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Abstract
Climate refugia are locations where plants are able to survive periods of regionally adverse climate. Such refugia may affect 
evolutionary processes and the maintenance of biodiversity. Numerous refugia have been identified in the context of Quater-
nary climate oscillations. With climate warming, there is an increasing need to apply insights from the past to characterize 
potential future refugia. Mountainous regions, due to the provision of spatially heterogeneous habitats, may contain high 
biodiversity, particularly important during climate oscillations. Here, we highlight the importance of mountaintops as climate 
refugia, using the example of high-mountain oaks which are distributed on the ranges of the Himalaya–Hengduan Mountains, 
and at high elevations in tropical rainforests. The occurrences of cold-adapted high-mountain oaks on mountaintops amidst 
tropical rainforest indicate that such locations are and will be climate refugia as global warming continues. We examine 
factors that predict the occurrence of future climate refugia on mountaintops using recognized historical refugia. Future 
research is needed to elucidate the fine-scale processes and particular geographic locations that buffer species against the 
rapidly changing climate to guide biodiversity conservation efforts under global warming scenarios.

Keywords Changing climate · Climate refugia · Mountaintops · Global warming · Biodiversity · Oak trees

Introduction

Species’ geographic ranges repeatedly expanded and con-
tracted, often with latitudinal-elevational shifts, in response 
to climate oscillations during the Quaternary (Hewitt 1996; 
Davis 1976; Davis and Shaw 2001; Huntley and Birks 
1983). Locations where species persisted during climatic or 

environmental adverse conditions, particularly during glacial 
periods, have been called refugia (e.g., Willis and Whittaker 
2000; Stewart et al. 2010). The refugia concept has evolved 
from its original definition in paleoecology as ‘a restricted 
glacial population that underwent postglacial expansion’ to 
a broader concept, which is currently used in biogeography, 
vegetation history, paleoecology, ecology, phylogeography, 
and global change biology (Gentili et al. 2015). Research on 
refugia is a growing discipline, with reviews on the defini-
tion of refugia (Bennett and Provan 2008), the evolutionary 
legacy of refugia (Hewitt 2000), the integration of different 
methods for identifying refugia (Gavin et al. 2014), and the 
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evidence for refugia in the northern hemisphere (Petit et al. 
2008).

Early researches using paleoecological data to study the 
distributions of warm-adapted northern temperate taxa sug-
gested numerous refugia in the far south of the present-day 
distributions, such as the Iberian, Italian and Balkan Penin-
sulas of Europe, and southeast North America (Davis 1976; 
Huntley and Birks 1983; Knowles 2001; Petit et al. 2003). 
Recently, molecular phylogeography and species distribution 
modeling (Gavin et al. 2014) have indicated that “northern” 
refugia, close to ice sheet margins (McLachlan et al. 2005; 
Petit et al. 2008), and mountain refugia may be relatively 
stable over long periods (Opgenoorth et al. 2010). Certain 
species, particularly arctic and alpine plants, are character-
ized by their interglacial refugia, with small, localized popu-
lations growing in naturally open habitats during temper-
ate interglacial stages (Birks and Willis 2008; Gentili et al. 
2015). As anthropogenic climate change and human activi-
ties are already causing species extinctions, and more are 
expected, research and the identifying of potential refugia 
will become increasingly important (Willis and Whittaker 
2000; Gavin et al. 2014).

Global climate change is having profound and diverse 
effects on organisms, causing shifts in their geographic 
ranges, and changing their seasonal phenology, commu-
nity interactions, genetics, and extinction rate (Dillon et al. 
2010). This is especially true for high-latitude populations 
and cold-adapted species, e.g., alpine, arctic-alpine, boreal, 
and cool-temperate plants (Pauli et al. 2012; Thuiller et al. 
2005). To adapt to the changing climate, an increasing 
number of terrestrial species are undergoing latitudinal or 
elevational range shifts, expanding in newly favorable areas 
and declining in increasingly hostile parts of their former 
range (Kelly and Goulden 2008; Chen et al. 2011). How-
ever, plant community changes substantially lag behind the 
rapidly increasing climate warming (Alexander et al. 2018). 
Thus, if these range shifts cannot keep pace with the speed 
of warming, refugia may become critical for species sur-
vival. Therefore, biogeographers and conservationists need 
to assess potential sites which may serve as refugia under a 
warming climate, particularly for vulnerable, low-latitude 
populations of cold-adapted plants that are already inhabited 
“interglacial refugia”.

