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Abstract
Local adaptation is a critical evolutionary process that allows plants to grow better in 
their local compared to non- native habitat and results in species- wide geographic 
patterns of adaptive genetic variation. For forest tree species with a long generation 
time, this spatial genetic heterogeneity can shape the ability of trees to respond to 
rapid climate change. Here, we identify genomic variation that may confer local envi-
ronmental adaptations and then predict the extent of adaptive mismatch under fu-
ture climate as a tool for forest restoration or management of the widely distributed 
high- elevation oak species Quercus rugosa in Mexico. Using genotyping by sequenc-
ing, we identified 5,354 single nucleotide polymorphisms (SNPs) genotyped from 
103 individuals across 17 sites in the Trans- Mexican Volcanic Belt, and, after control-
ling for neutral genetic structure, we detected 74 FST outlier SNPs and 97 SNPs as-
sociated with climate variation. Then, we deployed a nonlinear multivariate model, 
Gradient Forests, to map turnover in allele frequencies along environmental gradi-
ents and predict areas most sensitive to climate change. We found that spatial pat-
terns of genetic variation were most strongly associated with precipitation seasonality 
and geographic distance. We identified regions of contemporary genetic and climatic 
similarities and predicted regions where future populations of Q. rugosa might be at 
risk due to high expected rate of climate change. Our findings provide preliminary 
details for future management strategies of Q. rugosa in Mexico and also illustrate 
how a landscape genomic approach can provide a useful tool for conservation and 
resource management strategies.
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1  | INTRODUC TION

Forest tree species show geographic patterns of phenotypic and ge-
netic variation that are largely shaped by local adaptation (Langlet, 
1971; Morgenstern, 1996; Savolainen, Pyhäjärvi, & Knürr, 2007; 
Sork, 2016). In addition to their great economic value, tree species 
have vast ecological importance as drivers of terrestrial biodiversity 
and their role in sequestering carbon (Alberto et al., 2013; Cavender- 
Bares, 2016; Neale & Kremer, 2011). Recently, several biologists 
have raised concerns about whether tree species with their long 
lifespan and adaptation to local environments will be able to sur-
vive rapid climate change (Aitken, Yeaman, Holliday, Wang, & Curtis- 
McLane, 2008; Rellstab et al., 2016; Sork et al., 2013). Thus, it is 
important to manage both plantations and natural populations with 
knowledge of the genetic basis of tree performance and how that 
variation is distributed in the natural landscape (Christmas, Breed, & 
Lowe, 2015; Savolainen, 2011; Sork et al., 2013). Provenance stud-
ies that compare population divergence in a range of traits, such as 
growth, drought tolerance, cold hardiness, and phenology, by plant-
ing seeds of different origin in one or more common gardens provide 
compelling evidence of local adaption that needs to be incorporated 
into forest management practices (Aitken & Bemmels, 2016; Bower 
& Aitken, 2008; Sork et al., 2013). However, when such long- term 
studies are not feasible, the analysis of geographic patterns of ge-
netic variation through a landscape genomic approach may provide 
an alternative source of information on adaptive genetic variation 
(Manel, Joost, et al., 2010; Savolainen, Lascoux, & Merila, 2013; Sork 
et al., 2013). This approach aims to analyze spatial patterns of ge-
netic variation to identify evidence of local adaptation by integrating 
population genetic and spatial ecological modeling (Bragg, Supple, 
Andrew, & Borevitz, 2015; Holderegger, Kamm, & Gugerli, 2006; 
Joost et al., 2013; Sork et al., 2013).

Knowledge of the spatial patterns of adaptive variation in trees 
may be used to guide forest management decisions because it can 
be used to extrapolate the genetic response of trees to rapid cli-
mate change (Aitken & Bemmels, 2016; Aitken et al., 2008; Rellstab 
et al., 2016; Schoville et al., 2012; Sork et al., 2013). Spatially ex-
plicit predictive models would help to prioritize regions for con-
servation, define seed zones, and guide the choice of seed sources 
for reforestation based on assisted gene flow (AGF), which is the 
movement of individuals or propagules across the species range to 
facilitate faster adaptation to future predicted climates (Aitken & 
Bemmels, 2016). However, translating information on adaptive ge-
nomic variation into sound management decisions is still challenging 
(Fitzpatrick & Keller, 2015; Schoville et al., 2012) because it requires 
the development of accurate predictive models that consider the 
interaction between adaptive genetic variation and multiple envi-
ronmental gradients (Aitken et al., 2008; Fitzpatrick & Keller, 2015; 
Schoville et al., 2012). Initial efforts of predictive models using ge-
netic data relied on a classical species distribution modeling frame-
work (Fournier- Level et al., 2011; Jay et al., 2012; Sork et al., 2010). 
Fitzpatrick and Keller (2015) argued that SDMs have the disad-
vantage of not accounting for the multidimensionality of genomic 

variation across the landscape. Using genomic data of Populus bal-
samifera sampled in a wide geographic region as a case study, they 
have demonstrated that community- level modeling frameworks 
(Ferrier & Guisan, 2006), such as Gradient Forests (GF—Ellis, Smith, 
& Pitcher, 2012) and generalized dissimilarity models (GDM—
Ferrier, Manion, Elith, & Richardson, 2007), can be powerful tools 
to model and map turnover in allele frequencies along environmen-
tal gradients. These regression- based models, which use nonlinear 
functions of environmental gradients, also offer the benefit of iden-
tifying regions of genetic and climatic similarity that could provide 
a basis for developing resource management practices to respond 
to future climate change, such as AGF (Aitken & Whitlock, 2013).

In this study, our overall objective is to utilize landscape ge-
nomic models of contemporary and future patterns of climatically 
associated genetic variation in the widely distributed montane 
oak species, Quercus rugosa Née (Fagaceae) and develop first- 
draft management guidelines for populations facing rapid climate 
change. Climate change projections for Mexico indicate trends 
that would involve temperature increase, an overall precipitation 
decrease, and a change in the temporal distribution of precipita-
tion (Karmalkar, Bradley, & Diaz, 2011; Sáenz- Romero et al., 2009). 
Under this scenario, arid climates would expand in all directions 
and temperate forest species would be among the most vulnera-
ble, since they inhabit the cool and humid highlands (Sáenz- Romero 
et al., 2009). In fact, potential distribution models of several oak 
species under climate change scenarios indicated a decrease of 
7%–48% in suitable area by year 2050 (Gomez- Mendoza & Arriaga, 
2007).

