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Summary

� Unraveling the phylogenetic relationships between the four major lineages of terrestrial

plants (mosses, liverworts, hornworts, and vascular plants) is essential for an understanding of

the evolution of traits specific to land plants, such as their complex life cycles, and the evolu-

tionary development of stomata and vascular tissue.
� Well supported phylogenetic hypotheses resulting from different data and methods are

often incongruent due to processes of nucleotide evolution that are difficult to model, for

example substitutional saturation and composition heterogeneity. We reanalysed a large pub-

lished dataset of nuclear data and modelled these processes using degenerate-codon recoding

and tree-heterogeneous composition substitution models.
� Our analyses resolved bryophytes as a monophyletic group and showed that the

nonmonophyly of the clade that is supported by the analysis of nuclear nucleotide data is due

solely to fast-evolving synonymous substitutions.
� The current congruence among phylogenies of both nuclear and chloroplast analyses lent

considerable support to the conclusion that the bryophytes are a monophyletic group. An ini-

tial split between bryophytes and vascular plants implies that the bryophyte life cycle (with a

dominant gametophyte nurturing an unbranched sporophyte) may not be ancestral to all land

plants and that stomata are likely to be a symplesiomorphy among embryophytes.

Introduction

Plants are the main primary producers in terrestrial environ-
ments, constituting the majority of above-ground biomass and
representing a major atmospheric carbon sink that has shaped the
climate globally (Lenton et al., 2012). However, despite their
ecological importance for life on land, the evolutionary relation-
ships of the major lineages of terrestrial plants and their immedi-
ate ancestors is not yet fully understood. In particular, the
relationships among the three bryophyte groups, namely mosses,
liverworts and hornworts, and their relationship to the vascular
plants (tracheophytes) have long been controversial (reviewed by
Cox, 2018). Land plants develop via a sporophytic embryo that
is nurtured by the gametophyte and hence are collectively
referred to as embryophytes. The freshwater charophyte green
algae have for a long time been recognized as the closest living rel-
atives of the embryophytes (Karol, 2001; McCourt et al., 2004)
and recent molecular evidence suggests that Zygnematales
(Timme et al., 2012; Civ�a�n et al., 2014) or a clade including
Zygnematales and Coleochaetales (Wodniok et al., 2011; Laurin-
Lemay et al., 2012) share the most recent common ancestor with
the embryophytes.

The evolution of land plants was accompanied by a shift from
a haplobiontic life cycle with a single multicellular haploid

gametophytic generation, as seen today in freshwater charo-
phytes, to a diplobiontic life cycle, characterized by an alternation
of multicellular haploid and diploid generations (Niklas &
Kutschera, 2010). In all extant land plants, embryonic sporo-
phytes are dependent on parental gametophytic tissue for at least
part of their development (Graham & Wilcox, 2000), but two
contrasting diplobiontic life strategies can be distinguished: in
bryophytes, the haploid gametophytes are the dominant vegeta-
tive stage, whereas in tracheophytes (lycophytes, ferns, and seed
plants), the diploid sporophyte is the main vegetative stage (Nik-
las & Kutschera, 2010). In the absence of a well supported phylo-
genetic hypothesis on the relationships and order of divergence of
early land plants, is it not possible to determine which type of life
cycle characterized their common ancestor. If tracheophytes are
derived from a bryophyte ancestor, the ancestral life cycle of
embryophytes would probably have been predominantly gameto-
phytic (Niklas & Kutschera, 2010; Ligrone et al., 2012). If,
instead the first split occurred between bryophytes and tracheo-
phytes, then the embryophyte ancestor could have had a diplo-
biontic life cycle (Stebbins & Hill, 1980), with stomata possibly
arising in the ancestral sporophyte of all land plants.

The transition of ancestral plants to land, from an aquatic
environment, is thought to have occurred c. 480Ma in the late
Silurian period (Kenrick et al., 2012; Magall�on et al., 2013), but
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recent estimates have dated this transition earlier to
515.1�470.0Ma in the late Cambrian or early Ordovician
period (Morris et al., 2018). However, without a reliable phylo-
genetic hypothesis, an accurate dating of the origin of the
embryophytes is more difficult to establish (Morris et al., 2018).
To date, the most widely accepted evolutionary hypothesis is that
the tracheophytes derived from an early bryophyte lineage, and
that either liverworts alone (Karol, 2001; Qiu et al., 2006; Gao
et al., 2010; Karol et al., 2010; Clarke et al., 2011), liverworts
plus mosses (Karol et al., 2010), or the hornworts alone
(Nishiyama & Kato, 1999; Wickett et al., 2014), are the sister
group to the remaining land plants. However, the view that
bryophytes form a monophyletic group, while receiving less fre-
quent acceptance, has not been ruled out (Nishiyama et al., 2004,
2018; Cox et al., 2014; Wickett et al., 2014; Morris et al., 2018;
Puttick et al., 2018).

The absence of a definitive phylogeny of land plants, in spite of
the considerable amount of data available from all three genomic
compartments, is due to the challenges posed when comparing
anciently diverged molecular data. Regardless of the origin of the
data, two main factors are known to cause systematic error in phy-
logenetic reconstruction of ancient phylogenies: high substitution
rates (ultimately leading to substitution saturation and loss of
phylogenetic signal) and composition biases among sites and
between taxa (data and tree heterogeneity, respectively; Liu et al.,
2014). Substitutional saturation occurs when multiple substitu-
tions at the same site overwrite synapomorphies and create homo-
plasies (Philippe et al., 2011) thereby generating ‘noisy’ data that
can affect branch support and lead to erroneous phylogenetic
inference (Jeffroy & Brinkmann, 2006). Saturation is dependent
on time and substitution rate, and is therefore more pronounced
in faster-evolving nucleotide data (Liu et al., 2014). Methodologi-
cal approaches for alleviating the problem of substitutional satura-
tion include: (1) removing third codon positions (Wickett et al.,
2014), which corresponds in most cases to the removal of fast-
evolving synonymous substitutions; and (2) using codon degener-
acy, which effectively removes all synonymous substitutions by
recoding synonymous nucleotides at codon sites with nucleotide
ambiguity codes (Cox et al., 2014).

