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A B S T R A C T

Evapotranspiration (ET) is one of the most important fluxes in terrestrial ecosystems that regulate atmo-
sphere–hydrosphere–biosphere interactions. Several studies have suggested that global ET has significantly in-
creased in the past several decades, and that such increase has exhibited big spatial variability, but there are few
detailed studies on the spatio-temporal change in ET over China. Here, we developed a high-resolution data-
oriented monthly ET product in China between 1982 and 2015 by integrating remote-sensing and the eddy
covariance technique observed ET data in a machine learning approach (model tree ensemble, MTE). We showed
that the mean annual ET over China is 552 ± 14mm yr−1, which is comparable to the estimate from a MTE-
derived product based on water balance, but is larger than that from both previous MTE-derived global product
and process-based land surface models. ET in China significantly increased with a rate of 10.7 mm yr−1 per
decade over the past 30 years (p < 0.05). The largest increases in ET (> 60mm yr−1 per decade) occurred in
the eastern periphery of Sichuan, southern Taiwan, and central China, which was attributed to the increases in
temperature and solar radiation, as well as the enhanced vegetation productivity. About 22% of the area showed
a decreasing trend in ET, mainly in parts of southeastern, southwestern, and northeastern China. The regional
decrease in ET was likely due to decreasing precipitation and/or vegetation browning. Although our finding of
the significant increase in China’s ET at the country scale is supported by five different ET products, there are still
less agreement on the change in ET at the regional scale among different ET products.

1. Introduction

Terrestrial evapotranspiration (ET) is an important flux in the global

ecosystem that links water, energy, and carbon cycles (Sellers et al.,
1997; Trenberth et al., 2007; Wang and Dickinson, 2012). There is a
general consensus that global annual ET has increased significantly
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under the impacts of climate change and human activities over the past
three decades (Jung et al., 2010; Douville et al., 2012; Mueller et al.,
2013; Zeng et al., 2012, 2014). However, large uncertainty still exists in
the magnitude and even the sign of the ET trend at the regional scale
(Jung et al., 2010; Miralles et al., 2014; Zeng et al., 2012, 2014), which
refers to a national basis in this study. ET estimation can be quite dif-
ferent with inconsistent forcing data (e.g. sources, resolutions, accu-
racy, processing methods (Mueller et al., 2013; Badgley et al., 2015)
and different models that can have divergent performance associated
with model structures and parameterization schemes (Pan et al., 2015).
In addition, the limited global long-term observations impede us to
validate the model estimation and understand the potential mechan-
isms (Chen et al., 2014; Mao et al., 2015). Such uncertainty leads to
some disagreements about spatial and temporal characteristics of ET,
such as the regional ET trend as well as its drivers. Reducing un-
certainty in the regional ET variation is one of the prioritized studies of
the water cycle, carbon cycle, land–atmosphere interaction, as well as
water management (Kustas and Norman, 1996; Bastiaanssen, 2000;
Mueller et al., 2013; Jasechko et al., 2013). Previous studies attempted
to reduce uncertainty by different approaches, such as applying more
direct observations and integrating multiple models (e.g., Yao et al.,
2017)

Several approaches have been used to investigate the global ET
change based on a combination of satellite and ground observations
(Mu et al., 2007; Jung et al., 2010; Zhang et al., 2010; Mu et al., 2011;
Yan et al., 2012; Zeng et al., 2012, 2014). In particular, data-driven
models have been applied to generate a global ET dataset using the
eddy covariance measurements (Jung et al., 2009, 2010). Unlike pro-
cess-driven land surface models that are complex and subject to un-
certainty from model-specific structure and parameter schemes (Pan
et al., 2015; Rigden and Salvucci, 2015; Yao et al., 2017), this data-
driven method depends less on theoretical and empirical assumptions.
In addition, the eddy covariance technique provides direct observations
of ET at the site level, whereas the flux tower is not uniformly dis-
tributed and very few flux sites are available over some climate change
hotspot regions (e.g., tropical and arctic regions). This inhomogeneous
distribution results in large uncertainties in ET estimates at both re-
gional and global scales. China encompasses a wide range of climate
and vegetation types; yet, only nine flux tower sites in China have been

used in the global ET dataset reconstructed using the eddy covariance
technique (Jung et al., 2010). This could lead to a large uncertainty in
the global and China ET estimates.