Given research on other oak species that reported evidence of 
selection on genes associated with phenology, drought resistance, 
and other traits (Alberto et al., 2011; Deans & Harvey, 1996; Gugger, 
Cokus, & Sork, 2016; Homolka, Schueler, Burg, Fluch, & Kremer, 
2013; Koehler, Center, & Cavender- Bares, 2012; Ramírez- Valiente, 
Koehler, & Cavender- Bares, 2015; Rellstab et al., 2016; Sork, Squire, 
et al., 2016), we designed this study to test the hypothesis that spa-
tially divergent selection is driving differentiation among Q. rugosa 
populations in an environmentally heterogeneous region of Mexico, 
especially at specific loci under selection by climate. We then mod-
eled the spatial patterns of adaptive variation across the distribution 
range of Q. rugosa in Mexico to identify the potentially most critical 
regions under climate change.

Our first specific objective is to identify candidate loci poten-
tially involved in local adaptation. For this purpose, we use two 
conceptually different approaches. The first approach is based on 
the premise that loci under divergent selection show larger vari-
ation in allele frequencies among populations on the landscape 
than neutral genomic regions (outliers; Lewontin & Krakauer, 
1973). Therefore, SNPs showing larger population differentiation 
(FST) than neutral expectations may be indicative of local adapta-
tion. These loci with significantly high FST, however, do not point 
to which environmental factors might be the cause of selection 
(Schoville et al., 2012). Furthermore, population differentiation 
methods likely identify loci with strong spatial divergence and are 
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not suitable to detect genes under selection that exhibit subtle 
variation in allele frequencies across the landscape (Jones et al., 
2013). Thus, our second approach is to identify candidate loci that 
are linearly associated with climate variation across the landscape. 
Using the environmental association (EA) approach (Vasemägi & 
Primmer, 2005), we test for significant linear relationships be-
tween gradients in allele frequencies with environmental gradi-
ents to detect candidate genes under selection while controlling 
for population structure (Coop, Witonsky, Di Rienzo, & Pritchard, 
2010; Frichot, Schoville, Bouchard, & François, 2013; Joost et al., 
2007). Based on the candidate SNPs generated by the two outlier 
approaches, we used an annotated reference genome of Quercus 
lobata (Sork, Fitz- Gibbon, et al., 2016) and publicly available ge-
nomic resources to identify gene models based on predicted func-
tional annotation.

Our second objective is to use a multivariate approach to quan-
tify the association between climatic variables, spatial variables, 
and genomewide genetic variants by modeling and mapping the 
turnover in candidate SNP allele frequencies across current and 
future predicted environmental gradients. We use a GF modeling 
framework because it models turnover directly, rather than using 
curve- fitting method of GDM, which is based on distance- based 
data (Fitzpatrick & Keller, 2015). This model generates informative 
maps of genomic information accumulated across loci of major and 
minor effects to identify regions of genetic and climatic similarity. 
We will use these findings as a basis for preliminary management 
recommendations for Q. rugosa in this region of Mexico under 
conditions of future climate change and as an illustration of how 
landscape genomic approaches can provide useful background for 
management and conservation strategies, especially when prove-
nance studies may be too costly or too lengthy to utilize.

2  | MATERIAL S AND METHODS

2.1 | Study species and sampling

Quercus rugosa is a white oak species (section Quercus) with a wide 
geographic distribution, from Honduras and Guatemala in Central 
America to Arizona, New Mexico, and western Texas in the United 
States. In Mexico, it can be found from the subtropics in the high-
lands of Los Altos de Chiapas to the temperate zones of the Sierra 
Tarahumara in the State of Chihuahua at altitudes ranging from 
1,700 m to 3,550 m (Rzedowski, 2006; Uribe- Salas, Sáenz- Romero, 
González- Rodríguez, Téllez- Valdéz, & Oyama, 2008). It is one of the 
dominant species over much of this range, often found in mono-
specific stands or with other species of oak or pine. The species 
is most abundant along the Trans- Mexican Volcanic Belt (TMVB), 
with a distribution from the western areas in the states of Jalisco 
and Nayarit to the eastern region in the state of Veracruz, at alti-
tudes between 2,300 and 3,200 m (Rzedowski, 1986). The TMVB is 
a region with a complex geologic and climatic history. The highlands 
of the TMVB cross Mexico in an east–west orientation at latitude 
~19°N (Metcalfe, 2006). It is an area of diverse topography and geo-
logical composition that results in a wide range of elevations and 
climate conditions (Gómez- Tuena, Orozco- Esquivel, & Ferrari, 2007; 
Metcalfe, 2006). The highlands forests of the TMVB are dominated 
by oak and pine species (Metcalfe, 2006).

This study focuses on the TMVB region, and the adjacent area of 
Chiapas (Tenejapan) in southeastern Mexico (Figure 1). Initially, we 
randomly selected and sampled populations of Q. rugosa throughout 
the study area, with the criteria that they were at least 50 km apart. 
Here, due to DNA quality, we report on 17 natural populations from 
11 states in Mexico (Supporting Information Table S1). The latitudi-
nal and longitudinal breadth of the sampling is from about 16.7 to 

F IGURE  1 Geographic distribution 
of population memberships (K = 2) in 17 
populations of Quercus rugosa in Mexico. 
Population memberships are based on 
Bayesian clustering method in structure, 
and pie charts represent population 
cluster assignment proportions. Shading 
indicates elevation gradient (with darker 
tones indicating higher altitude), and 
contour lines indicate the TMVB and 
neighboring physiographic regions
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21.2°N and from 92.9 to 103.2°W. Within each site, we collected 
leaves from 10 randomly selected individuals along a transect at 
least 50 m apart. Leaf samples were labeled, placed in plastic bags, 
kept in a cooler with ice during transport to the laboratory, and 
stored at −80°C until DNA extraction.

