
regions, and (3) the most recently diverging
lineages likely have the most reduced mitogenomes
(Liu et al. 2014b). Evidently, the generality of these
hypotheses needs to be further confirmed, because
insufficient lineage and species sampling used in
previous studies hampered the reliability of
published inferences. To provide additional evi-
dence to support the above three hypotheses, we
here report for the first time the mitochondrial
genome sequences from an Andreaeaceae spe-
cies—Andreaea wangiana Chen in Chen & Wan.

Comparative analyses of this newly generated
genome and all available moss mitogenomes
previously published enabled to test the three key
hypotheses and explore the dynamics of mitoge-
nome evolution in mosses.

As the only family of the order Andreaeales, the
granite moss family Andreaeaceae contain about 110
species (according to the plant list, Version 1.1,
http://www.theplantlist.org/) in two genera, An-
dreaea and Acroschisma (Goffinet & Buck 2019).
Species in this family prefer rocky habitats and occur
widely in temperate montane and arctic-alpine
regions (Crosby et al. 1999). They are characterized
by a unique combination of morphological charac-
ters, including sporophytes placed terminally on an
elongate gametophytic stalk (¼ pseudopodium),
absence of a seta, capsule opening by usually four
lateral longitudinal valves, and absence of opercu-
lum and peristome (Zander, 2007). In recent
phylogenetic and phylogenomic studies, Andreaea-
ceae was consistently supported as sister to the
monotypic genus Andreaeobryum (Andreaeobrya-
ceae, Andreaeobryales), and the combined clade was
in turn supported as sister to the remaining mosses
following the separation of Takakiales and Sphag-
nales (Chang & Graham 2011; Cox et al. 2004; Liu et
al. 2019). In this study, we used genome skimming
sequencing to obtain the mitochondrial genome
sequence of A. wangiana, and performed compar-
ative analyses to explore the pattern of mitogenome
evolution across mosses, with particular focus on
gene assembly and size. In addition, we estimated
the putative RNA editing sites and identified simple
sequence repeats (SSRs), which carry the potential
to be DNA markers for further studies of population
genetics.

MATERIAL AND METHODS

The Andreaea wangiana plants were collected by
Dr. Wen-Zhang Ma and Dr. James R. Shevock in the
Shangri-La area (Along Lang-Du road, Ge-Zan
Xiang, Diqing Tibetan Autonomous Prefecture,
Yunnan province, China, 2889019 00N, 99854030 00E).
The voucher specimens have been deposited in the
Herbarium of Kunming Institute of Botany, Chinese
Academy of Science (KUN) (W.-Z. Ma & J. R. Shevock
16-8029). Total genomic DNA was extracted from
10–50 lg of gametophyte material using the
modified CTAB method (Forrest et al. 2011). The
DNA quantity and quality were assessed using the
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Qubit fluorometer system with a Quant-iTe ds-
DNA BR Assay (Invitrogen, San Diego, CA, U.S.A.)
and NanoDrop Spectrophotometer 2000C (Nano-
Drop Technologies, Wilmington, DE, U.S.A.), re-
spectively. Approximately 1 lg high quality genomic
DNA was sheared ultrasonically using a Covaris S220
sonicator (Covaris, Woburn, MA, U.S.A.). A genome
library was constructed using Illumina Nextera XT
DNA library preparation based on c. 500 bp long
DNA-fragments obtained by shearing the obtained
genomic DNA following the manufacturer’s manual
(Illumina, San Diego, CA, U.S.A.). By generating 90
bp long paired-end sequences using an Illumina
HiSeq 2000 at BGI-Shenzhen, about 2 Gb of
sequences were accumulated. The raw sequence data
were assembled using CLC Genomic workbench
(https://www.qiagenbioinformatics.com/) involving
quality control of the raw sequences with the NGS
QC Tool Kit (https://www.qiagenbioinformatics.
com/) with cut-off values for read length and PHRED
quality scores set as recommended in Yang et al.
(2014). Subsequently, we obtained a total of 509,879
contigs. By blasting, the whole mitogenome was
found in a large contig, and then assembled and
annotated using published genomes as reference in
Geneious v11.1.5 (http://www.geneious.com/). The
genome map was generated using OGDRAW (Lohse
et al. 2013). The newly generated mitochondrial
genome was deposited in GenBank (accession
number: MN056355).