Nucleotide or amino acid compositions are generally mod-
elled as their respective frequencies at equilibrium, and include
the probability of change from one state to another. The
Markov models, used as substitution models in phylogenetics,
assume a stationary process that does not vary across time or
across the data. However, we often see that different genes (or
data partitions) have different compositions, which violates the
assumption that the process does not differ over the data. We
can relax this assumption and model composition heterogeneity
among data by applying different Markov models, with differ-
ent compositions, to different data partitions. Furthermore,
compositional heterogeneity among taxa is also often seen at all
levels of phylogenetic organisation, in violation of the assump-
tion that the process does not vary across the tree (or over
time). Such heterogeneity may be caused by differences in direct
selective pressures or by variation in passive mutation processes.
We can sometimes ameliorate this heterogeneity by judicious

site or taxon stripping, or alternatively we can accommodate
the heterogeneity by using appropriate tree-heterogeneous com-
position substitution models (Lockhart et al., 1992; Mooers &
Holmes, 2000; Foster, 2004; Inagaki et al., 2004; Inagaki &
Roger, 2006; Blanquart & Lartillot, 2008; Regier et al., 2010;
Rota-Stabelli et al., 2012). Indeed, homogeneity of the substitu-
tion process should always be verified in molecular data used to
reconstructing ancient phylogenies, and, if the data are shown
to be nonstationary, then appropriate tree-heterogeneous com-
position substitution models should be used (Foster et al., 2009;
Cox et al., 2014; Liu et al., 2014). If stationary substitution
models are applied to composition tree-heterogeneous data, an
artificial, but possibly statistically well supported, clustering of
taxa with similar compositions may occur (e.g. Foster, 2004;
Cox et al., 2008). Moreover, differences in composition at the
nucleotide level are reflected at codon level in the form of dif-
ferent synonymous codon preferences among lineages, or
codon-usage bias (Gouy & Gautier, 1982; Inagaki et al., 2004;
Stenøien, 2005; Inagaki & Roger, 2006; Zhou & Li, 2009;
Plotkin & Kudla, 2011; Rota-Stabelli et al., 2012; Liu et al.,
2014), which may strongly impact phylogenetic reconstruction
when using codon models if shared codon preference is mis-
taken for shared ancestry (Inagaki et al., 2004; Inagaki & Roger,
2006; Regier et al., 2010; Rota-Stabelli et al., 2012; Cox et al.,
2014). Differences in codon usage occur between species but
also within genomes, and can be a consequence of translational
selection, as well as being due to differences in mutational bias
(Bulmer, 1988; Sharp et al., 1993). A possible approach to mit-
igate the effect of amino acid composition bias on phylogenetic
reconstruction is to re-code protein data by defining amino acid
groups that show similar substitution properties (Susko &
Roger, 2007; Rota-Stabelli et al., 2012).

In this study we analysed molecular sequence data from the
nuclear genome to clarify relationships among land plant lineages
using novel analytical approaches. We assumed the monophyly
of tracheophytes and of each of the three bryophyte lineages;
relationships which have been consistently demonstrated (Qiu
et al., 2006; Chang & Graham, 2011; Liu et al., 2014; Wickett
et al., 2014). We attempted to balance representatives of each
bryophyte and tracheophyte lineage, to achieve greater tree sym-
metry, as asymmetrical trees are less likely to be correctly esti-
mated than symmetrical trees, due to the shorter average branch
length, which expands the number of anomalous gene trees
(Huang & Knowles, 2009). More balanced sampling among lin-
eages is also likely to minimise the effect of long-branch attrac-
tion, which often influences deep phylogenetic relationships
(Philippe & Laurent, 1998). We revisited a large published
dataset of nuclear loci (Wickett et al., 2014) and implemented
complete degenerate recoding of synonymous substitutions to
the whole data set. To be able to apply complex and computa-
tionally challenging substitution models we also constructed a
smaller data set with selected loci (100) and a reduced number of
taxa (26). We tested these data using heterogeneous models of
substitution that accommodate mutational heterogeneity and
showed that analyses using the best-fitting composition models
support the monophyly of bryophytes.
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Materials and Methods

Analyses of Wickett et al. data (620 genes, 103 taxa)

The data of Wickett et al. (2014), consisting of 620 nuclear genes
and 103 taxa were obtained from a public data repository (http://
www.cyverse.org). The original data matrix (labeled FNA2AA.
trim50genes50sites.allPos.unpartitioned.phylip) consisted of
436 077 sites of in-frame coding sequence, after genes missing
more than 50% of taxa and sites with more than 50% of gaps
were removed. Synonymous vs nonsynonymous substitution
rates of the 85 of 620 genes that were ‘gapless’ were calculated in
PAML (v.4.6; Yang, 2007). The concatenated 620 gene data set
was recoded with codon-degenerate characters using the script
(recode_matrix.py; Li pers. comm.), which places ambiguity
characters at synonymous third codon positions, at first codon
positions of amino acids leucine (L) and arginine (R), and at both
first and second codon positions of amino acid serine (S), which
can be coded with either purines (AG) or pyrimidines (TC) at
these positions. All third codon positions were removed from
both the original and the recoded matrices (290 718 sites). The
amino acid translation matrix (labelled FAA.trim50genes50sites.-
clustered.partitioned.phylip) was also obtained. Hence there were
three derived data matrices based on the original taxon and gene
selection of Wickett et al.: (1) original data matrix without third
codon positions; (2) original data with codon-degenerate recod-
ing and without third codon positions; and (3) the amino acid
translation of the original matrix.