2.2 | Laboratory procedures

Total genomic DNA was extracted from the leaves using the DNeasy 
Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufac-
turer’s instructions. For samples that produced final products with 
coloration, presumably due to unremoved secondary compounds, 
we repeated the extractions applying a prewash protocol (Gaddis, 
Zukin, Dieterich, Braker, & Sork, 2014; Li, Yang, Chen, Zhang, & Tang, 
2007). Total genomic DNA was prepared for sequencing using an ef-
ficient restriction enzyme- based approach, genotyping by sequenc-
ing (GBS) (Elshire et al., 2011), which we have modified and used 
for other tree species in our lab (Gugger, Liang, Sork, Hodgskiss, & 
Wright, 2018). Briefly, DNA was digested with a restriction enzyme, 
common and unique barcoded adapters with overhangs complemen-
tary to the cut site were ligated to each sample, samples were pooled 
in equimolar ratios, and the pooled library was PCR- amplified and 
sent for Illumina sequencing. We largely followed the original GBS 
protocol, including the same restriction enzyme (ApeKI) and adapter 
concentration (0.036 ng/μl of each adapter). However, we pooled 48 
samples per preparation instead of 96, we added adapters during the 
ligation step not before the restriction digest, and we added AMPure 
XP bead- based size selection/purification steps after the ligation 
step and again after the PCR step to ensure a consistent distribu-
tion of fragment sizes between 200 and 500 bp (including adapters) 
among all preps. We also reduced the number of PCR cycles from 
18 to 16. Final libraries were checked for the proper size distribu-
tion on an Agilent BioAnalyzer with the High Sensitivity DNA assay 
and quantified using a Qubit fluorometer. Samples were sent to the 
UCLA Broad Stem Cell Research Center for single- end, 100- bp se-
quencing on an Illumina HiSeq2000 v3.

2.3 | Genomic data processing

Illumina reads in FASTQ format were quality filtered and demul-
tiplexed using the “process_radtags” command in stacks 1.28 
(Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013; Catchen, 
Amores, Hohenlohe, Cresko, & Postlethwait, 2011) to remove 
adapter sequence with up to two mismatches (adapter_mm), re-
cover barcodes with up to one mismatch to the expected barcodes 
(r), remove any read with an uncalled base (c), discard low- quality 
reads as defined by default settings (q) and trim all reads to 92 bp 
(t). Using BWA 0.7.12 (Li & Durbin, 2010), the filtered reads were 
aligned to the Q. lobata reference genome v0.5 (NCBI Accession 
LRBV00000000.1, also available at http//valleyoak.ucla.edu (Sork, 
Fitz- Gibbon, et al., 2016). We used GATK 3.3 (DePristo et al., 2011) 
to identify SNPs in each aligned sample using a minimum confidence 
threshold (Phred- scaled) of 30. We then used “VariantFiltration” and 

“SelectVariants” tools in GATK to exclude low- quality variants. We 
applied the following filters: QD < 20.0, MQ < 40.0, MQRankSum 
< −12.5, and ReadPosRankSum < −8.0. We used VCFtools 0.1.12b 
(Danecek et al., 2011) to filter the SNPs to include only diallelic sites, 
present in at least 95% of individuals, with minimum mean coverage 
depth of 5, and minor allele frequency (MAF) ≥ 0.10. We used this 
MAF limit to reduce the likelihood of false- positive results due to 
spurious correlations. Statistics of coverage depth per locus and per 
sample were also performed in VCFtools. SNPs were pruned in plink 
(Purcell et al., 2007) using the “indep” parameter. We used a variance 
inflation factor threshold of 2, window size in SNPs of 5, and the 
number of SNPs to shift the window at each step of 5.

2.4 | Climatic variables

We downloaded 19 climatic variables from the Digital Climatic 
Atlas from Mexico (http://uniatmos.atmosfera.unam.mx, 926 m 
resolution, period: 1902–2011) and extracted values for 17 Q. ru-
gosa point locations. This procedure was performed in R 3.2.0 
(R CoreTeam, 2015) using the “dismo” 1.0- 12 package (Hijmans, 
Phillips, Leathwick, & Elith, 2015). We excluded variables that are 
highly correlated (ǀrǀ > 0.70) resulting in the following set of climate 
variables: temperature seasonality (BIO4), minimum temperature of 
coldest month (BIO6), precipitation seasonality (BIO15), precipita-
tion of wettest quarter (BIO16) (Supporting Information Table S1). 
Some of these variables are also correlated with either latitude or 
longitude (Supporting Information Table S2).

2.5 | Population structure and isolation by distance

To explore whether restricted gene flow and isolation by distance in-
fluence the genetic structure of our populations, we first estimated 
pairwise population differentiation using FST (Weir & Cockerham, 
1984) and then regressed FST/(1 − FST) between population pairs to 
the log of pairwise spatial distances between populations as pro-
posed by Rousset (1997). These analyses were performed in Genepop 
4.3 (Rousset, 2008). A Mantel test was performed in R using “ape” 
library (Paradis, Claude, & Strimmer, 2004) and 9999 permutations. 
We also calculated gene diversity (HE) and FIS per population in 
Genepop, according to Weir & Cockerham (1984).

2.6 | Population divergence of individual loci

To identify genomic regions under spatially divergent selection, 
we used the Bayesian method implemented in BayeScan 2.1 (Foll 
& Gaggiotti, 2008) that has been recognized as the most efficient 
population differentiation method (De Mita et al., 2013; Lotterhos 
& Whitlock, 2014; Narum & Hess, 2011). We tested 5,354 SNPs 
using default values. In summary, prior odds for the neutral model 
was set to 10 and the following parameter values: 5,000 of output-
ted iterations, thinning interval size of 10, 20 pilot runs, pilot runs of 
5,000 iterations, burn- in length of 50,000 iterations. To decrease 
the chance of false positives due to multiple testing, we adopted 

http://http//valleyoak.ucla.edu
http://uniatmos.atmosfera.unam.mx
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the false discovery rate (FDR) criterion (Benjamini & Hochberg, 
1995). Q- values were calculated in R 3.2.0 (R CoreTeam, 2015) using 
“qvalue” package (Storey, 2015). We considered outliers to be SNPs 
with q < 0.05 (−log10q > 1.3). Simulation studies have shown that 
BayeScan has the best performance under departure from the island 
model compared to other population differentiation methods (De 
Mita et al., 2013; Narum & Hess, 2011). Because this study species is 
likely to have a weak pattern of isolation by distance, this FST outlier 
analyses provide credible candidate SNPs resulting from spatially di-
vergent selection pressures across these Q. rugosa populations.

2.7 | Environmental association analysis of 
individual loci

As a second way of detecting SNPs potentially under natural selec-
tion for local adaptation, we tested for associations between SNPs 
and climatic gradients using a latent factor mixed model imple-
mented in LFMM 1.3 (Frichot et al., 2013). This method estimates 
allele–environment correlations between each SNP and each vari-
able at a time, while correcting for background population structure 
using latent factors. In LFMM, environmental variables are tested 
separately and introduced into each model as fixed effects, and the 
number of latent factors (K) is included in the model as a covariate to 
control for demographic history and environmental gradients not in-
cluded in the study (Frichot et al., 2013). Although most EA analysis 
methods are prone to false negatives when demography and envi-
ronment are correlated, LFMM is less prone to both false negatives 
and false positives (Frichot et al., 2013; Lotterhos & Whitlock, 2015) 
than competing methods, such as Bayenv2 (Gunther & Coop, 2013), 
because it does not rely on a specific demographic model when ac-
counting for population structure (De Villemereuil, Frichot, Bazin, 
François, & Gaggiotti, 2014; Lotterhos & Whitlock, 2015).