In this study, we collected observations from 36 flux tower sites
covering almost all ecosystem types in China and applied model tree
ensemble (MTE) algorithms to reconstruct a monthly ET dataset over
China with a spatial resolution of 0.1° from 1982 to 2015. The MTE
method has been proven to be robust of extrapolating ET to the regions
not covered by eddy covariance towers (Jung et al., 2010). Compared
with the sophisticated models, this empirical method links the ET to
various driving variables that can be obtained easily (Zhang et al.,
2016a). This method is complementary to process-based models be-
cause there is a large spread in current model estimates of ET (Jung
et al., 2011). We improved the China’s ET estimates through using more
in-situ measurements, eliminating the problem of solar radiation
(which is a key limitation in Jung’s ET product, 2010), as well as rea-
lizing a higher spatial resolution and a longer time period.

We compared our ET estimates with global ET datasets, including a
data-driven empirical model with ET measurements calculated using
the eddy covariance technique (Jung et al., 2009), a data-driven em-
pirical model with ET observations from terrestrial water balance (Zeng
et al., 2014), and three datasets from process-based land surface models
(the Community Atmosphere Biosphere Land Exchange (CABLE),
(Wang et al., 2010b); the Organizing Carbon and Hydrology In Dy-
namic Ecosystems Environment (ORCHIDEE), Krinner et al., 2005; and
the Version 4 of the Community Land Model with coupled Carbon and
Nitrogen cycles (CLM4CN), Oleson et al., 2010). We discussed the un-
certainty and limitations of ET products through comparing the spatial
and temporal characteristics of ET.

2. Material and methods

2.1. Data sources

2.1.1. Data from the eddy covariance flux tower sites
The global network of micrometeorological flux measurement sites

(FLUXNET) provides ground measurements of carbon, water, and en-
ergy fluxes, as well as meteorological, plant, and soil data, on a con-
tinuous and long-term basis (Baldocchi et al., 2001). The eddy

Fig. 1. Distribution of the 36 eddy covariance tower sites used in this study. Background colour shows the vegetation type: forest, shrubland, desert, grassland,
wetland, and cropland.
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covariance data used in this study were obtained from global FLUXNET
(http://fluxnet.fluxdata.org), AsiaFlux (http://www.asiaflux.net), and
ChinaFlux (http://www.chinaflux.org/enn/index.aspx) datasets. Fig. 1
shows the spatial distribution of the 36 flux tower sites used in this
study. The tower sites were located in and around China with good
geographical and vegetation diversity. They distributed over five ve-
getation types: forest, shrubland, grassland, wetland, and cropland.
There were in total 12 flux tower sites covered by forests, including
deciduous broadleaf forests (DBF, 4 sites), deciduous needle-leaf forests
(DNF, 3 sites), evergreen broadleaf forests (EBF, 2 sites), evergreen
needle-leaf forests (ENF, 2 sites), and mixed forests (MF, 1 site). The
half-hourly ground-measured data, including precipitation, tempera-
ture, incoming solar radiation, relative humidity, and ET were pro-
cessed under gap-filled and quality control following the standardized
techniques described in previous studies (Reichstein et al., 2005; Moffat
et al., 2007; Jung et al., 2009). Last, the data were aggregated to a
monthly scale. In total, 826 site-month flux records were collected
during 2002–2014 for this study. Details of the eddy flux tower sites are
shown in Table A1.

2.1.2. Satellite-derived normalized difference vegetation index data
The Advanced Very High Resolution Radiometer (AVHRR) instru-

ments provide a long record (from 1981 to present) of the normalized
difference vegetation index (NDVI). The NDVI3g global dataset used in
this study, produced by the Global Inventory Modeling and Mapping
Studies at NASA/Goddard Space Flight Center (Tucker et al., 2005;
Pinzon and Tucker, 2014), is an improved AVHRR-based NDVI dataset
with spatial resolution of 1/12× 1/12° and a 15-day interval temporal
resolution. It is of high quality and has been widely used in studies on
vegetation dynamics (e.g., Piao et al., 2006; Pinzon and Tucker, 2014).
We extracted China’s NDVI data from the global NDVI3g dataset, ag-
gregated the data within a month by obtaining the maximum NDVI
value from semi-monthly values (Pinzon and Tucker, 2014), and ag-
gregated the data to 0.1° grids using block averaging method (Zhang
et al., 2017).

2.1.3. Meteorological data
The climate variables used in this study include surface air tem-

perature, precipitation, incoming solar radiation, and relative humidity
(Table A2). We downloaded these climate variables from the China
Meteorological Forcing Dataset (http://westdc.westgis.ac.cn/data/
7a35329c-c53f-4267-aa07-e0037d913a21) at a 0.1°× 0.1° spatial re-
solution and a monthly time step during 1982–2015. The dataset was
developed by the hydrometeorological research group at the Institute of
Tibetan Plateau Research, Chinese Academy of Sciences by merging a
variety of data sources, including China Meteorological Administration
station measurements, Tropical Rainfall Measuring Mission 3B42 pre-
cipitation analysis data, the Global Energy and Water-Cycle
Experiment–Surface Radiation Budget shortwave radiation data set,
Global Data Assimilation System atmospheric reanalysis data, and
Princeton reanalysis data (Yang et al., 2010; Chen et al., 2011).