A comparative analysis was performed with a
dataset consisting of 43 moss mitogenomes. Besides
the newly generated one, the dataset included 42
moss mitogenomes previously published (Supple-
mentary Table S1). The whole dataset was aligned
using the plugin ‘Mauve ’ in Geneious v11.1.5.
(https://www.geneious.com/). Special attention was
given to genome size, GC content and gene
composition. We tested the hypothesized correla-
tion between GC content and genome size using
linear regression analyses for all bryophytes and for
each of the three bryophyte lineages separately,
namely hornworts, liverworts and mosses. The
nonadjacent repeated sequence for the newly
generated mitogenome was estimated using REPuter
(Kurtz et al. 2001), and putative RNA editing sites
(C-to-U and U-to-C editing sites) of the 40 protein-
coding regions were identified using PREPACT 3.0
(Lenz et al. 2018) with the BLASTX prediction and
0.001 e-value cut-off, and Physcomitrella patens

mitogenome was used as a reference. Simple
sequence repeats were detected using GMATo v1.2
(Wang et al. 2013). The concept of SSRs follows
Gandhi et al. (2010).

RESULTS

The mitochondrial genome of Andreaea wangiana
had a total length of 117,857 bp (Fig. 1, Supplemen-
tary Table S1), including coding regions with a total
length of 39,279 bp, introns with 36,491 bp, and
intergenic spacers with 42,083 bp. We identified 67
genes, including three rRNAs, 24 tRNAs and 40
protein-coding genes. The average GC content of the
complete genome was 42%. The comparative analyses
revealed that the newly generated genome had nearly
identical gene content and order with those previously
published for mosses. The mitogenome of A.
wangiana had the second largest sequence, exceeded
only by that of the peat moss Sphagnum palustre that
had a length of 141,276 bp (Fig. 2, Supplementary
Table S1). Genomes of a similar size as A. wangiana
were found in Polytrichales mosses Atrichum angus-
tatum (Brid.) Bruch et Schimp. (115,146 bp) and
Polytrichum commune Hedw. (114,831 bp), whereas
all other mosses had genomes below 109,586 bp and
100,342 bp. Early diverging lineages represented by
the peat moss Sphagnum and the granite moss
Andreaea exhibited relatively larger mitogenomes
than derived mosses, which is concordant with the
loss of some introns and reduction of intergenic
spacers during the phylogenetic history of mosses
(Supplementary Table S1).

A positive correlation between GC content and
genome size was found if all bryophyte lineages were
analyzed together (R2 ¼ 0.657 p ,0.001, Fig. 3).
However, this correlation was rejected in separated
analyses for each lineage, including hornworts (R2¼
0.001, p¼ 0.968), liverworts (R2¼ 0.107, p¼ 0.185),
and mosses (R2 ¼ 0.002, p ¼ 0.759). Using
Physcomitrella patens (Hedw.) Bruch & Schimp. as
reference, 233 (including 161 C-to-U and 72 U-to-C
editing sites) putative editing sites were detected for
40 protein-coding genes in the Andreaea mitoge-
nome (Supplementary Table S2). In total, the
mitogenome of this moss contained 60 SSRs loci,
including 37 SSRs in intergenic regions and 23 SSRs
in genes (Supplementary Table S3). Most of SSRs
referred to mono- and dinucleotides (29 and 25 loci,
respectively). 91.67% of detected SSRs were com-
posed only of A/T bases. The total length of the SSR
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loci was 714 bp, accounting for approximately
0.61% of the whole genome.

DISCUSSION

The mitogenomes of mosses available to this
point provide support for the hypothesis that the
mitogenomes are relatively stable in terms of gene
assembly in this group (Liu et al. 2011, 2014b; Wang
et al. 2009), with the exception that nad7 was lost in
Buxbaumia aphylla Hedw., Mielichhoferia elongata

(Hoppe & Hornsch.) Nees & Hornsch and Tetraphis
pellucida Hedw., and rpl10 pseudogenized in Pty-
chomnion cygnisetum (Müll. Hal.) Kindb (Bell et al.
2014; Goryunov et al. 2018; Liu et al. 2014b). This
hypothesis obtained further support by our newly
generated mitogenome that shared the gene content
and order with those previously published mitoge-
nomes of mosses. It is important to note that
Andreaea represents one of the most isolated lineages
in mosses.