We used the two methods recommended by Frichot et al. (2013) 
to decide the range of K- values to be explored in the genotype–en-
vironment association analyses. First, we used the K- value from the 
Bayesian clustering method implemented in structure (Pritchard, 
Stephens, & Donnelly, 2000). We tested K- values ranging from 1 to 
17 and ran three independent repetitions at each K. We used the 
admixture model; the length of burn- in period was 10,000; and the 
number of MCMC repetitions after the burn- in was 100,000. We 
then used two approaches to decide the number of K that best de-
scribes our data set, the ΔK method of Evanno, Regnaut, and Goudet 
(2005) implemented in structure harvester (Earl & vonHoldt, 2011), 
and the rate of change in the likelihood of K as function of K as rec-
ommended by Pritchard et al. (2000). Second, we ran a principal 
component analysis (PCA) followed by Tracy- Widom test (Patterson, 
Price, & Reich, 2006) to select the number of significant eigenvalues 
as one estimate of K. Tracy- Widom test indicated K = 6 and Bayesian 
clustering method resulted in K = 2 (see Section 3, Supporting 
Information Figure S1). We did five independent LFMM runs using 
10,000 iterations and burn- in of 5,000. The five independent runs 
resulted in very similar ǀzǀ- score estimates; the average coefficient 
of variation among runs was smaller than 7%. To increase the power 

of LFMM statistics, we calculated median ǀzǀ- scores, which is the 
strength of genetic–environment association, for each locus among 
five runs and considered a FDR of 5% to be significant (Frichot & 
François, 2015). Adjusted p- values (q) were calculated using the ge-
nomic inflation factor (λ) procedure described in Devlin and Roeder 
(1999). To confirm that the confounding effects of population 
structure were under control, we relied on visual observation of 
histograms of adjusted p- values as recommended in LFMM manual 
(Frichot & François, 2015). Correct distributions are expected to be 
flat with a peak close to zero. We performed these analyses in R 
using scripts available in the LFMM manual. Histograms of adjusted 
p- values for each K were very similar, indicating that all of them have 
adequately controlled for neutral genetic structure (see histograms 
for K = 2 in Supporting Information Figure S4). As the likelihood of 
K did not substantially increase in larger numbers of K (Supporting 
Information Figure S1b), we classified SNPs as candidate loci when 
significant (FDR < 0.05) for K = 2.

2.8 | Genomic contexts of candidate SNPs

SnpEff (Cingolani et al., 2012) and BEDTools v2.25.0 (Quinlan & Hall, 
2010) were used to identify positions of candidate SNPs with re-
spect to predicted gene models on the Q. lobata genome (Sork, Fitz- 
Gibbon, et al., 2016). The gene models were predicted by mapping 
contigs of the Q. lobata transcriptome (Cokus, Gugger, & Sork, 2015) 
to the genome using GMAP (Wu & Watanabe, 2005) and Sim4db 
(Walenz & Florea, 2011). Supporting Information Table S3 lists the 
genes for which candidate SNPs fall within, plus the closest up-
stream and downstream genes and their distances from the SNP. For 
genes with candidate SNPs within, Supporting Information Table S3 
also lists predicted functional annotation for the genes, transferred 
from the carefully curated annotation of the Q. lobata transcriptome 
to identify gene annotations and orthologs with Arabidopsis thaliana 
TAIR10 gene models (Swarbreck et al., 2008).

2.9 | Landscape of current adaptive genetic 
variation and future predictions

We selected GF to model current and future patterns of genetic 
variation. The GF modeling is a flexible model that uses a machine- 
learning regression tree approach to directly model the composi-
tional turnover in genomic variation and efficiently accommodate 
nonlinear gene–environment relationships (Ellis et al., 2012; 
Fitzpatrick & Keller, 2015). Using GF methods as described in 
Fitzpatrick and Keller (2015), we modeled climatic and spatial driv-
ers of genomic variation for five SNP sets: (a) the complete SNP set 
(5353 SNPs), (b) the significant climate- associated SNPs (97 SNPs), 
(c) the significant SNPs associated with temperature (91 SNPs), (d) 
the significant SNPs associated with precipitation (6 SNPs), and (e) 
FST outliers that were also associated with climate in LFMM, here-
after called double outliers (1 SNP). The SNP data were converted 
into minor allele frequencies per population. To ensure robust re-
gressions, we set a filter to remove SNPs that were polymorphic 
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in three or less than 17 populations, but only one locus of the 
complete SNP set was removed with this filter. For each model, 
we used the four climatic variables chosen for LFMM analyses as 
environmental predictors. As GF does not directly incorporate 
geographic distances, the effects of spatial processes and un-
measured environmental variation were included in the models 
using Moran’s eigenvector map (MEM) variables as spatial predic-
tors. MEM variables are spatial eigenfunctions calculated from the 
geographic coordinates of the sampling locations. This approach, 
which was initially named principal coordinates of neighbor ma-
trices, was proposed by Borcard and Legendre (2002) and math-
ematically developed by Dray, Legendre, and Peres- Neto (2006). 
We used the first half of the MEM eigenfunctions with significant 
positive eigenvalues as predictors of broad- scale spatial structure 
and unaccounted environmental variation as proposed in previous 
studies (Manel, Poncet, Legendre, Gugerli, & Holderegger, 2010; 
Sork et al., 2013). We calculated MEM variables in R using “space-
makeR” 0.0- 5 package (Dray, 2013). We used the same parameters 
described in Fitzpatrick and Keller (2015) to fit GF models: 2,000 
regression trees per SNP, and maxLevel = log2(0.368n)/2 and a 
variable correlation threshold of 0.5 to calculate conditional vari-
able importance values as recommended (Ellis et al., 2012; Strobl, 
Boulesteix, Kneib, Augustin, & Zeileis, 2008). We also used default 
values for the proportion of samples used for training (~0.63) and 
testing (~0.37) each tree. The relative importance of each predic-
tor variable and each SNP for the five GF models was assessed 
through weighted R2 values. The GF turnover functions for each 
predictor variable included only SNPs with positive R2 values. R2 
values can be negative due to how they are calculated, and those 
less than zero have no predictive power (Ellis et al., 2012). We 
used GF models to predict changes in allele frequencies along 
each environmental gradient within the geographic range of Q. ru-
gosa in Mexico. For this purpose, the environmental variables of 
10,000 random location points were transformed into genetic im-
portance values using the GF turnover functions. The GF analyses 
were performed in R, using “gradient forests” 0.1- 17 package (Ellis 
et al., 2012).

