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Phylogeny is vitally important to evaluate evolutionary distinctiveness and conservation priorities of species. Najas
ancistrocarpa is one of the rarest and least known East Asian species of the c¢. 3040 species of the aquatic plant genus
Najas (Hydrocharitaceae). We used a recently discovered collection of this nationally and regionally endangered species in
Japan and East Asia to assess whether N. ancistrocarpa is a distinct species or an untypical form of other Najas species and
to evaluate its conservation priority in a phylogenetic context. The sample set of our previous study, exploring worldwide
phylogeny of the genus was used with N. ancistrocarpa to delimit species boundaries in Najas and obtain conservation
priority scores, calculated by multiplying evolutionary distinctiveness and global extinction risks converted from Red List
categories. We performed molecular phylogenetic analyses of plastid (ptDNA) and nuclear (ITS) DNA datasets, STACEY
species delimitation analysis using the multilocus dataset and a measurement of conservation priority with Tuatara. Najas
ancistrocarpa was consistently placed in ptDNA and ITS trees. Species delimitation analysis objectively assessed that N.
ancistrocarpa is phylogenetically distinct. Phylogenetic conservation prioritization ranked N. ancistrocarpa the second
highest priority species of the genus Najas. Overall, in terms of biodiversity conservation, N. ancistrocarpa represents an

important Najas species in Japan and probably the world.

Key words: aquatic plants, Bayesian, biodiversity conservation, East Asia, molecular phylogeny, species delimitation

Introduction

Najas ancistrocarpa A. Braun ex Magnus is a species of
the aquatic plant family Hydrocharitaceae. This species,
known as a very rare species of limited occurrence (Triest,
1988), is narrowly distributed in Japan (Triest, 1988), Tai-
wan (Triest, 1988; Yang, 2000) and Eastern China (Wang,
Guo, Haynes, & Hellquist, 2010). Due to habitat loss (‘H.
Hara, personal communication, 1981’ in Lowden, 1986),
this species is listed as an endangered species: EN (Endan-
gered; Japan); RE (Regionally Extinct; Taiwan) (Kokubu-
gata & Kato, 2015 onwards; https://www.kahaku.go.jp/
english/research/db/botany/redlist/index.html).

Being the only Najas species with distinctively curved
seeds, N. ancistrocarpa has, since its description by Magnus
(1870), been treated as a distinct species. Still, some
researchers report noteworthy morphological similarities of
N. ancistrocarpa and other Najas species. For instance,
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Triest (1988) in his monographic work on the Old World
Najas discussed that the vegetative parts of N. ancistrocarpa
are quite similar to those of North American N. filifolia and
thus the two species ’can be regarded as “a species-pair”
(either genetic relationship or convergent evolution)’. Alter-
natively, slightly curved seeds are known in some Najas
species, such as: N. conferta (Lowden, 1986); N. graminea
(Triest, 1988); N. kingii (Haynes, 2000); N. minor (Cook,
1996; de Wilde, 1962; Haynes, 2000; Lowden, 1986)
(Table 1). Indeed, Lowden (1986) pointed out that N. con-
ferta specimens with curved seeds were misidentified as N.
ancistrocarpa in North America by Haynes (1977, 1979).

It is of worldwide consensus that conservation of indi-
vidual species is important, but limited resources necessi-
tate prioritization (Arponen, 2012; Marris, 2007). Some
species have significant evolutionary attributes, so their
extinction would represent more important losses than
others. One such concept of distinguishing species is
“Evolutionary Distinctiveness’” (ED), a measure of how
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isolated a species is on its phylogenetic tree (May, 1990;
Vane-Wright, Humphries, & Williams, 1991). Isaac, Tur-
vey, Collen, Waterman, & Baillie (2007) and Redding &
Mooers (2015) further introduced a score, namely EDGE
(Evolutionarily Distinct, Globally Endangered), calcu-
lated by multiplying ED and Global Extinction risks (GE)
converted from the IUCN Red List Categories (IUCN
2016). Lists of EDGE species of mammals (Isaac et al.,
2007), amphibians (Isaac, Redding, Meredith, & Safi,
2012), coral reef species (Huang, 2012), and birds (Jetz
et al., 2014) are thus far publicized online (http://www.
edgeofexistence.org/). It is of interest if and how much N.
ancistrocarpa receives conservation priority in a phyloge-
netic context.