Figure 1. A. Andreaea wangiana (Andreaceae) forming dark brown and reddish cushions. Photographs by Wen-Zhang Ma. B. Circular visualization

mitochondrial genome of Andreaea wangiana. Genes (exons are shown as closed boxes) shown on the outside of the circle are transcribed clockwise,

whereas on the inside are transcribed counter-clockwise. Genes with group I or II introns (open boxes) are labeled with asterisks.
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Figure 2. Synteny of mitochondrial genomes of 43 mosses organized following the phylogenetic hypotheses proposed in Goryunov et al. (2018) and Liu

et al. (2019). The mitogenomes are shown in linearized form illustrating the relative gene synteny. The solid line connects the end of the nad2 gene,

whereas the colored bars represent proteins, rRNAs, and tRNA regions. Names of the regions are displayed above and below the graphics. The sequence

of the regions is highly conserved across the phylogeny of mosses.
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Although the available data clearly revealed that
early land plants almost share the similar gene
assembly of plastid and mitochondrial genomes, the
maintaining processes remain to be discovered (Liu
et al. 2014b). Several hypotheses have been proposed
to explain the structural stability of plastid and
mitochondrial genomes in bryophytes (André et al.
1992; Liu et al. 2011, 2012b; Maréchal et al. 2009;
Shedge et al. 2007). First, it was assumed that
nonadjacent sequence repeats longer than 50 bp and
85% or more similar mediated the rearrangements
that often take place during recombination (André et
al. 1992; Maréchal & Brisson 2010). However,
bryophyte mitogenomes usually lack such repeats,
except those of Sphagnum and Atrichum (Liu et al.
2011, 2014b). Thus, this absence likely leads to rarity
of rearrangement events occurring in this group. The
assumption is consistent with the observation that
only one nonadjacent repeat (.50 bp) was found in
the mitogenome of Andreaea wangiana. Second,
some mechanisms controlled by nuclear genes may
involve the processes that maintain the stability of
mitochondrial genomes in land plants (Abdelnoor et
al. 2003; Davila et al. 2011; Maréchal et al. 2009;
Shedge et al. 2007; Zaegel et al. 2006). Third, a large
number of polycistronic operons have been found in
the mitochondrial genomes of bryophytes (Liu et al.
2011, 2012b; Xue et al. 2010), parallel to those
occurring in green algae and early land plants (Lang
et al. 1997; Ohta et al. 1998; Turmei et al. 2002,

2003). Polycistronic operons are more likely gene
clusters, in which the linkage between the genes is
tight and the arrangement order is strictly controlled
under particular functional selections (Liu et al.
2011). Presence of this trait may not only represent
an ancestral state of gene assembly across the plant
phylogeny, but also facilitate maintenance of stability
of plastid and mitochondrial genomes.

Parallel to the evolutionary pattern found in size,
moss mitogenomes also exhibit limited variations in
the GC content—ranging from 39.0% to 42.5%
(Supplementary Table S1). The observed range is
much narrower than those documented in other
plant lineages, such as algae from 22.2% to 57.2%
(Smith & Lee 2008; Turmel et al. 1999) and vascular
plants from 42.3 to 68.1% (Hecht et al. 2011; Park et
al. 2015). Genome size has been assumed to be one of
important causes or drivers indirectly or directly
shaping the evolution of GC content (Rocha &
Danchin 2002; Šmarda & Bureš 2012; Veleba et al.
2014), but the correlation between these two variants
seems causal as it varied across different phyla and
species (e.g., positive in bacteria, fungi and some land
plants, negative in animals, or not significant in
protists, Li & Du 2014). In this study, the regression
analysis supported a positive correlation between the
mitogenome size and GC content among, but not
within, the three major lineages. This correlation is
also found in some other plant groups (Li & Du
2014). Nevertheless, further studies are required to
test the robustness of this link in bryophytes and
explore the underlying processes.