To visualize the results of the GF modeling, we reduced the 
output of multiple transformed environmental variables (i.e., 
genetic importance values) into multivariate synthetic variables 
using PCA. The PCA was centered but not scaled to preserve the 
differences between genetic importance values among the en-
vironmental variables. For each of the five GF models, the first 
three PCs were assigned to a red- green- blue color palette, re-
spectively, and visualized in geographic space. In our maps, color 
similarity corresponds to the similarity of expected patterns of 
genetic composition. We then performed a Procrustes superim-
position (Gower, 1971; Jackson, 1995) on the PCAs to compare 
mapped genetic composition for the complete SNP set and the 
four candidate SNP sets. The Procrustes residuals represent the 
absolute distance in genetic composition between SNP sets for 
each point location. The Procrustes residuals were rescaled from 
zero to one and mapped. PCAs and Procrustes superimpositions 

were performed in R, using “vegan” 2.3.1 library (Oksanen et al., 
2015).

To estimate vulnerability to climate change, we transformed 
future climate scenarios for 2080 into genetic importance values 
using the previous GF functions calculated for current climate. 
For each data point, we averaged future climate data correspond-
ing to the representative concentration pathway 6.0 (RCP 6) sce-
nario of greenhouse gas concentration trajectories (Fujino, Nair, 
Kainuma, Masui, & Matsuoka, 2006; Hijioka, Matsuoka, Nishimoto,  
Masui, & Kainuma, 2008) of three coupled atmosphere–ocean cli-
mate models: BCC- CSM1.1(m) (Wu, 2012; Xin, Zhang, Zhang, Wu, 
& Fang, 2013; Xin, Wu, et al., 2013), CSIRO- Mk3.6.0 (Rotstayn 
et al., 2012) and MIROC5 (Watanabe et al., 2010). We then cal-
culated the Euclidian distance between current and future genetic 
compositions to identify geographic regions where gene–environ-
ment relationships will be most disrupted due to climate change 
(named as “genetic offset” in Fitzpatrick & Keller, 2015). To identify 
regions predicted to experience greater impacts under future envi-
ronments in the lack of adaptive evolution or migration (Fitzpatrick 
& Keller, 2015), we mapped the genetic offsets for each SNP set.

3  | RESULTS

The final data set included 103 individuals, 17 populations, and 5,354 
SNPs, with a mean number of six individuals per population (Supporting 
Information Table S1). On average, samples had only 1.7% of missing 
data and 91.3% of the samples had <5% of missing data (the sample 
with the greatest number of missing loci had 16.8%). The mean depth 
of coverage per locus per sample was 21.8, and 88.1% of our 5,354 loci 
had a mean depth larger than 10× (Supporting Information Figure S2). 
Out of 103 samples, 72.8% had a mean depth greater than 10×.

3.1 | Genetic diversity, population structure, and 
isolation by distance

The average genetic differentiation across loci and sample sites 
was FST = 0.056 with pairwise FST among sample sites ranging from 
0.037 to 0.095 (Supporting Information Table S1). Average gene di-
versity was HE = 0.364, SD = 0.012. The Municipio Bolaños popula-
tion, which is located in the northwestern range of the sample sites, 
showed the lowest gene diversity (HE = 0.327) and the highest mean 
pairwise FST (0.095) (Supporting Information Table S1). Populations 
exhibited a pattern of isolation by distance (r = 0.475, Mantel test 
z = 46.606, p = 0.015, Supporting Information Figure S3). Bayesian 
clustering implemented in structure identified K = 2 gene pools 
(Supporting Information Figure S1). The distribution of gene clusters 
in the landscape followed an east–west gradient (Figure 1).

3.2 | Population divergence of individual loci

BayeScan identified 74 SNPs (1.4% of 5,354 SNPs) with elevated 
FST consistent with divergent selection (Figure 2). Mean FST of these 
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outlier SNPs was 0.196 (SD = 0.035), and the range was from 0.165 
to 0.314. We did not detect significantly low outlier FST values that 
would be indicative of balancing or purifying selection.

3.3 | Environmental association analysis of 
individual loci

Histograms of adjusted p- values were uniformly distributed and 
thus indicated that K = 2 adequately controlled for the poten-
tially confounding effects of population structure (Supporting 
Information Figure S4). We found 97 SNPs (1.8% of 5,354 SNPs) 
that were significantly associated with climate variables and 11 of 
these SNPs were associated with two or three climatic variables 
(Figure 3). We considered only the climate variable with the strong-
est association (i.e., highest ǀzǀ- score) for these SNPs in case addi-
tional EAs are due to correlation among climate variables (De Kort, 
Vandepitte, Mergeay, Mijnsbrugge, & Honnay, 2015). Out of the 97 
outlier SNPs, 91 were associated with temperature variables and 
39 of those were associated with temperature seasonality (mean 
ǀzǀ = 4.14) and 52 with minimum temperature of the coldest month 
(mean ǀzǀ = 4.02). Only six SNPs were associated with precipitation, 
but mean ǀzǀ- scores were usually higher than in temperature vari-
ables. Four of these SNPs were associated with precipitation sea-
sonality (mean ǀzǀ = 5.39) and two with precipitation of the wettest 
quarter (ǀzǀ = 4.50).

Combined, BayeScan and LFMM identified 170 candidate SNPs, 
and one SNP was identified with both methods. This SNP was as-
sociated with temperature seasonality. Climate- associated SNPs 
(n = 97) had mean FST = 0.067 (range: 0.050–0.173, SD = 0.029), 
slightly higher than the background overall population differentia-
tion (FST = 0.056).