Maximum likelihood bootstrap analyses were conducted on
all matrices using RAxML (MPI-compiled v.8.2.8; Stamatakis,
2014) using the ‘full’ (RAxML notation: -b) bootstrap algorithm
and 200 replicates. The original nucleotide data matrix (436 077
sites) was analysed by bootstrapping with a general time-
reversible model of substitution (GTR), with a discrete (four cat-
egories) gamma distribution of among-site rate variation (G4)
with empirical composition values (Femp) and 200 bootstrap
replicates (RAxML notation: GTRGAMMA). The data sets
without third codon positions (290 718 sites), and the same
matrix but with codon-degenerate coding, were analysed by boot-
strapping with a GTR +G4 with the composition estimated via
ML(Fest) (RAxML notation: GTRGAMMAX). The latter data
set (no third codon positions, codon-degenerate coding) was also
analysed using a GTR model but with the Per Site Rate model
(PSR; Stamatakis & Aberer, 2013) (previously named the CAT-
rates approximation), each with ML estimated composition fre-
quencies (Fest) (RAxML notation: GTRCATX). Analyses of the
original and derived matrices were conducted to compare the
effect of third codon position removal with the effect of synony-
mous substitutions, the latter through the use of
codon-degenerate recoding that effectively eliminates synony-
mous substitutions at first and second codon positions. For the
concatenated gene protein translation data (145 359 sites), the
partitioning scheme calculated by Wickett et al. (2014) (nine cat-
egories; file labeled: ‘PARTITION_FOR_W14_AA_103t_
145359aa.partition’) was used (RAxML notation: -q) with both
the G4 and PSR rate category estimations and Fest (RAxML

notation: PROTGAMMA<>X and PROTCAT<>X, where <>
is an arbitrary model that is ignored) and 100 bootstrap repli-
cates.

Gene and taxon selection for the reduced data set
(100 genes, 26 taxa)

Using non-stationary substitution models for phylogenetic infer-
ence requires substantial computational capacity, and it was
therefore necessary to reduce the sampling of genes and taxa. We
chose to select the genes that had the lowest composition hetero-
geneity among taxa and the shortest tree lengths, to minimize
composition effects and substitutional saturation. Out of the 620
genes in the original nucleotide matrix, we analysed those larger
than 500 bp (388 genes), in MRBAYES (v.3.2.6; Ronquist et al.,
2012), under the composition homogeneous GTR +G4 model
of nucleotide substitution. Markov-Chain Monte Carlo
(MCMC) analyses were run for 500 000 generations, after which
a stop rule was employed with the default 0.05 for the average
standard deviation of split frequencies (ASDOS). Out of 388
genes, 43 did not converge (ASDOS < 0.05). Composition
homogeneity tests of posterior predictive distributions of the chi-
squared (v2) statistic were conducted using P4 (v.1.2.0; Foster,
2004) and indicated that all 345 genes were significantly nonho-
mogeneous (P < 0.05). Genes were scored for their v2 value of
composition homogeneity and for mean tree lengths of sampled
trees from the posterior tree distribution, and ranked by both
scores. The mean of ranks was used as a final ranking, and the
100 genes with the lowest v2 value and tree lengths were selected.

Taxa were scored in the selected 100 genes for number of
genes in which they were present and for the total percentage of
missing sites. For each taxon, the absolute %GC deviation from
the mean of entire gene alignment composition was also calcu-
lated. These values were used, in each of the six main land plant
groups, and in the outgroups, to select the most appropriate taxa
in order to minimise both %GC deviation and number of miss-
ing taxa, resulting in a final list of 26 taxa. The concatenated 100
gene and 26 taxa nucleotide alignment comprised 69 903 sites
and the translated amino acid alignment, obtained with the align-
ment program SEAVIEW (v.4.5.4; Gouy et al., 2009), comprised
23 301 sites. A matrix with complete codon degeneracy was
obtained from the concatenated nucleotide alignment. The con-
catenated amino acid matrix was recoded into Dayhoff amino
acid groups (six groups: c, stpag, ndeq, hrk, milv, fyw; Dayhoff
et al., 1978) using the program P4. Individual nucleotide and
amino acid matrices of the 100 genes were also generated.