Mountainous regions harbor extraordinary climatic and 
environmental diversity due to steep changes in elevation 
and aspect over short distances. Thus, mountains may pro-
vide habitats for many endemic and threatened species 
(Dullinger et al. 2012). In mountains, species can persist in 
a warming or cooling climate by relatively modest shifts up 
or down slopes, or between north and south-facing slopes. 
In the European Alps, species colonization events were more 
frequent on the warmer sides of temperate mountain peaks, 
and thermal differences caused by solar radiation determine 

plant diversity on temperate mountains (Winkler et al. 2016). 
Thus, high elevations may harbor critical refugia for main-
taining biodiversity. Many studies have reported elevational 
range shifts in mountain plants during recent decades, and 
high-alpine species face increasing pressure from climatic 
change and novel super-competitors, including invasive spe-
cies, which are expanding their ranges upwards (Kelly and 
Goulden 2008; Lenoir et al. 2008; Rumpf et al. 2018; Liang 
et al. 2018). Low-latitude populations of cold-adapted plants 
are known to harbor genetic diversity that fosters persistence 
in a future warmer climate (Abeli et al. 2018). However, lit-
tle is known about the role of low-latitude mountaintops in 
tropical Asia, as potential climate refugia for plants under 
future climate warming. These regions harbor ancient relict 
species and populations that have survived numerous climate 
oscillations, and thus might serve as critical climate refugia 
also in the future.

To identify low-latitude areas where cold-adapted plants 
persisted allows to define the specific environmental features 
that are relevant for such refugia (Keppel et al. 2012), and 
to uncover the processes that have shaped current biogeo-
graphic patterns. Special physiological properties of alpine 
plants such as adaptive plasticity and the high efficiency of 
photosynthetic nitrogen at high elevations (Sun et al. 2015; 
Zhang et al. 2007; Zhou et al. 1994) have allowed alpine 
plants to adapt to environmental changes. Cold-adapted 
plants at high elevations are expected to “retreat” further 
into their current refugia as climate warming is accelerat-
ing. Which climatic parameters permit species persistence 
in such refugia, how such refugia are spatially organized, 
and whether climate refugia are suitable for dispersal and/
or biotic interactions are key questions to understand how 
species will adapt to future climate change.

Here, we propose that certain high-elevation habitats 
could serve as climate refugia for cold-adapted plants in 
today’s increasingly warm interglacial period. We focus on 
the case of high-mountain oaks (Quercus sect. Ilex following 
Denk et al. 2017, or Quercus sect. Heterobalanus follow-
ing Menitsky 1984). These oaks are mainly distributed in 
the Himalaya–Hengduan Mountains (HHM) and in tropical 
rainforest to their south (Fig. 1). We document the occur-
rence of cold-tolerant high-mountain oaks further south than 
previously described, on mountaintops in tropical rainforest 
surroundings. We use the present-day occurrences of oaks in 
the HHM and tropical rainforest to identify areas of previ-
ous or current climate suitability, to predict possible future 
refugia, and to define the climatic variables which are criti-
cal to such refugia at high elevations, to guide biodiversity 
conservation efforts under global warming.
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Materials and methods

Study system and field survey

High-mountain oaks are distributed in the mountain ranges 
of the HHM on sunny, and dry slopes between 2500 and 
4300 m, and recently they were discovered also further 
south, at high elevation in the tropical rainforest of Myan-
mar. There are seven species in the section of high-mountain 
oaks in the HHM: Quercus semecarpifolia, Q. guyavifolia, 
Quercus aquifolioides, Q. rehderiana, Q. spinosa, Q. moni-
motricha and Q. senescens (Huang et al. 1999). Some of 
these species are broadly distributed across high elevation 
sites of East Asia (Fig. 1).