3.4 | Genomic contexts of candidate SNPs

The genomic contexts of the 170 candidate SNPs were determined 
based on Q. lobata gene models using the SnpEff variant annota-
tor using Q. lobata reference genome v0.5 (Sork, Fitz-Gibbon, et 
al., 2016). We predicted 71 SNPs to fall within 67 genes and 50.7% 
of these 67 SNPs were intron variants. Ninety- nine SNPs were lo-
cated in intergenic regions, including the SNP that was identified 
by both LFMM and BayeScan (Supporting Information Table S3). 
Out of 67 genes, 55 had annotations in Q. lobata transcriptome, 
25 from the outlier FST analysis and 31 associated with climate 
(Supporting Information Table S3). The identified proteins repre-
sented a broad range of biological processes, as transcription (i.e., 
transcription factors and regulatory proteins), metabolism (protein 
kinases, proteins involved in ubiquitination, proteases), and ion and 
protein transport. Furthermore, four of these proteins are thought 
to be involved in response to abiotic and biotic stimuli in Arabidopsis, 
such as response to water deprivation (tetratricopeptide repeat 
like superfamily protein—Yuan & Liu, 2012), salt and osmotic toler-
ance (phosphopantothenoylcysteine decarboxylase, HAL3A gene—
Kupke, Hernández- Acosta, & Culiáñez- Macià, 2003), oxidative and 
osmotic stress (mitogen- activated protein kinase 3, MPK3 gene—
Kim et al., 2011; Wang, Ngwenyama, Liu, Walker, & Zhang, 2007), 
drought tolerance (Kang et al., 2010), and lead resistance (Lee, Lee, 
Lee, Noh, & Lee, 2005) (pleiotropic drug resistance 12, PDR12 gene).

3.5 | Landscape of current adaptive genetic 
variation and future predictions

We analyzed five GF models using five different SNP sets, based on 
the findings of our LFMM analysis of climate- associated SNPs with 
single climate variables (Table 1). The GF models that explained the 
most variation used the nine SNP data set associated with precipita-
tion variables in the LFMM (mean R2 = 36.2%) and the SNP data set 
of 97 LFMM significant climate- associated loci (mean R2 = 20.4%) 
(Table 1). In the model using the SNP set that included all 5353 
SNPs, almost 20% of the SNPs had R2 values greater than zero (i.e., 
those with predictive power) and most of the SNPs with the great-
est R2 (10% upper tail of R2 distribution) were not included in other 
data sets (because they are not candidates of climate association) 
(Table 1).

In the five GF models, precipitation seasonality and MEM- 1 spa-
tial variable were the most important predictors (Figure 4), indicat-
ing a strong influence of the gradient in precipitation seasonality and 
spatial location on the turnover in allele frequency across the land-
scape. The strong role of MEM variables may also suggest that they 
have captured important unmeasured environmental predictors. 
In the two GF models using data sets of all SNPs and SNPs asso-
ciated with precipitation, the predicted turnover in allele frequen-
cies across the landscape was similar and followed an east–west 
direction (Figure 5). Although less conspicuous, the same trend was 
observed with the other three SNP sets (Supporting Information 
Figure S5). The four SNP sets of climate- associated SNPs showed 

F IGURE  2 Results for the outlier FST test based on 17 
populations of Quercus rugosa in Mexico. SNPs exceeding log10q < 
−1.3 are classified as outliers. Values of log10q = –4 had q = 0 and 
were truncated at –4
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a rapid turnover in allele frequencies in eastern and central regions 
of Q. rugosa distribution, which was not evident in the data set 
containing all SNPs. Indeed, the difference between the pattern of 

genetic distribution predicted for this all SNPs set and the patterns 
of each of the four climate- associated SNP sets, evaluated through 
the mapping of Procrustes residuals (warmer colors in Figure 5c and 
Supporting Information Figure S6), was small and restricted to some 
small areas in the eastern and central ranges of Q. rugosa distribu-
tion. For three SNP sets, the all SNPs, the SNPs associated with 
precipitation and the single outlier FST SNP associated with climate 
in LFMM, GF future predictions also indicated that northeastern 
populations are expected to present the greatest genetic offsets 
under climate change (Figure 6, Supporting Information Figure S7c). 
For the other two candidate SNP sets, northwestern regions also 
exhibited higher offsets, although with lower offsets (Supporting 
Information Figure S7a,b).

4  | DISCUSSION

Our study of genomic variation in the TMVB populations of Q. rugosa 
reveals compelling evidence of geographically distributed adaptive 

F IGURE  3 SNPs associated with temperature and precipitation variables in latent factor mixed models (LFMM) in Quercus rugosa in 
Mexico. Black dots are SNPs significantly associated with climate in K = 2 (adjusted p < 0.05). SNPs are arranged in order of position within 
contigs arranged by decreasing size, not according to the position in the genome

0

4

8

12
Temperature seasonality

0

4

8

12
Min. Temp. Coldest month

-lo
g 1

0P
-v

al
ue

0

4

8

12
Precipitation seasonality

0

4

8

12 Precip. Warmest quarter

0 1,000 2,000 3,000 4,000 5,000

TABLE  1 Summary of the five SNP sets used to fit Gradient 
Forests models and parameters of model performance in 17 
populations of Quercus rugosa in Mexico. Double outliers are FST 
outliers that are also associated with climate in latent factor mixed 
models (LFMM, Frichot et al., 2013)

SNP sets
Number  
of SNPs

# SNPs with  
R2 > 0 (%)

Mean % R2  
[range]

All 5,353 986 (18.4) 15.78 [0.02–72.16]

LFMM significant 
loci

97 24 (24.7) 20.36 [1.46–55.02]

Temperature- 
associated loci

91 22 (24.2) 13.99 [0.0003–42.31]

Precipitation- 
associated loci

6 5 (83.3) 36.17 [17.51–56.00]

Double outliers 1 1 (100) 32.77



1850  |     MARTINS eT Al.

genetic variation. Based on current genetic variation and predictive 
climate modeling, GF identified regions across Q. rugosa distribution 
where gene–environment relationships are most likely to be dis-
rupted due to climate change. These geographic regions should be 
focal areas for further investigation in order to develop guidelines 
for management strategies and restoration projections.

4.1 | Population diversity and structure

Quercus rugosa individuals can be assigned to two genetic clusters 
that showed a strong east–west gradient. This east–west pattern, 
which was detected in other plant and animal species occurring in 
the TMVB (Bryson Jr & Riddle, 2012; Parra- Olea, Windfield, Velo- 
Antón, & Zamudio, 2012; Ruiz- Sanchez & Specht, 2014; Velo- Antón, 
Parra, Parra- Olea, & Zamudio, 2013), most likely reflects a phylo-
geographic signature of its orogenic history due to the different 
ages of the east–west regions (Mastretta- Yanes, Moreno- Letelier, 
Piñero, Jorgensen, & Emerson, 2015), given a lack of other physical 
barriers that could create such a pattern. The weak population dif-
ferentiation (FST = 0.056) and high genetic diversity (HE = 0.364) in-
dicate high rates of historical gene flow, typical of widely distributed 
outcrossing woody species (Loveless & Hamrick, 1984). Population 
differentiation was similar to that observed in broadly distributed 
range- wide populations of Q. lobata in California (GST = 0.05; Grivet, 
Sork, Westfall, & Davis, 2008). The small number of genetic clus-
ters suggests extensive gene flow among populations and between 

clusters that would allow the spread of adaptive genetic variation 
across the region creating a genetic gradient, rather than numerous 
smaller clusters.