2.1.4. Vegetation distribution map
The vegetation distribution map used in this study is a 1:1000,000

digitalized vegetation map of China (Editorial Board of Vegetation Map
of China, Chinese Academy of Sciences (EBVMC), 2007). We re-
classified the 573 vegetation types in the map into six categories: forest,
shrubland, desert, grassland, cropland, and wetland (Fig. 1).

Forest was reclassified into five plant functional types for the
training of MTE with eddy covariance measurements and the genera-
tion of ET products, including DNF, DBF, EBF, ENF, and MF. Grassland
includes cool season (C3) grasses and warm season (C4) grasses, which
have quite different photosynthetic capacity due to their different
photosynthetic pathways (Winslow et al., 2003). ET of C3 and C4
grasses differ in ET because the evaporative loss rate is coupling to
carbon uptake (Ukkola and Prentice, 2013). We did not separate C3 andTa
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C4 grasses because the latter only occupies 1.3% of China’s grasslands
(https://webmap.ornl.gov/ogc/dataset.jsp?ds_id= 20042, Wei et al.,
2014). In addition, there is no C4 grasses site included for the MTE
training. Our result shows that the lack of C4 grasses sites data led to
very weak bias in the estimated ET (Fig. A1g)

2.1.5. ET products
We compared the spatiotemporal characteristics of ET change in our

ET dataset with five global ET products at 0.5° spatial resolution and a
monthly temporal resolution, including two data-driven ET products
and three model-based ET products (Table 1). The data-driven models
are constructed based on the relationship between the target variable
and multiple explanatory variables. They don’t rely on any theoretical
assumption, and are largely determined by the quality, quantity and
representativeness of forcing data. One data-driven global ET product
(1982–2011) was generated by Jung et al. (2010, 2011) by integrating
flux measurements and the MTE algorithm (hereafter FLUX-MTE) and
the other data-driven global ET product (1982–2009) was created by
Zeng et al. (2012, 2014) by coupling water balance (WB) observations
with MTE (hereafter WB-MTE). The process-based models simulate
different physical processes that control ET to isolate the effect of dif-
ferent driving factors. They can reveal the underlying mechanisms of ET
process. Three model-based ET products were derived from three land
surface models, including CABLE (Wang et al., 2010b), ORCHIDEE
(Krinner et al., 2005), and CLM4CN (Oleson et al., 2010). The ET
products from CABLE (1982–2010) and ORCHIDEE (1982–2012) are
driven by varying climate and atmospheric CO2 concentrations, and
that from CLM4CN (1982–2009) is driven by varying climate, atmo-
spheric CO2 concentration, and nitrogen deposition (Huang et al.,
2015).

2.2. Methods

2.2.1. MTE for the ET estimate
We applied the MTE algorithm proposed by Jung et al. (2009, 2010,

2011) to generate gridded ET in China at a 0.1° spatial resolution and
monthly temporal resolution from 1982 to 2015. The MTE algorithm is
an empirical method that predicts ET based on a set of explanatory
variables (Table A3) according to model trees trained with the
FLUXNET eddy covariance measurements. Note that vegetation type is
an important variable for data stratification. Nine different vegetation
types were applied here, including DNF, DBF, EBF, ENF, MF, grassland,
cropland, shrubland, and wetland. We first constructed 1000 model
trees at the site level and selected 25 best-independent trees with the
minimum Bayesian information criterion for the prediction. We applied
the established MTE for empirical upscaling over all of China using the
gridded datasets of the same explanatory variables as those used for
training at the site level. Previous studies have demonstrated that MTE
has good capacity to predict the target variables robustly even in re-
gions not captured by the training data (Jung et al., 2010; Zeng et al.,
2014).

2.2.2. Performance of the MTE
To evaluate the performance of the MTE algorithm in reproducing

ET, we compared the MTE-derived ET estimates with the ET measure-
ments at the 36 eddy covariance tower sites (Fig. 1). The ET mea-
surements were separated into two parts by the way of sampling
without replacement, one for model training and the other for model
validation (10% of the dataset), respectively. The training data and
validating data don’t share any replicates. We attempted to capture
more details of ET using adequate training data. Meanwhile, we tried to
verify the reliable of the MTE algorithm using residual data from
training data. The results revealed high coherence between MTE-de-
rived ET and flux-observed ET for both the training data (R2= 0.95,
p < 0.01, root mean square error [RMSE]=0.3mm day−1, Fig. 2a)
and the validating data (R2=0.87, p < 0.01, RMSE=0.5mm day−1,

Fig. 2b). We further assessed the performance of the MTE algorithm for
nine specific vegetation types (DBF, DNF, EBF, ENF, MF, cropland,
grassland, shrubland, and wetland). The result shows that the MTE
algorithm can capture ET well for all the nine different vegetation types
(Fig. A1). This suggests that the MTE algorithm is capable of char-
acterizing the spatiotemporal variations of regional ET, thus enabling
derivation of reliable long-term gridded ET projections over China.