Phylogenetic analyses of the reduced data set
(100 genes, 26 taxa)

To assess the effect of synonymous substitutions, both the con-
catenated nucleotide and the codon-degenerate data matrices of
the 100 gene and 26 taxa reduced data set were analysed under
the GTR +G4 + Fest model of substitution (RAxML notation:
GTRGAMMAX), with 300 bootstrap replicates, in RAxML.
The nucleotide data alignment was also analysed in PHYLOBAYES
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MPI (v.1.6; Lartillot et al., 2009) using the model CAT-
GTR +G4 to assess the effect of among-site composition hetero-
geneity. To test the effect of data partitioning under maximum
likelihood, genes were grouped into partitions using the ‘greedy’
algorithm in IQTREE (MULTICORE v.1.5.3; Nguyen et al., 2015;
Chernomor et al., 2016). A bootstrap analysis with 100 replicates
of the nine optimal partitions was performed using IQTREE (see
Supporting Information, Fig. S7 for details). We then tested
whether the phylogenetic signal obtained from the analyses of
nucleotide data differed from the signal obtained from the analy-
ses that use models and data transformations aimed at mitigating
the effect of homoplasy due to saturation. These analyses were
performed: (1) on nucleotide data under codon models; (2) on
amino acid matrices; and (3) on matrices of grouped amino acids.
Codon analyses were performed on the 100 gene dataset using
IQTREE, with 100 bootstrap replicates using the models
GY2K + F3X4 +G4 and MG2K + F3X4 +G4. An optimal
model for the concatenated amino acid data set was determined
using MODELGENERATOR (v.0.85; Keane et al., 2006). Bootstrap
analysis were performed in RAxML under the LG +G4 + Fest
(RAxML notation: PROTGAMMALGX) model, with 300 repli-
cates on both the amino acid and Dayhoff-recoded data sets. The
amino acid dataset was also analysed in PHYLOBAYES under the
CAT-LG +G4 model with two parallel MCMC runs.

Bayesian MCMC analyses of individual nucleotide and amino
acid data matrices of the reduced 100 genes, 26 taxon set were
performed using P4. Nucleotide data were analysed under the
GTR +G4 model of substitution. Models for analysing individ-
ual amino acid matrices were inferred in MODELGENERATOR. Each
matrix was analysed assuming both composition homogeneity
(FCV1: one composition vector) and heterogeneity (FCV>1: two or
more composition vectors) using the node-discrete composition
heterogeneity model (NDCH; Foster, 2004; Cox et al., 2008),
which accounts for base-composition differences between
branches on a tree.

To assess the effect of composition heterogeneity we analysed
the concatenated nucleotide, amino acid, and Dayhoff group
matrices with Bayesian MCMC using both tree-homogeneous
and tree-heterogeneous composition models. The concatenated
and codon-degenerate nucleotide matrices of the 100 gene, 26
taxon set were analysed with Bayesian MCMC using the compo-
sition homogeneous model GTR +G4 + FCV1 and composition
heterogeneous NDCH model (GTR +G4 + FCV>1) in P4. The
concatenated amino acid alignment was analysed using the com-
position homogeneous model LG +G4 + FCV1, and the Dayhoff-
recoded data were analysed under the GTR +G4 + FCV1 model.
Composition heterogeneous NDCH model analyses were con-
ducted on the concatenated amino acid data (LG +G4 + FCV>1)
and the Dayhoff-recoded data set (GTR +G4 + FCV>1). A mini-
mum of two runs was performed for each analysis. Run conver-
gence was assessed by estimating ASDOS, which was accepted
when lower than 0.05, by plotting the MCMC sample likeli-
hoods, and comparing marginal likelihoods. Effective sample size
(ESS) values and acceptances for proposals were estimated and
assessed using P4 methods. The fit of the composition models
was determined during the MCMC by posterior predictive

simulations of the v2 statistic of composition homogeneity
(Foster, 2004). Marginal likelihoods were estimated in P4 follow-
ing the Eqn 16 method of Newton & Raftery (1994). Bayes fac-
tors, which are used to compare the relative adequacy of
competing models (Nylander et al., 2004), were estimated from
the log-marginal likelihood of analyses using homogeneous (null)
and nonhomogeneous (alternative) models, when the alternative
model was accepted under posterior predictive simulation. Alter-
native models that had a high log-Bayes Factors (loge BF > 10
units), calculated as 29(logeL(alternative model) � logeL(null
model)) were considered better-fitting than the homogeneous
model. A PHYLOBAYES analysis using the CAT-LG +G4 model
was conducted on the concatenated amino acid data.

Analyses were performed on the CCMAR computational clus-
ter facility GYRA at the University of Algarve or INGRID part
of the Infraestrutura Nacional de Computac�~ao Distribu�ıda
(INCD) in Portugal. Details of each analysis are presented in the
legends of Supporting Information Figs S1–S17.

Results

Wickett et al. nucleotide and amino acid data analyses

The analysis of the 620 gene nucleotide dataset using maximum
likelihood resulted in a tree that supports hornworts as the sister
group to the remaining land plants with a bootstrap support (BS)
of 89% (Fig. S1). The same supported relationship (BS = 98%) is
shown when nucleotides at third codon positions are excluded
from the data (Fig. S2). This result is concordant with the equiva-
lent analysis of the 620 gene dataset in Wickett et al. (2014; their
Fig. 2) with third codon positions excluded.

Analysing the 620 gene dataset with codon-degenerate recoded
data and excluded third codon positions, using maximum likeli-
hood and the GTR +G4 model, resulted in trees showing
bryophytes as a monophyletic group, albeit with low support
(BS = 54%; Fig. S3). Using the GTR + PSR rate model, however,
yields a tree that supports the paraphyly of bryophytes (BS =
85%) and showing hornworts as the sister group to all other land
plants (Fig. S4). Similarly, differences between rate models were
also observed in the maximum likelihood bootstrap analyses of
partitioned amino acid data, which identifies hornworts as the
sister group to all other embryophytes when the PSR rate model
is used (BS = 75%; Fig. S5) but resolves the three bryophyte lin-
eages as a monophyletic group when the G4 rate model is used
(BS = 76%; Fig. S6).