4.2 | Population divergence and EAs of 
individual loci

Our findings provide compelling evidence of divergent selec-
tion. First, the BayeScan analysis revealed 74 outlier SNPs with 
these FST values ranging from 0.165 to 0.314, which are 2.7-  to 
6- fold higher than the background FST of 0.056. This method 
tends to produce fewer false positives than other genetic differ-
entiation methods (De Mita et al., 2013; Lotterhos & Whitlock, 
2014). Complex demographic history could create outliers that 
provide false- positive evidence of selection (De Mita et al., 2013; 
Lotterhos & Whitlock, 2014). Nonetheless, the large number of 
significant values of FST provides a credible set of candidate SNPs 
due to divergent selection pressures and local adaptation across 
these Q. rugosa populations. The EA analysis, which can be more 
powerful than genetic differentiation tests (De Mita et al., 2013), 
identified 97 candidate SNPs that are likely to represent locally 
adaptive genetic variation. The advantage of this approach is that 
the environmental factor can be identified, and for our popula-
tions, the temperature variables were more frequently significant 
than precipitation variables, but we add the caveat that when 
between- population correlations are influenced by demographic 
factors such as IBD, some of the outliers may be false positives for 
selection (De Mita et al., 2013).

Studies of other temperate and subtropical tree species have 
also identified a greater proportion of SNPs associated with tem-
perature than with precipitation (Cox, Vanden Broeck, Van Calster, 
& Mergeay, 2011; De Kort et al., 2014; Gugger et al., 2016; Huang 
et al., 2015; Jaramillo- Correa et al., 2015). In addition, studies of 
high- altitude co- occurring species along the TMVB have found a 
strong and significant historical influence of temperature variables in 
shaping geographic distribution (Ruiz- Sanchez & Specht, 2014; Velo- 
Antón et al., 2013). But, in oaks, the number of SNPs associated with 
temperature and precipitation variables varies among species. In 
European populations of Q. pubescens and Q. robur, most of the SNPs 
are associated with precipitation variables (Rellstab et al., 2016), but, 
in Q. petraea (Rellstab et al., 2016) and Q. lobata (Gugger et al., 2016), 
temperature variables had most of the associations.

For a small number of SNPs, precipitation variables were im-
portant, and the strength of their associations was generally greater 
than SNPs associated with temperature. We are concerned that the 
lower number of significant precipitation- associated SNPs in our 
EA tests may be due to covariance of precipitation with longitude 
(r = −0.86, Supporting Information Table S2). In general, EA models 
may under- detect environmental variables that covary with neu-
tral demographic structure (De Villemereuil et al., 2014; Lotterhos 
& Whitlock, 2015). Overall, both precipitation and temperature are 
likely important drivers of selection, but on different sets of genes 
within Q. rugosa TMVB populations.

F IGURE  4 The relative importance of climatic and spatial 
predictors used in Gradient Forests (GF) for the five SNP sets. 
Darker shading indicates greater relative importance, measured 
as R2 of each GF model. Candidates SNPs were those significantly 
associated with climate variables in LFMM. This SNP set was 
further separated in SNPs associated with temperature and SNPs 
associated with precipitation. Double outliers are SNPs that are 
both associated with climate and FST outliers
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F IGURE  5 Predicted spatial turnover 
in allele frequencies of Quercus rugosa 
from Gradient Forests for all SNPs (a) and 
for SNPs associated with precipitation (b). 
Regions with similar colors are expected 
to harbor populations with similar 
genomic compositions. The difference 
between GF models (c) mapped in (a) 
and (b) is based on Procrustes residuals, 
transformed to a 0- 1 scale. White squares 
in (a) and (b) indicate the locations of 
Quercus rugosa populations used to fit GF 
models
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4.3 | Detection of candidate genes

This study identified 170 candidate loci potentially under selection, 
of which 67 are within functional genes annotated in Q. lobata tran-
scriptome and 42 of these have previously identified orthologs in 
A. thaliana (Cokus et al., 2015). These genes are involved in a vari-
ety of physiological processes, including regulation of transcription 
and translation, transport of ions, proteins, metabolic and develop-
mental processes, and response to abiotic stimuli. Evans et al. (2014) 
reported an enrichment of gene annotations involved in response 
to stimuli, regulation of transcription, and metabolic processes in 
Populus trichocarpa. Eckert, Bower, González- Martínez, Wegrzyn, 
and Coop (2010) and Eckert, van Heerwaarden, et al. (2010) also 

found that many candidate genes identified through population dif-
ferentiation or EA methods encode proteins associated with abiotic 
and biotic stress responses. The 67 functional genes found here 
are targets for future investigation of their roles in phenotypic re-
sponses to environment and fitness variation across individuals. If 
any of these genes can be shown to associate with fitness measure-
ments, they could be focal genes for resource management studies.

We point out that many environmental factors other than cli-
mate, such as soil type and mineral composition, as well as numerous 
biotic factors such as pathogens, herbivores, or plant competition, 
have not been assessed and these factors could have contributed 
to population divergence or influenced other SNPs not identified. 
Moreover, because GBS protocol examines only a small portion of 

F IGURE  6 Mean predicted genetic 
offset for all SNPs (a) and for SNPs 
associated with precipitation (b) for 
Gradient Forests from three scenarios 
of 2080 climate change. Map units are 
Euclidian distances between current and 
future genetic spaces for each model. 
Regions with greater Euclidian distances 
represent large predicted genetic offset 
for Quercus rugosa
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the genome, the goal is not to identify all genes under selection but 
to identify spatial patterns of adaptive genetic variation. It can be 
done because some of the SNPs will be located within genes under 
selection and others will be close to candidate genes given rapid 
decay of linkage disequilibrium (Neale & Savolainen, 2004; Sork, 
Squire, et al., 2016). Thus, landscape genomic analyses, which can 
capture the cumulative effects of genes under selection, will gener-
ate the spatial patterns of adaptive variation for those environmen-
tal factors that are measured.