2.2.3. Trend analysis
The temporal trends in ET and its driving variables were estimated

by Theil–Sen robust linear regression and tested with the Mann–Kendall
(MK) non-parametric test. The Theil–Sen estimator is a non-parametric
median-based slope estimator that is robust against outliers. It has been
widely used to estimate ET trends by previous studies (Mueller et al.,
2013; Zhang et al., 2015). The MK non-parametric test is a tool used to
test the significance of trends in climate and environmental sciences
(Machiwal and Jha, 2006). The null hypothesis of no trend in the time
series will be rejected within the 95% confidence interval if the P-value
is < 0.05 (Rahmani et al., 2015).

2.2.4. Comparison map profile method
In this study, we used the comparison map profile (CMP) method

proposed by Gaucherel et al. (2008) to detect spatial similarity and
difference in the ET trend among different ET datasets. Two similarity
indices are applied in this method: one is absolute distance (D), which
reflects the similarity of data value; the other is cross-correlational
coefficient (CC), which reflects the spatial structure of the two images
with the same size. The similarity indices are calculated by the moving
window, which scan the rows and cols of two individual images, and
the results are assigned to the central pixel in each moving window:

= −D x y|( )| (1)

where x and y are averages computed over pixels in the moving win-
dows of two images to be compared.

∑ ∑=
− × −

×= =
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N

j

N
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where xij and yij are the pixel values at row i and column j of the two
moving windows for comparison, respectively. N is total pixels in each
moving window.

We aggregated the ET datasets into a uniform spatial resolution
(0.5°× 0.5°) using block averaging method to meet the resolution re-
quirements of the compared images. We generated mono-scale (4–20
spatial scales) similarity maps (the absolute distance map and the
correlation map), through calculating the similarity indices with the
window size varying from 9×9 pixels (represented by scale 4) to
41× 41 pixels (represented by scale 20) for the compared images.
According, the final multi-scale similarity maps (averaging the mono-
scale maps) are determined by the information from different scales.
The 1–3 scales (from 3×3 pixels to 7×7 pixels) mono-scale similarity
maps are not included in order to avoid biases at very small window
size, because the similarity indices in these scales changed sharply (Fig.
A2). The similarity indices decrease to small values when the window
size reaches to the scale 20 (41× 41 pixels) and no more information
can be captured by larger window sizes (Fig. A2), so the larger scales
(> scale 20) are also excluded. High similarities between the two
compared images are indicated by a low D and/or high CC, whereas
high differences are indicated by a high D and/or low CC. Detailed
information on CMP method can be found in Gaucherel et al.’s paper
(2008).
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Fig. 2. Comparison between model tree ensemble (MTE)-estimated evapotranspiration (ET) and eddy covariance observations. (a) Training data (R2= 0.95, root
mean square error [RMSE]= 0.3mm day−1), (b) Validation data (R2=0.87, RMSE=0.5mm day−1).

Fig. 3. (a) Spatial pattern of multi-year (1982–2015) and average mean annual ET over China. Inset denotes the frequency distribution of ET. (b) Mean annual ET
averaged over the country from the datasets in this study (FLUX-MTE, WB-MTE, CABLE, ORCHIDEE, CLM4CN, and the model mean). Error bars denote the
interannual variability in mean annual ET during the study period.
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3. Results

3.1. Mean annual ET in China

The spatial pattern of the mean annual ET exhibited a notable de-
creasing gradient from the southeast to the northwest (Fig. 3a). The ET
values across the majority of China’s vegetated areas (> 63%) ranged
in magnitude from 200 to 800mm yr−1. High ET values (> 1200mm
yr−1) mainly distributed in humid and dense vegetation regions, in-
cluding the Middle-Lower Yangtze Plain, the Pearl River Delta, the
Yunnan-Guizhou Plateau, the southeastern Tibetan Plateau, the Hainan
Island, and western Taiwan Island. In contrast, ET values were rela-
tively low over the extreme dry and sparse vegetation regions, in-
cluding the northern areas of the Tibetan Plateau and the Junggar Basin
(< 200mm yr−1). There is no vegetation covered in the north of Ti-
betan Plateau (Fig. 1), so we excluded this part in the study (Fig. 3).