The aims of this study were to: (i) assess whether Najas
ancistrocarpa is a distinct species or an untypical form of
other Najas species, and (ii) evaluate conservation priority
of N. ancistrocarpa amongst Najas species in a phyloge-
netic framework. To do so, we collected N. ancistrocarpa
in a newly discovered population in Japan and added it to
the sample set of the most comprehensive molecular
phylogeny of the genus to date (Ito, Tanaka, Gale, Yano,
& Li, 2017). We then re-revisited the phylogeny and spe-
cies delimitation was discerned using a state-of-the-art
method recently developed by Jones, Aydin, and Oxelman
(2015) and Jones (2017) and calculated conservation
priorities for Najas species with a particular focus on
N. ancistrocarpa.

Materials and methods
Taxon sampling

We collected a sample of Najas ancistrocarpa in the field in
Japan (Kochi Prefecture) in late August 2016 and added it to
the sample set of Ito et al. (2017) exploring the worldwide
phylogeny and systematics of the genus. Together with 11
representatives from Les, Sheldon, and Tippery (2010) and
one from Les et al. (2015), our sample set included 64 sam-
ples, of which 63 are retrieved from Ito et al. (2017) (Appen-
dix 1, see online supplemental material, which is available
from the article’s Taylor & Francis Online page at https://
doi.org/10.1080/14772000.2017.1358219). Data for N. flexi-
lis, N. gracillima, and N. minor were generated and combined
from different specimens (Appendix 1, see supplemental
material online). Halophila Thouars and Hydrilla Rich., rep-
resenting the most and the second most closely related genera
in the phylogeny of Hydrocharitaceae respectively, were cho-
sen as outgroup taxa following Ito et al. (2017), (Appendix 1,
see supplemental material online).

DNA extraction, amplification, and sequencing

Total genomic DNA was extracted from silica gel-dried
leaf tissues using the CTAB method of Doyle and Doyle

(1987) after pre-treatment with HEPES buffer (pH 8.0)
(Setoguchi & Ohba, 1995). Four regions of plastid DNA
(hereinafter called ptDNA) (matK, rbcL, rpoB, and
rpoCl) and nuclear ribosomal ITS DNA (hereinafter
called nrITS) were PCR amplified with the following pri-
mers: matK-390F (Cuénoud et al.,, 2002) and matK-
1520R (Whitten, Williams, & Chase, 2000) for matK,
rbcL-F1F (Wolf, Soltis, & Soltis, 1994) and rbcL-1379R
(Little & Barrington, 2003) for rbcL; 2f and ‘4r’ for
rpoB (Royal Botanic Gardens, Kew: http://www.rbgkew.
org.uk/barcoding/update.html); and ‘1f* and 3r’ for
rpoCl (Royal Botanic Gardens, Kew: http://www.
rbgkew.org.uk/barcoding/update.html); ITS-4 and ITS-5
for nrITS (Baldwin, 1992). The PCR amplification was
conducted using TaKaRa Ex Taq polymerase (TaKaRa
Bio, Shiga, Japan), and PCR cycling conditions were
94°C for 60 s; then 30 cycles of 94°C for 45 s, 52°C for
30 s, 72°C for 60 s; and finally 72°C for 5 min. The PCR
products were cleaned using ExoSAP-IT (GE Healthcare,
Piscataway, New Jersey) purification, and then sequenced
using Big Dye Terminator ver. 3.1 (Applied Biosystems,
Foster City, California) using the same primers as those
used for the PCR amplifications. DNA sequencing was
performed with a 3130x1 Genetic Analyser (Applied Bio-
systems). Automatic base-calling was checked by eye in
Genetyx-Win ver. 3 (Software Development Co., Tokyo,
Japan). All sequences generated in the present study have
been submitted to the DNA Data Bank of Japan (DDBJ),
which is linked to GenBank, and their accession numbers
and voucher specimen information are presented in
Appendix 1 (see supplemental material online).

Molecular phylogenetic analysis

Sequences were aligned using MAFFT ver. 7.058 (Katoh
& Standley, 2013) and then inspected manually. Indels
observed in the nrITS alignment were not coded because
length variations were ambiguous. Analyses were inde-
pendently performed for ptDNA (matK, rbcL, rpoB, and
rpoCl) and nrITS datasets to identify possible incon-
gruences between different genomic regions. All 64
ingroup and the two outgroup accessions were included in
the ptDNA dataset, while the 64 ingroup and one of the
outgroup accessions were included in the nrITS dataset to
allow accurate alignment of the fast-evolving DNA
region.