Reduced nucleotide data set analyses (100 genes, 26 taxa)

None of the 100 individual protein-coding genes (>500 bp) anal-
ysed had a stationary homogeneous composition across the tree.
Most genes had a best-fitting model with two composition vec-
tors (FCV2), and five genes were better fitted by three vectors
(FCV3). Of the 100 individual amino acid gene translations anal-
ysed, 24 were compositionally tree homogeneous, while the
remaining protein models required up to six composition vectors
(FCV6) to fit the data (Table S1).
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All maximum likelihood analyses of the reduced nucleotide
dataset (100 genes, 26 taxa) showed full support (BS = 100%) for
the monophyly of embryophytes and of each of its four major
lineages (mosses, liverworts, hornworts, vascular plants). When
the data were analyzed using the GTR +G4 model the resulting
tree supported hornworts as sister group to the remaining
embryophytes (BS = 81%; Fig. 1a). Analysis of the partitioned
data using IQTREE also places hornworts as the sister group to the
remaining embryophytes with low bootstrap support (BS = 68%;
Fig. S7). By contrast, when the data were analyzed using degener-
ate coding for all synonymous codon positions, the resulting tree
showed the three bryophyte lineages forming a well supported
monophyletic group (BS = 89%; Fig. 1b).

Bayesian analyses of the reduced nucleotide dataset using both
tree-homogeneous (FCV1) and tree-heterogeneous NDCH (FCV2)
composition models show hornworts strongly supported as the
sister group to the remaining land plants (PP = 1.0; Figs S8, S9,
respectively). Although the two runs of the heterogeneous analy-
sis did not converge, they both recovered the same topology
(Fig. S9): here we report only the diagnostic values of the
MCMC with the highest likelihood. The model with two com-
position vectors (FCV2) fits the data with a posterior predictive
simulation v2 distribution of the composition homogeneity
statistic (P = 1.0), whereas the homogeneous (FCV1) model was
rejected (P = 0.0). The Bayes factor comparing the composition
homogeneous and heterogeneous models strongly supported the

heterogeneous model (2loge BF = 9016.7). Bayesian reconstruc-
tions using the PHYLOBAYES CAT model resulted in a tree show-
ing mosses as the sister group to other land plants (PP = 0.99;
Fig. S10), which contrasts with all other results obtained from
the same data. Analyses of the degenerate-recoded data with both
a homogeneous (FCV1) and heterogeneous model (FCV2) showed
bryophytes as a monophyletic group with maximum support
(PP = 1.0; Figs S11, S12, respectively). Posterior predictive simu-
lations of composition fitted to the data rejected the homoge-
neous model (P = 0.0) but not the heterogeneous model
(P = 0.99). The Bayes factor strongly favoured the heterogeneous
model (2loge BF = 961.3). Maximum likelihood bootstrap analy-
ses of the codon-site data using models GY2K and MG2K placed
hornworts as the sister group to other land plants with full boot-
strap support (BS = 100%; Figs S13, S14, respectively).

Reduced amino acid data analyses (100 genes, 26 taxa)

Maximum likelihood bootstrap analysis of the amino acid dataset
using the LG +G4 model resulted in a tree showing mono-
phyletic bryophytes but with low bootstrap support (BS = 56%;
Fig. 2a). However, a similar analysis with the data recoded into
Dayhoff groups resulted in higher bootstrap support for a mono-
phyletic bryophyte clade (BS = 80%; Fig. 2b). Bayesian MCMC
analyses of the concatenated amino acid dataset using both tree-
homogeneous and NDCH tree-heterogeneous models recovered

Fig. 1 Majority-rule consensus trees inferred from the 100 gene, 26 taxon concatenated nucleotide data set. (a) Majority-rule consensus tree of maximum
likelihood bootstrap analyses (300 replicates) under the GTR +G4 + Fest model, (b) the corresponding analysis of codon-degenerated data under the same
model. Taxa are indicated as follows: hornworts, orange; liverworts, cyan blue; mosses, light green; tracheophytes, violet.
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(a) (b)

(c) (d)

Fig. 2 Majority-rule consensus trees inferred from the 100 gene, 26 taxon concatenated amino acid data. (a) maximum likelihood bootstrap with 300
replicates under the model LG +G4 + Fest, (b) maximum likelihood bootstrap analysis with 300 replicates of the Dayhoff-recoded data with under the
model GTR +G4 + Fest, (c) Bayesian MCMC of the amino acid data with a composition homogeneous model LG +G4 + FCV1, marginal likelihood:
Lh = 441823.4926, (d) Bayesian MCMC of the amino acid data with a heterogeneous NDCH composition model LG +G4 + FCV5, marginal likelihood:
Lh = 441066.4929. Taxa are indicated as follows: hornworts, orange; liverworts, cyan blue; mosses, light green; tracheophytes, violet.
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the bryophytes as monophyletic (Fig. 2c,d, respectively). How-
ever, whereas the poor-fitting (v2 = 0.0) homogeneous model
showed low support (PP = 0.84; Fig. 2c), the best-fitting NDCH
composition model (FCV5) had a highly significant posterior
probability for monophyletic bryophytes (PP = 0.98; Fig. 2d).
The Bayes factors comparing the tree-homogeneous and tree-
heterogeneous composition models strongly favoured the latter
model (2loge BF = 1513.9). Bayesian MCMC of the Dayhoff-
recoded dataset resolved bryophytes as monophyletic with full
branch support under both homogeneous and heterogeneous
models (PP = 1.0, Figs S15, S16, respectively). Posterior predic-
tive simulations of the composition rejected the homogeneous
model (FCV1; P = 0.0) and supported a model with two composi-
tion vectors (FCV2; P = 0.99). Similarly, the Bayes factor strongly
favoured the heterogeneous over the homogeneous model (2loge
BF = 400.5). A PHYLOBAYES analysis of the amino acid data using
the model CAT-LG +G4 also yielded a tree that supported the
monophyly of bryophytes (PP = 0.99; Fig. S17).