Averaged over all vegetated areas, the national mean annual ET
weighted by area was 552mm yr−1, with an interannual variability of
14 mm yr−1 during 1982–2015 (Fig. 3b). This result is almost the same
as that from a MTE-derived product based on the water balance method
(WB-MTE, 555 ± 19mm year−1 during 1982–2009). However, the
other MTE-derived product (FLUX-MTE, driven by relatively limited
flux observations in China) (Jung et al., 2011) not only showed the
smaller magnitude of mean annul ET (16%, 460mm yr−1) but also the
weaker interannual variability of the mean annual ET (57%, 6mm
yr−1) in 1982–2011 in comparison to our ET estimates. In addition,
process-based land surface models generally have lower mean annual
ET compared with our projected ET dataset, ranging from 3%
(535 ± 15mm year−1 during 1982–2010 for CABLE) to 22%
(431 ± 10mm year−1 during 1982–2012 for ORCHIDEE) (Fig. 3b).

3.2. Trend in ET

3.2.1. China’s annual ET trend
Our dataset showed that China’s annual ET increased significantly

from 527mm yr−1 in 1982 to 572mm year−1 in 2015 at a rate of
10.7 mm yr−1 per decade (∼2% per decade, p < 0.05) during the
study period (red line in Fig. 4). This significant and positive ET trend
has been captured by global data-driven ET products, i.e., WB-MTE
(8.5 mm yr−1 per decade, p < 0.05) and FLUX-MTE (4.6mm yr−1 per
decade, p < 0.05). In addition, interannual variability in China’s an-
nual ET was diagnosed by two global data-driven products (p < 0.05).
However, the magnitude of China’s ET increase was 31% higher than

that of WB-MTE (1982–2009), and seriously higher (58%) than that of
FLUX-MTE (1982–2011). In addition, all of the model-based ET pro-
ducts failed to capture the significant and positive ET trend over China
during the past 30 years, as all these products showed weak and in-
significant positive trends in China’s annual ET (CABLE, 2.7mm yr−1

per decade, p=0.46; ORCHIDEE, 1.4mm yr−1 per decade, p=0.50;
and CLM4CN, 0.1 mm yr−1 per decade, p=0.98). The interannual
variability in China’s annual ET was not captured by these model-based
products (p > 0.05).

Over the past 30 years, China’s annual ET trend is expected to be
driven by multiple environmental factors, such as precipitation, tem-
perature, solar radiation, relative humidity, and vegetation density (e.g.
NDVI) (Wang et al., 2010a; Shi et al., 2013). During this period, our
mean annual precipitation, temperature, and NDVI over China have
significantly increased (p < 0.05), with a positive rate of 28.6mm
yr−1 per decade (4.8% per decade), 0.4 oC per decade (6.4% per
decade), and 6.2×10−3 per decade (2.0% per decade), respectively
(Fig. A3a–c). Relative humidity shows a significant decreasing trend
(−0.8% per decade−1, p < 0.05). Solar radiation also shows a de-
creasing trend but is statistically insignificant (−0.4W m−2 per
decade−1, p=0.27, Fig. A3d, e). The results indicate that increasing
annual precipitation, temperature, and NDVI as well as the decreasing
relative humidity are likely to exert positive effects on ET trend, while
solar radiation may contribute little to annual increasing ET trend.

Further, the ET inter-annual variability shows divergent sensitivity
to different driving factors. China’s ET variability during the period
1982–2015 was significantly correlated with temperature (R=0.47,
p < 0.05), solar radiation (R= 0.46, p < 0.05), and relative humidity
(R=−0.33, p < 0.1), indicating the important role of surface me-
teorological conditions for affecting China’s ET variability. In order to
remove the spurious effect of inter-annual trend, we detrended the time
series and analyzed the correlation coefficient between the inter-annual
variations of MTE-estimated ET and other ET products. Given the very
weak relationship between ET and precipitation (R=0.03, p=0.86),
thus precipitation may not be the reason for the ET variability; this
premise is also supported by a previous study showing weak sensitivity
of ET to annual precipitation in China, except in the western dry regions
(Liu et al., 2016a). In addition, annual ET was also insignificantly
correlated to NDVI (R=0.13, p=0.5). This indicates that vegetation
makes little contribution to China’s ET variability, even though ex-
tensive vegetation greening (Piao et al., 2015; Zhu et al., 2016) con-
tributes to increasing terrestrial ET worldwide (Zhang et al., 2015, Zeng
et al., 2017).