Phylogenies were reconstructed using maximum parsi-
mony (MP) in PAUP* ver. 4.0b10 (Swofford, 2002), max-
imum likelihood (ML), and Bayesian inference (BI; Yang
& Rannala, 1997). In the MP analysis, a heuristic search
was performed with 100 random addition replicates, tree-
bisection-reconnection (TBR) branch swapping, and the
MulTrees option in effect. The MaxTrees option was set
at 100,000. Bootstrap analyses (Felsenstein, 1985) were
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performed using 1,000 replicates with TBR branch swap-
ping and simple addition sequences. The MaxTrees option
was set at 1,000 to avoid entrapment in local optima.

For the ML analysis, the RAXML BlackBox online
server  (http://phylobench.vital-it.ch/raxml-bb/)  was
used, which supports GTR-based models of nucleotide
substitution (Stamatakis, 2006). The maximum likeli-
hood search option was used to find the best-scoring
tree after bootstrapping. The gamma model of rate
heterogeneity was selected. Statistical support for
branches was calculated by rapid bootstrap analyses of
100 replicates (Stamatakis, Hoover, & Rougemont,
2008).

BI analyses were conducted with MrBayes ver. 3.2.6
(Ronquist & Huelsenbeck, 2003; Ronquist et al., 2012)
run on the CIPRES portal (Miller, Pfeiffer, & Schwartz,
2010) after the best models had been determined in
MrModeltest ver. 3.7 (Nylander, 2002); these models
were GTR + I + G and GTR + G for ptDNA and nrITS
datasets, respectively. Analyses were run for 12,150,000
and 730,000 generations for ptDNA and nrITS datasets
respectively, until the average standard deviation of split
frequencies dropped below 0.01, sampling every 1,000
generations and discarding the first 25% as burn-in. The
convergence and effective sampling sizes (ESS) of all
parameters were checked in Tracer ver. 1.6 (Rambaut,
Suchard, Xie, & Drummond, 2014). All trees were visu-
alized using FigTree ver. 1.3.1 (Rambaut, 2009). Nodes
are recognized as strongly (= 90% MP bootstrap
support (BS), = 90% ML BS or = 0.95 posterior proba-
bility (PP)), moderately (= 70% MP BS, = 70% ML
BS or = 0.9 PP), or weakly (< 70% MP BS, < 70% ML
BS or < 0.9 PP) supported. The data matrices
and the RAXML and MrBayes trees are available at
Treebase (http://purl.org/phylo/treebase/phylows/study/
TB2:S20550).

Species delimitation using STACEY

While Ito et al. (2017) ‘subjectively’ assigned Najas
samples to 16 terminal species, we applied a phyloge-
netic species concept to ‘objectively’ assess species
boundaries. A Bayesian coalescent method of species
delimitation was performed using STACEY (species
tree estimation using DNA sequences from multiple
loci; Jones, 2017), which is an extension of DISSECT
(Jones et al., 2015). STACEY is implemented in BEAST
ver. 2.4.4 (Bouckaert et al., 2014; Drummond, Ho, Phil-
lips, & Rambaut, 2006; Drummond & Rambaut, 2007).
We ran STACEY using a multilocus dataset (ptDNA
and nrITS) with all ingroup species and excluding out-
group species to avoid rate differences and hidden sub-
stitutions between ingroup and outgroup species (B.
Oxelman, personal communication, 22 November

2016). We performed two independent runs of 10 mil-
lion generations of the MCMC chains, sampling every
1,000 generations. Convergence of the stationary distri-
bution was checked by visual inspection of plotted pos-
terior estimates using Tracer ver. 1.6 (Rambaut et al.,
2014). After discarding the first 1,000 trees as burn-in,
the samples were summarized in the maximum clade
credibility tree using TreeAnnotator ver. 1.6.1 (Drum-
mond & Rambaut, 2007) with a posterior probability
limit of 0.5 and summarizing mean node heights.
The results were visualized using FigTree ver. 1.3.1
(Rambaut, 2009).

Conservation status, evolutionary distinc-
tiveness, and EDGE analyses

We conducted an EDGE analysis (Isaac et al., 2007)
which ranks species according to their Evolutionary Dis-
tinctiveness (ED; Isaac et al., 2007) by measuring the
length of the branches leading to the tip taxa weighted by
the number of descendants from each node, thereby calcu-
lating a probability that a species may go extinct. EDGE
metric was estimated in MESQUITE ver. 3.11 (Maddison
& Maddison, 2011) using Tuatara ver. 1.01 (Maddison &
Mooers, 2007).