The low level of congruence between outliers identified 
through population differentiation and EA tests indicates that the 
tests are detecting different signatures of selection (Eckert, van 
Heerwaarden, et al., 2010; Hancock, Alkorta-Aranburu, Witonsky, & 
Di Rienzo, 2010). FST outlier tests are known to be very efficient in 
identifying strong instances of divergent selection (Narum & Hess, 
2011) acting on new mutations, but has less power to detect a weak 
selection acting on standing variation (De Villemereuil et al., 2014; 
Narum & Hess, 2011) and may not detect genes that are under se-
lection only in part of the populations (Narum & Hess, 2011). EA 
tests, on the other hand, have more power to detect weak selection 
(De Mita et al., 2013) and are better able to detect candidate genes 
showing subtle variation in allele frequencies across populations 
(Jones et al., 2013). Another explanation for this incongruence is 
that the climate variables we evaluated through EAs may not be the 
important drivers of spatial divergence at the BayeScan outlier loci. 
For these reasons, it is advantageous to use both analyses to detect 
candidate loci under selection.

4.4 | Landscape of current adaptive genetic 
variation and future predictions

The five GF models indicate that precipitation seasonality repre-
sents a strong environmental driver of the turnover in allele frequen-
cies in Q. rugosa in Mexico (Figure 4). Geography and unaccounted 
environmental gradients were also important predictors, as revealed 
by the greater importance of MEM- 1 variable in comparison with 
temperature gradients. Consequently, for all the five SNP sets, the 
predicted turnover in allele frequencies across the landscape fol-
lowed the same east–west direction of the overall genetic structure 
and the precipitation seasonality gradient (Figures 1 and 5a,b). It is 
not surprising that spatial variables play a strong role in GF models 
given that most plants show spatial autocorrelation due to isola-
tion by distance. For example, Fitzpatrick and Keller (2015) found a 
graduate gradient in their GF models for P. balsamifera and Gugger 
et al. (2018) found very strong spatial structure in Hawaii Island 
populations of Acacia koa, respectively. The strong spatial influence 
explains the similarity among GF models observed in the maps of 
Procrustes residuals. Nonetheless, small differences between GF 
models for reference and candidate loci also illustrate that recent 
climate environment is also shaping contemporary spatial structure.

In three models of Q. rugosa, our predictions for future gene–
environment relationships indicate that populations in northeastern 
portion of Q. rugosa distribution in Mexico are likely to experience 

significant disruption (warmer colors in Figure 6 and Supporting 
Information Figure S7c). Considering long- term persistence under 
a scenario of climate change, trees in northeastern regions are ex-
pected to be less adapted to future climate if there is no adaptive 
evolution or migration. Northeastern populations are likely to be 
more adapted to lower precipitation seasonality than the western 
ones. In our climate change scenarios, populations in the eastern 
regions could suffer from a greater increase in precipitation season-
ality but also a greater decrease in precipitation of wettest quarter, 
while the rate of climate change is very slow in western regions. Of 
course, the extent to which genomic signatures detected by GBS 
reflect a limitation in the ability to respond to climate change is a 
hypothesis that still needs to be tested, not only for this study but 
any landscape genomic study.

4.5 | Forest management using genomic tools

Traditionally, forest management plans have utilized provenance 
studies and climate modeling to select acceptable regions as trans-
plant sources. However, the rapid rate of climate change has called 
for a new approach that combines spatial models of genetic variation 
generated by new genomic tools with climate prediction modeling to 
develop management and conservation strategies. For assessing the 
risks of climate change, both GF and other spatial models (Fitzpatrick 
& Keller, 2015; Razgour et al., 2017; Rellstab et al., 2016) provide 
statistical methods to develop those strategies.

In this study, given that future climate might change drastically 
in some parts of the species range, we explore whether forest man-
agement of Q. rugosa might benefit from AGF (Aitken & Whitlock, 
2013). For example, in the northeastern region, it might be appropri-
ate to bring in seed from western regions where seed sources likely 
include preadapted genotypes to future precipitation conditions. 
Because AGF is not without its risks (Aitken & Bemmels, 2016), 
we would advise using a composite seed sourcing with a mix local 
seeds, preadapted to a smaller precipitation of wettest quarter, with 
translocated seeds, preadapted to a broader precipitation seasonal-
ity. We caution, however, that, while this sample design is sufficient 
to illustrate how a landscape genomic/climate modeling approach 
could identify regions of concern, it is not sufficiently fine scale to 
detect the heterogeneity in genetic variation and climate niches 
across the species range. Thus, before finalizing specific plans for 
this species, or any focal species, we recommend increased sampling 
that includes more localities within the region(s) of concern. In ad-
dition, it would be valuable to conduct focal seedling experiments 
with genotypes from different regions exposed to varying water and 
temperature treatments to see how robust local seedling popula-
tions are tolerating environmental changes and to see whether the 
proposed transplanted genotypes would survive in the new region 
as a way to ground- truth the recommended strategies. Information 
about the quantitative genetic variation in phenotypes is underway 
for this species, and future work can explore how phenotypic varia-
tion aligns with spatial patterns of genomic variation. When possible, 
the inclusion of information about quantitative genetic variation will 
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provide a useful complement to the approach of this study by com-
bining phenotypic information from the same populations grown in 
common gardens with spatially explicit genotypes of landscape ge-
nomic studies (Sork, 2017; Sork et al., 2013). For example, the use of 
provenance studies and spatially associated neutral genetic variation 
to generate “seed zones,” an established approach to forest manage-
ment (e.g., Westfall & Conkle, 1992), can be enhanced by landscape 
genomic tools that identify adaptive variation to select seed sources 
for future forest management. Such an approach will be particularly 
helpful if rapid climate change creates the need for AGF (Aitken & 
Whitlock, 2013).

5  | CONCLUSIONS

This study demonstrates that natural populations of Q. rugosa in 
TMVB exhibit geographic patterns of genetic structure that are 
likely the outcome of spatially divergent selection, as well as demo-
graphic history. Such information provides a first- round assessment 
of regional patterns of adaptive genetic variation that will help de-
velop a conservation and/or management plan for the preservation 
of oak forests in this region. For example, given the current distri-
bution of putatively adaptive variation and future climate change, 
our analysis indicates certain regions of the species range that may 
be most at risk with rapid climate change. Analyses such as the ones 
presented here provide a basis both for additional sampling to cre-
ate a more fine- scale picture of the distribution of adaptive genetic 
variation and also for specific experiments that could assess the 
sensitivity of seedlings transplanted into current climate regimes in 
the anticipation that they will be adapted to future climate. These 
experiments could suggest whether current genetic variation is 
sufficient to tolerate future climate conditions or whether prac-
tices, such as AGF, would effectively enhance the persistence of 
ecosystems associated with tree species, such as this Mexican oak 
species. Our study presents compelling evidence that portions of 
the species range will be at risk under future climate change scenar-
ios because underlying adaptive genetic variation may no longer be 
optimal for future climates and that conservation or management 
strategies of Q. rugosa should take this risk into account.
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