3.2.2. Spatial pattern in the ET trend over China
The pattern of the ET trend during 1982–2015 exhibited high spa-

tial heterogeneity (Fig. 5a). The majority of the study region (78%) was
dominated by an increasing trend, of which more than half (51%) was
significant at the 95% confidence level. A decreasing trend was ob-
served over the remaining regions (22%), but only a small fraction
(22%) was significant (p < 0.05). The data-driven ET products show
the consistent trend with our study (71% of land surface increased in
FLUX-MTE and 72% of land surface increased in WB-MTE), while fewer
areas (51%–57%) increased in the process-based ET products (Fig. A4).
The largest ET increase (> 60mm yr−1 per decade) occurred in the
eastern periphery of the Sichuan Basin, central China, and southern
Taiwan. A relatively weak ET trend (0–40mm yr−1 per decade) oc-
curred in northern China (excluding eastern parts of northeastern
China), and was fragmentally distributed in southern China (e.g.,
southeastern and northwestern Middle-Lower Yangtze Plains and the
Yunnan-Guizhou Plateau). A decreasing ET trend occurred mainly in
the coastal regions of China (i.e., Hainan, the Pearl River Delta, the
southern Middle-Lower Yangtze Plain, and northern Taiwan), some
parts of western China, and east of the Greater Khingan Mountains.
Nevertheless, there exists large regional divergence in ET trend among
different ET products (Fig. 5a & Fig. A4), which is further discussed in

Fig. 4. Inter-annual variations in ET from the datasets in this study
(1982–2015), FLUX-MTE (1982–2011), WB-MTE (1982–2009), CABLE
(1982–2010), ORCHIDEE (1982–2012), CLM4CN (1982–2009), and the model
mean (1982–2009). The inserted numbers show the linear temporal trends (mm
yr−1 per year). The annual ET value is calculated from the average ET for the
whole China.

X. Li et al. Agricultural and Forest Meteorology 259 (2018) 131–140

136



Section 4.2.
This large spatial heterogeneity was associated with regional

changes in ET driving factors (Fig. 5b–f). Most regions experienced
increasing temperature (91% of the study area, Fig. 5b), precipitation
(81%, Fig. 5c), and NDVI (72%, Fig. 5d) during 1982–2015, while
decreasing trends in relative humidity (71%, Fig. 5e) and solar radia-
tion were observed (57%, Fig. 5f). Vegetation greening (i.e., increased
NDVI) over China, caused by either climate change or human activities
in particular China’s afforestation programs (Piao et al., 2015, Liu et al.,
2016b), increased annual ET. With sufficient soil moisture supply in
southern China (Liu and Xie, 2013), the widespread increase of ET there
is presumably attributable to the significant increase in temperature
and solar radiation (Fig. 5c, d), as well as remarkable vegetation
greening (i.e., increased NDVI, Fig. 5f); whereas the decreasing ET
trend there is explained by the reduction of incoming solar radiation
(Fig. 5d). In the area east of the Greater Khingan Mountains, the de-
crease in ET is presumably attributable to decrease in NDVI (Fig. 5a, f).
Western China is a water-limited region; the decrease in ET in some
regions is likely due to limited soil moisture, as shown by the decrease
in precipitation in the Yunnan-Guizhou Plateau and the decrease in the
relative humidity in the Tibetan Plateau and Junggar Basin (Fig. 4b, e).

4. Discussion

4.1. Comparison of mean annual ET among different ET products

Our results showed that ET over China varied within the range of
431–555mm yr−1 in different global or regional datasets, suggesting
that large uncertainties still exist in current ET estimates. This is sup-
ported by previous studies, such as Chen et al. (2014), who reported
that China’s ET ranges within 535–852mm yr−1 according to five
empirical and three process-based models. This substantial divergence
is attributable to factors, such as different input datasets, model struc-
tures, and model parameterizations (Jimenez et al., 2011; Mueller et al.,
2013; Zhou et al., 2012). Given that considerable uncertainties exist, we
collected more flux tower sites for model training and used more re-
presentative driving factors (see Table A2) as inputs to reconstruct the
regional ET over China.

Here, we used spatial correlation and RMSE to assess the spatial
consistency between our dataset and the global datasets over China
(Fig. 6). Our results displayed high correlation coefficients (0.85–0.99)
and a discriminative RMSE of the mean annual ET ranging from 46 to
234mm yr−1. This indicated a strong spatial coherence in mean annual

Fig. 5. Spatial patterns in the trend of (a) ET, (b) precipitation, (c) temperature, (d) solar radiation, (e) relative humidity, and (f) the normalized difference vegetation
index (NDVI) during 1982–2015. Black dots indicate statistically significant trends (Mann–Kendall (MK) test: p < 0.05).
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ET among the different ET datasets, but the magnitudes of the ET values
were substantially different (Fig. 3; Fig. A5a–f). Yet, our ET product
shows more discrepancies than others, with a lower correlation and
higher RMSE than inter-comparison across other ET products. The
difference between our ET product and two data-driven ET products

(FLUX-MTE and WB-MTE) mainly appears in Southern China, while
more widespread discrepancies exist between our ET product and
process-based models (Fig. 3 & Fig. A5c-f).