IUCN (2016) listed and categorized 15 species of
Najas, amongst which are: N. flexilis (LC: Least
Concern); N. gracillima (LC); N. graminea (LC); N. gua-
dalupensis (LC); N. indica (LC); N. marina (LC); and
N. minor (LC) (Table 2). We also refer to the Global
Red List of Japanese Threatened Plants (Kokubugata &
Kato, 2015 onwards; https://www.kahaku.go.jp/english/
research/db/botany/redlist/index.html): N. ancistrocarpa
(EN: Endangered); N. chinensis (VU: Vulnerable); N. gra-
cillima (NT: Near Threatened); and N. minor (VU)
(Table 2). The more pessimistic predictions in the latter
were accepted for N. gracillima and N. minor. These
categories were transformed to probability estimates of
extinction risk using ‘pessimistic’ scenarios discussed in
Mooers, Faith, and Maddison (2008), which is an arbitrary
transformation that designates a sizable probability of
extinction to every category: LC = 0.2; NT = 0.4; VU =
0.8; EN = 0.9; CE (Critically Endangered) = 0.99
(Table 2). These values were used as ‘Global Extinction
risks (GE)’ for Tuatara analysis.

Results

Molecular phylogenetic analysis

The ptDNA dataset for four genes included 4862 aligned
characters, of which 409 were parsimony informative.
The percentage of missing characters was 62.33% for
matK, 19.87% for rbcL, 19.28% for rpoB, and 20.32% for
rpoC1. Analysis of this dataset yielded the imposed limit
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Table 2. Evolutionary Distinctiveness (ED), Global Extinction risks (GE), and Evolutionarily Distinct, Globally Endangered (EDGE)

scores for 21 Najas species or minimal clusters.

Evolutionarily

Distinct, Globally Evolutionary

Kokubugata and Global Extinction

Endangered (EDGE) Distinctiveness (ED) IUCN (2016)* Kato (2015 onwards)* risks (GE)
N. chinensis 0.00968157 0.01210196 n/a vu 0.8
N. ancistrocarpa 0.00481215 0.00534684 n/a EN 0.9
N. minor 0.0034786 0.00434825 LC vu 0.8
N. marina 1 0.00229993 0.01149963 LC n/a 0.2
N. marina 2 0.00229993 0.01149963 LC n/a 0.2
N. gracillima 0.00213874 0.00534684 LC NT 0.4
N. flexilis 0.00104917 0.00524583 LC n/a 0.2
N. guadalupensis 0.00104917 0.00524583 LC n/a 0.2
N. indica 0.00082735 0.00413673 LC n/a 0.2
N. graminea 1 0.00074941 0.00374706 LC n/a 0.2
N. graminea 2 0.00074941 0.00374706 LC n/a 0.2
N. arguta n/a 0.0078848 n/a n/a n/a
N. horrida n/a 0.00413673 n/a n/a n/a
N. kingii 1 n/a 0.00434825 n/a n/a n/a
N. kingii 2 n/a 0.00470978 n/a n/a n/a
N. kingii 3 n/a 0.00470978 n/a n/a n/a
N. tenuis 1 n/a 0.00456382 n/a n/a n/a
N. tenuis 2 n/a 0.00556651 n/a n/a n/a
N. wrightiana n/a 0.00605312 n/a n/a n/a
Najas sp. 1 n/a 0.00556651 n/a n/a n/a
Najas sp. 2 n/a 0.00488158 n/a n/a n/a

3LC: Least Concern; NT: Near Threatened; VU: Vulnerable; EN:

of 100,000 MP trees (tree length = 1133 steps; consis-
tency index = 0.86; retention index = 0.93). The nrITS
dataset included 802 aligned characters, of which 398
were parsimony informative. The percentage of missing
characters was 13.89%. Analysis of this dataset resulted
in eight MP trees (tree length = 1184 steps; consistency
index = 0.64; retention index = 0.93). In both analyses,
the strict-consensus MP tree, the RAXML tree, and the
MrBayes BI 50% consensus tree showed no incongruent
phylogenetic relationships; thus the MrBayes tree is sum-
marized and presented here (Fig. 1). Here we follow Ito
et al. (2017) classification of clades I-VII with a particular
focus on the phylogenetic position of N. ancistrocarpa
(Fig. 1).