Discussion

The effect of degenerate-codon re-coding on fast-evolving
nucleotide data

The recoding of nucleotide alignments with codon-degenerate
ambiguity codes negates the effect of not only synonymous substi-
tutions at third codon positions, but also those at second and first
codon positions in L, R and S codons, while still retaining those
nonsynonymous substitutions that are eliminated by the common
practice of deleting third codon positions. Synonymous substitu-
tions experience less selection than nonsynonymous substitutions
and have previously been shown to range between 2�409 faster
than nonsynonymous substitutions in nuclear genes (Yang &
Nielsen, 1998). In both the 620 and 100 gene datasets analysed
here, synonymous substitutions occurred a mean of c. 12.59
(x = dn/ds = c. 0.08) faster than nonsynonymous substitutions,
ranging between 3�4009 (x = dn/ds = 0.3492�0.0025) and
6�3009 (x = dn/ds = 0.1742�0.0033) faster in the 620 and 100
gene datasets respectively (see Notes S1 and S2). Homologous sites
among taxa at which synonymous substitutions occur are therefore
more likely to exhibit substitution saturation and hence character
homoplasy across the phylogeny, which is compounded by conver-
gent compositional biases due to different mutation pressures
among taxa (Cox et al., 2014).

Codon-degenerate recoded nucleotide data resulted in inferred
topologies that differed from those obtained from complete
alignments and from alignments with all third codon positions
removed. Simply excluding third codon positions from the 620
gene dataset recovered hornworts as the sister group to the
remaining embryophytes (Fig. S2), as reported by Wickett et al.
(2014, their Fig. 2). However, when the L, R and S synonymous
codons (which include synonymous substitutions at first and sec-
ond codon positions) are recoded with ambiguity codes (i.e
codon-degenerate recoding), in addition to the exclusion of third
codon positions, the resulting tree shows bryophytes as mono-
phyletic (Fig. S3). This results indicated that although most

saturated sites occur at third codon positions, the effect of syn-
onymous substitutions at first and second codon positions in L,
R, and S amino acids is enough to alter tree topologies, even in
large datasets. Similarly, maximum likelihood analyses of the
nucleotide 100 gene, 26 taxon dataset supported hornworts as
the sister group to the remaining land plants (Fig. 1a), but when
the data are codon-degenerated the same analyses resulted in a
monophyletic bryophytes (Fig. 1b). Although these results by
themselves do not negate the support for the hornworts as the sis-
ter lineage to the remaining land plants in the nucleotide data,
they do suggest that that support is due entirely to the faster-
evolving synonymous substitutions that are problematic to the
model due to increased rates of substitution and the accumula-
tion of composition biases.

The importance of using nonstationary substitution models

In this study we analysed a 100 protein-coding gene and 26 taxon
dataset obtained from a larger previously published 620 gene,
103 taxon dataset of nuclear gene sequences. This reduced dataset
was generated so that evolutionary models that account for com-
position heterogeneity could be used, but which are computa-
tionally intractable on larger datasets. Such a methodology is
based on the supposition that modeling the substitution process
is an equally important part of the practice of phylogenetics as is
taxon sampling. In the era of next-generation sequencing tech-
niques and the ease of obtaining vast amounts of comparative
sequence data, it can be argued that taxon sampling is no longer
the limiting factor in phylogenetic systematics, but rather it is our
ability to model the complexity of the evolutionary process.
Indeed, adequate taxon sampling is not dependent merely on
numbers of taxa but rather upon a judicious taxon sampling
needed to address the specific relationships the analyses are aimed
at resolving (Cox et al., 2014). For instance, if the analyses are
aimed at resolving relationships among the three bryophyte
groups, then it is more important to sample lineages that repre-
sent temporally sparse phylogenetic splits in each bryophyte
group, such as the moss genera Takakia and Andreaea, than it is
to sample densely within evolutionarily derived taxa such as the
speciose pleurocarpous moss group Hypnanae. Including many
such taxa would be superfluous while limiting the complexity of
the models that can be used, due to computational constraints. A
balance needs to be made between data set size and model com-
plexity and, if analyses with large taxon samples can only apply
simplified models that ignore heterogeneity and fit the data
poorly, they should be treated with due skepticism.

The criteria used to select taxa and genes for the reduced (100
genes, 26 taxa) data set were aimed at decreasing the effect of bio-
logical sources of phylogenetic incongruence such as elevated
rates of substitution, by preferring shorter gene trees, and at min-
imising composition heterogeneity among taxa. Nevertheless, the
synonymous to nonsynomymous substitution rate of the 100
chosen genes ranged from 6�3009, indicating that our selection
procedure had little effect on limiting the influence of the fast-
evolving synonymous substitutions on the analyses, compared
with the full 620 gene data set. Moreover, the selected data that
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comprised the reduced data set were not composition homoge-
neous even if the amount of heterogeneity was reduced: posterior
predictive distribution of the v2 of composition homogeneity
P = 0.0 (Fig. S8). Indeed, despite our attempts to reduce possible
sources of phylogenetic artifacts, our reduced data set had very
similar analytical characteristics as the full 620 gene data set.