China’s mean annual ET in FLUX-MTE is lower than our ET dataset
(Fig. 3b). The reason could be the limited coverage of flux tower sites in
southern China in which high ET values dominate, and they fail to
consider an important driving factor (i.e., solar radiation) in their MTE
framework (Jung et al., 2010; Wang and Dickinson, 2012). These de-
ficiencies impose a profound influence on the hot and humid regions,
particularly southern China, where substantial uncertainty exist in the
FLUX-MTE ET dataset (Fig. 3a versus Fig. A5a). In addition, the flux
tower sites used for data training primarily distributed in the northern
China (Jung et al., 2010), which induced large uncertainty in southern
China for the FLUX-MTE ET. WB-MTE has significantly lower ET in
southwestern China than our ET product. WB-MTE is short of basin-
scale ET in the southwestern China for ET training (Zeng et al., 2014),
while we applied two forest flux tower sites (Xishuangbanna and Ai-
laoshan, Fig. 1) in this region.

China’s mean annual ET is substantially lower in three widely used
process-based land surface models (CABLE, ORCHIDEE, and CLM4CN)
compared with our ET dataset (Fig. 3a vs. Fig. A5c–f). The process-
based land surface models simulated ET processes (i.e., plant tran-
spiration, soil evaporation, and interception loss) using priori para-
meter sets (e.g., soil and vegetation properties) (Kowalczyk et al., 2006;
Wang et al., 2011; Ukkola et al., 2016). These priori parameters largely
simplify the sophisticated biophysical processes in the real world; un-
certainties in model parameterization lead to uncertainties in ET si-
mulations. For example, previous studies reported that current land
surface models underestimate the ratio of plant transpiration to total
terrestrial ET (Evaristo et al., 2015); this constitutes an important
source of the uncertainty in ET simulations (Zeng et al., 2017). In
contrast, the MTE-estimated ET are derived based on direct site ET
observations, which lead to a good performance in estimating the total
amount of ET flux, even though the components of ET (i.e. plant

Fig. 6. Comparison of mean annual ET over China in this study with the FLUX-
MTE, WB-MTE, CABLE, ORCHIDEE, CLM4CN, and the model mean during 1982
and 2009. Spatial correlation and RMSE are used to indicate the spatial co-
herence and magnitude, respectively. Significant correlations are shown with
red edged circles (MK test: p < 0.05) (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article).

Fig. 7. Comparison of trend in the pattern of annual ET over China between the ET dataset in this study and the two global data-driven ET datasets (a, b) FLUX-MTE,
(c, d) WB-MTE using the comparison map profile (CMP) method. Two indices are used: (a, c) mean CMP distance (D), and (b, d) mean CMP cross-correlational
coefficient (CC). The indices were averaged over the 4–20 mono-scale similarity maps.
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transpiration, soil evaporation, and interception loss) cannot be directly
assessed. Current models have coarse spatial resolution, resulting in a
poor capacity of the models to capture ET characteristics over specific
biomes and climatic zones (Fisher et al., 2008; Mu et al., 2011; Zhang
et al., 2016c), especially considering the heterogeneous landscapes
across China.

Uncertainties also exist in our MTE-estimated ET product. First, C3
and C4 grasses were not differentiated in this study, which may cause
some uncertainties in ET estimates over grasslands. Yet, this uncertainty
could be negligible because C4 grasses mainly distribute in south-
eastern China and with a very small percentage (1.3%). Second, crop-
land is greatly impacted by human activities, such as agricultural reg-
ulation and irrigation. This effect can lead to uncertainties in estimating
ET but it is difficult to assess. Meanwhile, the direct observations are
still limited to capture the ET at local scale. For example, only forest
flux tower sites have been applied in Southern China in this study,
which overestimate ET in this region.

4.2. Comparison of ET trends among different ET products

Large discrepancies also exist among different ET datasets regarding
inter-annual variability and trends in mean annual ET over China. We
employed the CMP method (Gaucherel et al., 2008) to examine the
similarity in the ET trend pattern over China between our ET dataset
and two global data-driven ET datasets (FLUX-MTE and WB-MTE)
(Fig. 7). Spatial consistency was clearly observed between the ET trends
in our dataset and FLUX-MTE (mean CMP D < 0.5mm year−1, mean
CMP CC > 0.3) over regions where ET is limited by water availability
(e.g., the Northeast China Plain and Inner Mongolian Plateau) (Fig. 7a,
b; Fig. 5a; Fig. A4a). However, a noticeable difference in the ET trend
appeared in the eastern periphery of Sichuan Basin and tropical
southern China (mean CMP D > 1.5mm year−1, mean CMP CC < 0,
Fig. 7a, b). FLUX-MTE showed a consistent slight increase over the two
regions, whereas our dataset displayed a large increase in the eastern
periphery of Sichuan Basin but a decrease in tropical southern China
(Fig. 5a vs. Fig. A4a). This was expected because the ET changes in our
data were driven by both increasing temperature and decreasing solar
radiation that compensated for each other, whereas the changes in
FLUX-MTE were only controlled by increasing temperature owing to
the neglect of solar radiation change in previous studies (Jung et al.,
2010; Zeng et al., 2012; Wang and Dickinson, 2012).