Previous studies have suggested a trend towards
reduction of mitogenome size in the phylogenetic
history of mosses (Liu et al. 2014b). The mediate
size of Andreaea wangiana that is smaller than those
from the earlier diverging peat mosses but large than
those from derived mosses, supported this hypoth-
esis. This trend is consistent with its phylogenetic
positions in the tree of mosses—diverging from the
ancestors of mosses following Takakiales and
Sphagnales (Fig. 2, Supplementary Fig. S1; Liu et
al. 2019). Most of such size variations could be
explained by the processes of hierarchical loss of
introns and/or shortening of intergenic spacers. For
example, two cox1 introns cox1i323g2 and cox1-
i1200g2 are only found in the mitogenomes of
Sphagnum, and the ribosomal intron rrn18i839g1 is
absent in all Bryopsida taxa. Furthermore, some
introns in derived bryophytes, such as atp9i87g2,

Figure 3. The correlation between the GC content and the mitogenome

size among three bryophyte lineages using linear regression. Colored

symbols indicate different lineages: red circles¼mosses, orange triangles

¼ liverworts, green squares ¼ hornworts. A significantly positive

correlation was supported among three lineages, as indicated by R2 ¼
0.657 and p ,0.001, but not within lineages, as indicated by R2¼ 0.001

and p¼ 0.968 in hornworts; R2¼ 0.107 and p¼ 0.185 in liverworts, and

R2 ¼ 0.002 and p ¼ 0.759 in mosses.
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atp9i95g2, cox1i1064g2 and cox2i373g2, tend to be
shorter than those in early diverging lineages. Apart
from this evidence, the size of intergenic spacers
tends to decrease during the phylogenetic history of
mosses. For example, the intergenic spacers accu-
mulated a total length of 54kb in the mitogenome of
Sphagnum whereas it is 42kb in that of A. wangiana,
and between 31–38kb in those of derived mosses.
The evolutionary significance of the size reduction is
still not understood. Thus, currently we cannot rule
out that this is a consequence of a neutral or an
adaptive evolutionary process.

RNA editing is a post-transcriptional mecha-
nism that alters the identity of nucleotides in an
RNA sequence, and allows for the difference
between RNA and its corresponding DNA sequence
(Nishikura 2010). RNA editing plays an essential
role in restoration of the hydrophobicity of the
conserved protein domain through correcting DNA
mutations at RNA level (He et al. 2016; Takenaka et
al. 2013), which may influence the genetic diversity,
adaptation and environmental acclimation (Rosen-
thal 2015). In bryophytes, RNA editing shows high
variation among sites—ranging from zero (e.g.,
Marchantia, Salone et al. 2007; Steinhauser et al.
1999) to several hundred bases (e.g., 732 in
Haplomitrium hookeri, Myszczynski et al. 2019). In
the present mitogenome, we estimated 233 putative
RNA editing sites using Physcomitrella patens as
reference. However, we propose that the exact
number of RNA editing sites for the mitogenome
of Andreaea wangiana is likely between three—
occurring in start and stop codons and unambigu-
ously defined—to 233. Despite some uncertainty
associated with these analyses, it is reasonable to say
that the frequency of RNA editing in moss
mitogenomes is relatively low compared to those
reported for some pteridophytes (e.g., 1072 and 984
editing sites in Ophioglossum californicum and
Psilotum nudum, respectively, Guo et al. 2016b).

Simple sequence repeats (SSRs) are thought to be
common in plant mitochondrial genomes, and may
contribute to their physiological, biochemical and
phenotypic characteristics (Bartom 2006; Kashi &
King 2006; Li et al. 2002). Considering their rapid
mutation rates, SSRs have been widely used in studies
of population genetics and biogeography (Karlin et
al., 2008a,b; Shaw et al. 2008). The SSRs search in the
mitogenome of Andreaea wangiana supported the
findings by Zhao et al. (2014). First, diversity of SSRs

varies among regions, and non-coding regions are
much richer than coding regions. Second, most of
SSRs for moss mitogenomes are mononucleotides
and/or dinucleotides. In general, SSRs with excellent
characteristics for population genetic markers are rare
in the mitogenome of these mosses.

In summary, this study reports for the first time
the mitochondrial genome sequence from one of
important moss lineages, Andreaeales. The mitoge-
nome of this early diverging lineage of mosses
provide support to (1) the hypothesis of structural
conservatism and (2) the trend of size reduction of
mitogenomes during the phylogenetic history of
mosses. Furthermore, several highly variable regions
were identified which could be used as markers to
study the genetic diversity of populations in this
group. Nevertheless, some long-standing issues of
evolutionary dynamics of moss mitogenomes remain
unresolved here, such as the processes maintaining
the stability of genomes while still accumulating
unknown key mutations to adapt to changing
environments, and whether a complex trade-off
exists between GC content and genome size.
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