Use of better-fitting composition heterogeneous models did
not alter the inferred topology or the support, compared with
homogeneous models, when analysing either the nucleotide or
codon-degenerate alignments, although the former supported
hornworts as the sister group to all land plants, whereas the latter
a monophyletic bryophytes (Fig. S8 vs Fig. S9 2loge
BF = 9016.7151 and Fig. S11 vs Fig. S12 2loge BF = 961.2782,
respectively). Among-lineage composition heterogeneity is pre-
sent in the nucleotide data but its modeling has no influence on
the phylogenetic result, indicating there are other processes that
have a larger and overwhelming impact on the analyses. By con-
trast, when analysing the more slowly evolving amino acid data,
using a better-fitting composition heterogeneous model does
increase branch support for a monophyletic bryophyte group sig-
nificantly (PP = 0.98, Fig. 2d), compared with the homogeneous
model (PP = 0.84, Fig. 2c). We speculate that, because amino
acids have a greater number of potential identities (n = 20) when
compared with nucleotides (n = 4), there is greater potential for
variation in among-lineage composition heterogeneity and there-
fore modeling composition biases has a greater effect on amino
acid data.

Implications of the study for understanding the evolution of
land plants

Composition heterogeneity in nuclear land plant molecular
data has been shown to affect the inference of phylogenetic
relationships in analyses of poorly fitting homogeneous (sta-
tionary) composition models. Indeed, the best-fitting composi-
tion models found for the nucleotide data, the codon-
degenerate nucleotide data, and the amino acid data, were all
heterogeneous, indicating that any analyses of these data under
homogeneous composition models is highly questionable.
Analyses of the codon-degenerate nucleotide data and the
amino acid data using the best-fitting nonstationary composi-
tion models resolve the bryophytes as monophyletic group with
high branch support. Our results from nuclear protein-coding
gene data provide compelling evidence that the three lineages
of bryophytes, mosses, liverworts, and hornworts, form a
monophyletic group and thereby share a common ancestor to
the exclusion of tracheophytes. This hypothesis implies that
the first phylogenetic split among land plants was between the
bryophytes and tracheophytes, rather than the tracheophytes
being derived from bryophyte ancestors, which has been the
prevailing theory. These results are congruent with recently
published studies of chloroplast (Nishiyama et al., 2004; Cox
et al., 2014) and nuclear (Puttick et al., 2018) protein-coding
genes that favour the monophyly of bryophytes over other pos-
sible resolutions of the land plant phylogeny (Cox et al., 2014;
Puttick et al., 2018). In addition, the Setaphyta (Puttick et al.,

2018), the clade consisting of mosses and liverworts, is recov-
ered in all but one analysis. The study of Puttick et al. (2018),
which also re-analysed the amino acid data of Wickett et al.
(2014), strongly favoured the monophyly of bryophytes, the
clade being highly supported in several analyses including
supertree analyses from gene trees and composition heteroge-
neous analyses of Dayhoff groups. However, using a reduced
low-heterogeneity dataset and a jack-knife approach, the alter-
native topologies that place hornworts either as the sister group
to the other embryophytes or as the sister group to the tra-
cheophytes could not be rejected. Here, we focus instead on
direct comparisons between analyses of nucleotide, codon-
degenerate nucleotide, and amino acid data of the same 100
gene dataset, and between inferences under composition tree-
homogeneous and tree-heterogeneous models, showing that
when codon degeneracy and nonstationary models are used,
inferences from both nucleotide and amino acid data converge
on the same topology, supporting the monophyly of
bryophytes. Indeed, the explanation that incongruence between
analyses of nucleotide protein-coding gene data and their
amino acid translations is due to fast-evolving (and therefore
unreliable) synonymous substitutions was also given for similar
incongruences among analyses of land plant chloroplast data;
data that were also shown to best support a monophyletic
bryophytes (Cox et al., 2014). Consequently, the hypothesis
that bryophytes are monophyletic is now better supported than
alternatives indicating bryophyte paraphyly.

A common origin of bryophytes has profound implications
for the way that land plant evolution is understood. For
instance, it challenges the fundamental idea that the bryophyte
life cycle, in which the gametophyte is the dominant vegetative
stage and nurtures an unbranched sporophyte, is ancestral to
land plants (Haig, 2008). Indeed, although the haplobiontic
life cycles (with dominant gametophytes and zygotic meiosis)
of the charophyte algal ancestors of land plants imply that the
gametophyte of the land plant ancestor was multicellular, given
the monophyly of both bryophytes and tracheophytes, it is
possible that the sporophyte of the ancestor of land plants was
branched, and maybe even the dominant phase of the life cycle
as in tracheophytes. In such a case, the unbranched sporophyte
of the bryophytes would represent a reduction from the more
elaborate ancestral sporophyte. Moreover, assuming homology
between the retention of the meiotic zygotes in the oogonia of
the haploid phase of such charophytes as Chara ssp. and the
nurturing of the sporophyte by the haploid gametophyte of
bryophytes, the ancestor of land plants likely had a sporophyte
attached to, or nourished by, the gametophyte. However, if
this assumption of homology is incorrect, the most recent
common ancestor of land plants may have had independent
gametophytes and sporophytes that were near-isomorphic, or
with either phase being dominant, and the dependence of the
sporophyte upon the gametophyte may be a derived character
of the bryophyte lineage. Another corollary to the acceptance
of bryophyte monophyly over other evolutionary scenarios is
that the presence of stomata is likely a synapmorphy of all
embryophytes and present in the ancestral sporophyte of all
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land plants, and subsequently lost in the liverwort lineage. Ear-
lier phylogenetic hypotheses that placed liverworts as the sister
group to all other embryophytes implied that stomata arose in
the embryophyte lineage after the divergence of liverworts.