Striking contrasts in the ET trend existed between our dataset and
WB-MTE, with the hotpots of disparity (mean CMP D > 2mm year−1,
mean CMP CC [−0.3–0.1]) occurring in tropical and subtropical
southern China (Fig. 7c, d; Fig. 5a; Fig. A4b). The divergence may be
due to the different scaling processes used for the ET reconstructions
between our dataset (upscaling from the site level) and WB-MTE
(downscaling from the catchment level). Because the response of ET to
driving factors is scale-dependent (Jarvis, 1995), the functional re-
lationships established between ET and driving factors may differ be-
tween our MTE framework and the WB-MTE framework. WB-MTE ET
has limitations during the wet season compared with other approaches,
which may have led to the divergence (Zeng et al., 2014).

In addition, we also detected similarities and differences in the sign
and magnitude of the ET trend between our dataset and the model-
based ET datasets over China using the CMP method (Fig. A6). The
consistency between our dataset and the model-based ET products
(CABLE, ORCHIDEE, and CLM4CN) mainly occurred in northwestern
China (mean CMP D < 0.5mm year−1, mean CMP CC > 0.2),
whereas the difference mainly appeared in central and southeastern
China (mean CMP D > 2mm year−1, mean CMP CC<−0.2) (Figs.
A4c–f, A6). The discrepancy could be attributed to several reasons.
First, the ratio of vegetation transpiration is underestimated in land
surface models. This incorrect partitioning of ET influences the sensi-
tivity of the ET change in response to environmental factors and con-
sequently leads to substantial divergence in the ET trend. For example,

as a response of terrestrial ET to greening, a decrease in soil evaporation
rather than an increase in vegetation transpiration would dominate the
overall ET trend due to the underestimated vegetation transpiration in
ET partitioning (Zeng et al., 2017), especially in southern China where
vegetation transpiration dominates ET (Zhang et al., 2016b). Second,
model parameterizations using short-term observations would in-
variably induce biases in the long-term variations of the model simu-
lations, because acclimation of the vegetation to the new environmental
conditions is not captured by short-term observations (Wang and
Dickinson, 2012). Last, the land surface models may have limitations
simulating the ET processes. For example, previous studies documented
that ORCHIDEE does not well simulate ET over grasslands and crops
(Krinner et al., 2005) and CABLE has limitations simulating ET over wet
regions (Zhang et al., 2016c).

5. Summary and outlook

In summary, we generated a monthly evapotranspiration (ET) da-
taset over China from 1982 to 2015 at a high resolution (0.1°) by in-
tegrating 826 site-months in-situ measurements covering all ecosystem
types using MTE algorithms. We characterized the spatiotemporal
patterns of ET in China over the past 30 years and compared them with
existing global ET products. Our product reduced the large un-
certainties in China’s ET estimates. The main findings in this study in-
clude: (1) China’s ET has increased significantly (10.7mm yr−1 per
decade, p < 0.05) over the past thirty years, with large spatial het-
erogeneity (78% areas increased and 22% areas decreased). (2) The
increasing annual ET is caused by increasing precipitation, temperature
and NDVI as well as decreasing relative humidity, while interannual
variability of ET is impacted by the interannual variability of tem-
perature, solar radiation and relative humidity. (3) ET products are
subject to uncertainties in terms of the magnitude, spatial distribution
as well as temporal variation, especially ET trend at local scale.

To further reduce the uncertainty of ET reconstructions, more direct
observations of terrestrial ET covering wider geographical regions and
longer measuring periods should be collected. Second, we need to focus
on reducing uncertainties of driving factors used to constrain ET, such
as precipitation, radiation, temperature, and vegetation indices (e.g.,
NDVI and LAI) (Fisher et al., 2008; Mu et al., 2011; Mueller et al., 2013;
Badgley et al., 2015). Third, land surface models require numerous site-
specific calibrated parameters to simulate ET processes (Rigden and
Salvucci, 2015), yet we still have little knowledge on some key para-
meters and mechanisms involved (Mu et al., 2011).
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