There are rich fossil records of high-mountain oaks from 
the late Eocene to the Pleistocene (Huang et al. 2016; Su 
et al. 2019; Zhou et al. 2003; Appendix S1), which suggest 
that these oaks have experienced numerous climate changes 

through the geological history. Combined molecular and fos-
sil evidence indicate that high-mountain oaks originated in 
warm, mixed broadleaf forests; subsequently, with the HHM 
uplift and relevant climatic cooling, they became dominant 
species in the surrounding mountain ranges (Meng et al. 
2017). Thus, the evolutionary history of high-mountain oaks 
and their current distribution involved their adaptation to 
cooler conditions.

During our field survey, a population of high-mountain 
oaks was discovered on tropical rainforests mountaintops in 
the Victoria Hills, Arakan Yoma, Myanmar (21°13′11″N, 
93°55′54″E, alt. 2871 m; Fig. 1). The Victoria Hills in the 
Arakan Yoma ranges have a typical tropics (Ghazoul and Sheil 
2010). The discovery of high-mountain oaks in this tropical 
area is unexpected, although a previous study reported high-
mountain oaks in tropical Chiang Mai, in northern Thailand 
(Zhou et al. 2003). The topographic complexity of mountains 
in tropical regions is likely to have contributed to population 

Fig. 1  The geographic distribution of high-mountain oaks and the 
locality of high-mountain oaks in Victoria Hills, Arakan Yoma, 
Myanmar. Blue dashed lines denote the geographic distribution of 
high-mountain oaks [adapted from Meng et al. (2017) and Zhou et al. 
(2003)]; yellow dashed lines denoted the Himalaya–Hengduan Mts., 
[adapted from Meng et  al. (2017) and Liang et  al. (2018)]; red dot 

and red pointer denote the locality of high-mountain oaks in Victo-
ria Hills, Arakan Yoma, Myanmar. a The habitats of high-mountain 
oaks in tropical rainforests; b adult trees of high-mountain oaks on 
the mountain top of Victoria Hills; c a branch with fruits and inflores-
cence of high-mountain oaks
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isolation of oaks on mountaintops, which provide favorable 
habitats for relatively cold-adapted plants. In otherwise warm, 
mostly lowland regions, high mountain oaks are restricted to a 
few mountain summits and are consequently rare. In the sub-
tropics, we observed three individuals of oaks on the summit 
of Sanqing Mountains, Jiangxi; and two individuals in Xianju, 
Zhejiang (Meng et al. 2017). This discovery suggests that 
mountaintops in the tropical rainforest may serve as climate 
refugia, at present and also in the future under global warming.

Species distribution model of high mountainous 
oaks using MaxEnt

Climatically suitable distributions for high-mountain oaks 
were estimated using a maximum entropy model performed 
by MaxEnt v3.3.3. Potential distributions were established 
for the present day, the Last Glacial Maximum (LGM, ca. 
21,000 years before present), and the future, ca. 2070 (Phil-
lips et al. 2006). Our input data to describe suitable distribution 
area included data from the tropical rain forests of Victoria 
Hills and previous records of high-mountain oaks (Meng et al. 
2017), in total of 149 independent records of high-mountain 
oaks used to predict the climatically suitable distributions. 
Temperature and precipitation were important abiotic factors 
and consistent with previous species distribution model (SDM) 
analyses for oaks (Gugger et al. 2013; Jiang et al. 2016; Meng 
et al. 2017), we included eight climatic variables including 
temperature extremes and growing season precipitation in the 
modeling process (Appendix S2). These climate variables 
were obtained from the WorldClim database (available at: 
http://www.world clim.org/) at 2.5 arcmin resolution for the 
present, LGM (CCSM3), and future (2070, RCP85, CCSM4) 
periods. The occurrence records of high-mountain oaks were 
randomly divided into training data (80%) and test data (20%), 
a maximum number of 10,000 background points was set and 
the mean value of ten replicate results with random seeds was 
applied as potential species distribution. Area under curve 
(AUC) from the receiver operating characteristics (Hanley and 
McNeil 1982), positively evaluated the model performance 
(AUC = 0.99). Analysis was performed using the ‘dismo’ 
package in R (Hijmans et al. 2005; R Core Team 2015). Poten-
tial distribution maps for high-mountain oaks were visualized 
using ArcGIS v.10.2 (Environmental Systems Research Insti-
tute, Inc., ESRI; Redlands, CA, USA).