Taxonomy of a monophyletic bryophytes

The clade uniting all three bryophyte lineages should be referred
to by its formal name in accordance with taxonomic precedence.
The name Bryophyta sensu lato has been used informally to refer
to all bryophytes (Cronquist et al., 1966; Whittaker, 1969), but
using it as a formal name creates ambiguity with Bryophyta sensu
stricto, which pertains only to mosses (Goffinet & Buck, 2013;
Ruggiero et al., 2015). The name ‘Bryobiotina’ has previously
been proposed for a subkingdom encompassing all three
bryophyte lineages (Campbell, 1891). However, assigning the
rank of subkingdom to the bryophytes is problematic, as there
are several unranked taxa within the kingdom Plantae, such as
Streptophyta and Embryophyta, that include the bryophytes.
Furthermore, the sister lineage to all bryophytes, Tracheophyta,
is also an unranked taxon. We propose that the previously used
division (phylum) name Bryophyta Schimp. (1879) be used for
the clade containing mosses, liverworts, and hornworts. This will
give taxonomic symmetry to the land plant classification with
the first split being between the Tracheophyta and Bryophyta.
Schimper originally used the name Bryophyta to describe both
the mosses and liverworts (which at the time included the horn-
worts). More recently, the name Bryophyta Schimp. has been
restricted in use to the mosses alone (e.g. Goffinet et al., 2009),
with the liverworts (Marchantiophyta Stotler & Crand.-Stotl.)
and hornworts (Anthoceratophyta Rothm. Stotler & Crand.-
Stotl.) recognised as separate divisions. The elevation of the
three bryophyte lineages to individual divisions was done pre-
sumably to reflect the concept of the paraphyly of bryophytes. If
the monophyly of bryophytes is to be recognised it seems now
prudent to de-rank the hornworts, liverworts and mosses, to the
classes Anthocerotopsida, Marchantiopsida, and Bryopsida
respectively, and classify the bryophytes as a whole as Bryophyta.
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without 3rd-codon positions, RAxML full bootstrap,
GTRGAMMAX, 200 replicates.

Fig. S3 Reanalyses of the 620 genes, 103 taxa nucleotide dataset,
codon-degenerate without 3rd-codon positions, RAxML full
bootstrap, GTRGAMMAX, 200 replicates.

Fig. S4 Reanalyses of the 620 genes, 103 taxa nucleotide dataset,
codon-degenerate without 3rd-codon positions, RAxML full
bootstrap, GTRCATX, 200 replicates.

Fig. S5 Reanalyses of the 620 genes, 103 taxa amino acid dataset,
Partitioned RAxML full bootstrap, PROTCAT(X), 100 repli-
cates.

Fig. S6 Reanalyses of the 620 genes, 103 taxa amino acid dataset,
Partitioned RAxML full bootstrap, PROTGAMMA(X), 100
replicates.

Fig. S7 Analyses of the 100 genes, 26 taxa nucleotide dataset,
Partitioned IQTREE ML bootstrap (greedy) analysis, with 100
replicates.

Fig. S8 Analyses of the 100 genes, 26 taxa nucleotide dataset,
Bayesian P4 MCMC, GTR +Gamma, homogeneous composi-
tion (CV1).

Fig. S9 Analyses of the 100 genes, 26 taxa nucleotide dataset,
Bayesian P4 MCMC, GTR +Gamma, heterogeneous composi-
tion (CV2).

Fig. S10 Analyses of the 100 genes, 26 taxa nucleotide dataset,
PHYLOBAYES MCMC, CAT-GTR +Gamma.

Fig. S11 Analyses of the 100 genes, 26 taxa codon-degenerate
nucleotide dataset, Bayesian P4 MCMC, GTR +Gamma, homo-
geneous composition (CV1).

Fig. S12 Analyses of the 100 genes, 26 taxa codon-degenerate
nucleotide dataset, Bayesian P4 MCMC, GTR +Gamma,
heterogeneous composition (CV2).

Fig. S13 Analyses of the 100 genes, 26 taxa nucleotide dataset,
Codon analysis, IQTREE ML bootstrap, GY2K + F3X4 +G, 100
replicates.

Fig. S14 Analyses of the 100 genes, 26 taxa nucleotide dataset,
Codon analysis, IQTREE ML bootstrap, MG2K + F3X4 +G, 100
replicates.

Fig. S15 Analyses of the 100 genes, 26 taxa Dayhoff amino acid
group dataset, Bayesian P4 MCMC, GTR +Gamma, homoge-
neous composition (CV1).

Fig. S16 Analyses of the 100 genes, 26 taxa Dayhoff amino acid
group dataset, Bayesian P4 MCMC, GTR +Gamma, heteroge-
neous composition (CV2).

Fig. S17 Analyses of the 100 genes, 26 taxa amino acid dataset,
PHYLOBAYES MCMC, CAT-LG +Gamma.

Notes S1 Calculation of nonsynonymous/synonymous substitu-
tion rates for 85 genes from the 620 gene data set.

Notes S2 Calculation of nonsynonymous/synonymous substitu-
tion rates for 35 genes from the 100 gene data set.

Table S1 The list of 100 nuclear genes showing the sequence
length, number of taxa and the number of composition vectors
that fits the data for both nucleotide (nt) and amino acid (aa)
alignments.

Please note: Wiley Blackwell are not responsible for the content
or functionality of any Supporting Information supplied by the
authors. Any queries (other than missing material) should be
directed to the New Phytologist Central Office.
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