Results and discussion

Inferring mountaintop climate refugia under global 
warming

Fossils of high-mountain oaks from the Eocene–Oligocene 
transition are few in number (Su et al. 2019), but become 

more abundant in the period over which the HHM was 
formed (Zhou et al. 2003), and the region’s vegetation tran-
sitioned from warm to cold. Evidence from the fossil records 
and molecular analyses indicates that high-mountain oaks 
originated from tropical or subtropical forest habitats and 
colonized cold habitats during the HHM uplift (Meng et al. 
2017). It is presumed that these oaks exploited the increase 
of favorable habitats areas and adapted to high-elevational 
conditions. Thus, oaks on the mountaintops of tropical rain-
forest are probably relicts from their early evolutionary his-
tory in the region, as well as from recent cool periods when 
oak forests may have been more continuous than they are 
today.

We combined our new occurrence records with previ-
ous records of high-mountain oaks to generate SDMs using 
MaxEnt (Gugger et al. 2013; Jiang et al. 2016; Meng et al. 
2017) to explore the past, present and potential future cli-
matically suitable regions of high-mountain oaks. In the 
SDMs, precipitation in the warmest quarter (bio18) and 
temperature seasonality (bio4) were the most important fac-
tors defining potential species distributions (see Appendix 
S2). Total precipitation in the warmest quarter (bio_18) and 
temperature seasonality (bio_4) were explaining 32.6% (SD 
2.42) and 21.4% (SD 2.49) of the variation, respectively, in 
the distribution of high-mountain oaks. The remaining six 
environmental factors contributed 45.9% of the total varia-
tion (Appendix S2).

Comparing modelled distributions ranges in LGM, pre-
sent, and future, we find that the overall geographic distri-
bution ranges were relatively stable between the LGM and 
present, although the distribution center in the Hengduan 
Mountains shows signs of slight contraction, and the periph-
ery may have slightly expanded to lower elevations and lati-
tudes during the LGM (Fig. 2a, b). The results are consistent 
with single-species models for Q. aquifolioides, Q. spinosa 
and Q. rehderiana (Feng et al. 2016; Du et al. 2016), and 
suggest that the geographic range of high-mountain oaks 
will move northwards at higher latitude and to higher eleva-
tion (Fig. 2c). This is consistent with the work of Liang et al. 
(2018), too. The SDMs suggest that oaks distribution areas 
have been little influenced much by cold periods during the 
LGM, and the habitats at high elevation along the moun-
tain ranges are favorable sites for these species. Previous 
research has found that the geographic distribution of oaks 
during the LGM was not influenced as much as that of other 
co-occurring thermophilous plants (Meng et al. 2017). The 
newly recorded occurrence of high-mountain oaks at Ara-
kan Yoma, maybe the lowest latitude distribution regions on 
record in tropical rainforest; the HHM may have provided 
more suitable habitats for the oaks under study during cold 
periods (Fig. 2a). The current low elevation presence of oaks 
in tropical rainforests may also represent not particularly 
favorable conditions (Fig. 2b).

http://www.worldclim.org/
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Fig. 2  MaxEnt models of the potential suitable areas of high-moun-
tain oaks: a at the last glacial maximum (LGM; 21,000 years before 
present; BP); b under current conditions (1950–2000); c under future 

conditions (2070). Species distribution models were established with 
current bioclimatic variables on the basis of extant occurrence points 
(green dots) of the species
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The models suggest that the distribution of oaks will shift 
northwards and to higher elevation in the future (Fig. 2c). 
Areas such as the edge of the Sichuan Basin, which is at 
low elevation, will also be unfavorable as the climate gets 
warmer (Fig. 2c). As temperatures have increased over geo-
logical time, oaks have been increasingly concentrated at 
high elevations. However, there are not such high elevations 
in subtropical and tropical regions as buffer zones such as 
high mountain ranges at the HHM, the cold-adapted plants 
always are distributed on the mountaintops as relicts (Fig. 3). 
Thus, mountaintops in lower latitude tropical regions are 
likely to serve as climate refugia under global warming 
(Fig. 3). As for species migrating under ongoing climate 
warming, trailing-edge populations (i.e. those currently in 
warmer climates) are the most likely to be genetically unique 
relicts of former glacial refugia (Hampe and Petit 2005) 
and will also be the first to suffer local extirpation (Razg-
our et al. 2013). Cooler mountaintops can buffer species 

against extreme heat stress during climate changes (Shoo 
et al. 2010), and so may represent a favorable habitat for 
cold-adapted plants, such as high-mountain oaks.

Different taxa will respond individually to environmen-
tal changes; however, some environmental parameters will 
affect a large number of taxa in a similar manner, and these 
factors are likely to be important for defining the spatial 
dimensions of refugia (Keppel et al. 2012). Precipitation in 
the warmest quarter and temperature seasonality contributed 
most to potential species distributions from the model, indi-
cating that these climate factors are the main determinants 
of alpine plants range. The current distribution at high eleva-
tion of the HHM ranges (Fig. 3a) provide suitable buffer 
zones for high-mountain oaks. However, the oaks in tropical 
and subtropical regions are gathered on the mountaintops as 
relicts, examples include subtropical evergreen broad-leaved 
forest in the Dalengshan Mountains, Yunnan (Fig. 3b); 
and the Victoria Hills tropical rainforests in Arakan Yoma 

Fig. 3  Current geographic distribution of high-mountain oaks along 
the elevational-latitudinal gradients: a the locality at Hengduan 
Mountains, the highland near Tibetan Plateau, at which has enough 
high elevation as buffer zone for alpine forests; b the locality at 
Dalengshan Mountains, subtropical evergreen broad-leaved forest, at 

which has no high elevation; c the locality at Victoria Hills, Arakan 
Yoma, tropical rainforest, at which has no high elevation. The moun-
tain tops of b and c, act as climate refugia for relict plants, are and 
always will be climates refugia under global warming, particularly in 
tropical and subtropical regions



181Alpine Botany (2019) 129:175–183 

1 3

(Fig. 3c). That is, the relict occurrence of oaks on moun-
taintops in tropical and subtropical regions may particularly 
suffer from the current pace of climate warming that may be 
faster than the ability of plants to adapt and evolve.

Alpine refugia in a changing climate

High elevations, such as the mountaintops in the tropical 
regions, are currently and will continue to be important 
climate refugia, whereas some lower elevation and latitude 
populations are at risk of extirpation, particularly for cold-
tolerant plants in the tropics and subtropics (Fig. 3b, c). A 
better understanding of future climate refugia based on firm 
historical insights is needed for robust predictions. Moun-
taintops in tropical rainforest currently act as climate refugia 
for cold-adapted plants and need to be recognized and stud-
ied as part of ongoing efforts to understand biogeography 
and biodiversity of plants.

Although there is a rapidly growing literature on species 
migrations across elevation zones in temperate regions, in 
response to climate change, little is known about the impor-
tance of mountaintops as climate refugia in the tropics. We 
expect these regions to play a significant role in biogeogra-
phy and conserving biodiversity under a changing climate. 
Mountaintops with complex topography and high elevation, 
particularly in the tropics, could provide the last heaven as 
climate refugia for populations against climate shifts and 
allow species to persist despite regionally unfavorable cli-
mate (Fig. 3).

Conservation organizations are currently working to iden-
tify potential climate refugia for modern populations which 
are at risk from ongoing climate change (Shoo et al. 2011; 
Groves et al. 2012; Olson et al. 2012). Climate warming and 
anthropogenic activities are expected to have a far-reaching 
influence on biodiversity (Meng et al. 2019; Song et al. 
2019). However, refugia at high elevations in tropical and 
subtropical regions (Fig. 3) will be of great importance to 
harbor biodiversity in changing environments, particularly 
for the alpine and/or cold-adapted relicts. An understanding 
of future climate refugia should be used to guide the estab-
lishment of specific areas of conservation, and ultimately 
facilitate the long-term persistence and survival of cold-
adapted plants in the face of accelerating changing climate.
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