The phylogenies obtained from ptDNA and nrITS anal-
yses recovered clades I-VII of Ito et al. (2017) (Fig. 1A).
Najas ancistrocarpa was placed next to N. gracillima s.1.
and N. kingii B in clade VI of Ito et al. (2017) in the
ptDNA tree (63% MP BS; 72% RAxML BS; 0.88 PP)
(Fig. 1A). The nrITS tree was not fully resolved and thus
clade VI was not recovered (Fig. 1B). Still, N. ancistro-
carpa was grouped with N. gracillima s.1. and N. kingii B
in clade VII (99% MP BS: 100% RAxXxML BS; 1.0 PP)
(Fig. 1B).

Endangered: n/a: not available.

Species delimitation using STACEY

SpeciesDelimitationAnalyser generated 977 clusters from
the MCMC runs. The highest posterior probability was
0.05 PP for a classification with 21 clusters comprising
12 clades and nine singletons (Fig. 2). The similarity
matrix revealed that the individuals within the 12 clades
had less than 0.02 posterior probability of belonging to a
different cluster or a singleton (Fig. 2).

Evolutionary distinctiveness and conservation
priorities

Tuatara analysis calculated Evolutionary Distinctiveness
(ED) for each Najas species. The highest score was N. chi-
nensis  (0.01210196), followed by N. marina
(0.01149963); N. ancistrocarpa had the eighth highest
score amongst the 21 species or minimum clusters of
Najas (0.00534684; Table 2).

EDGE scores, calculated by multiplying ED and Global
Extinction risks (GE), for the 21 Nagjas species of mini-
mum clusters were calculated, in which Najas chinensis
received the highest priority score (0.00968157), followed
by N. ancistrocarpa (0.00481215) amongst the 11 species
or minimum clusters of Najas (Table 2) (Fig. 3).
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Fig. 1. MrBayes trees of Najas based on plastid DNA (A) and nuclear ITS (B) datasets. Outgroup taxa are trimmed. Clades are collapsed
following Ito et al. (2017) grouping of seven clades. Species corresponding to clade VI of Ito et al. (2017) are highlighted by grey rectan-
gles. Najas ancistrocarpa is emphasized in bold red. Branch lengths are proportional to the number of substitutions per site as measured
by the scale bar. Values above the branches represent the maximum parsimony and maximum likelihood bootstrap support values (MP
BS and ML BS), and Bayesian posterior probabilities (PP). A clade not recovered is indicated by a hyphen.

Discussion

Evolutionary distinctiveness of Najas
ancistrocarpa

The present study aimed at (i) assessing whether Najas
ancistrocarpa is a distinct species, and (ii) evaluating phy-
logenetic conservation prioritization of the nationally and
regionally endangered N. ancistrocarpa in Japan and East
Asia. Our STACEY species delimitation analysis

indicates that N. ancistrocarpa is distinct from other
Najas species (Fig. 2). The score of evolutionary distinc-
tiveness is higher than half of the Najas species or mini-
mum clusters (Table 2). This result thus clearly rejects the
taxonomic hypotheses that (i) N. ancistrocarpa and N. fili-

folia can be regarded as a species-pair (Triest, 1988), and

(ii) N. ancistrocarpa is an untypical form of N. conferta (a
synonym of N. wrightiana: Godfrey & Wooten, 1979), N.
graminea, N. kingii (Haynes, 2000), or N. minor (Cook,
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Fig. 2. Maximum clade credibility tree based on multi-locus (plastid DNA and nuclear ITS) dataset of Najas from BEAST 2 analysis
and similarity matrix from STACEY analysis. Najas ancistrocarpa is emphasized in bold red. Posterior probabilities from BEAST 2 are
given for major clades on the branches. The squares in the matrix represent posterior probabilities (white = 0, black = 1) for pairs of
individuals belonging to the same cluster. Labels on the clades of the SMC-tree represent the 21 species or minimal clusters of Najas
delimited in STACEY analysis. Scale bar shows the number of substitutions per site.
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Fig. 3. Character mapping and ancestral state reconstruction of the EDGE (Evolutionary Distinct, Globally Endangered) scores on the
phylogeny of 21 species or minimal clusters of Najas discerned in the STACEY analysis.

1996; de Wilde, 1962; Haynes, 2000; Lowden, 1986);
instead N. ancistrocarpa is supported as a distinct species.
The distinctively curved seed morphology (‘semicircle’ in
Lowden, 1986; ‘horseshoe-like shaped’ in Triest, 1988;

‘semilunate’ in Wang et al., 2010; ‘U-shaped’ in Yang,
2000) therefore remains a valid diagnostic character for
N. ancistrocarpa, as used in identification keys to species
of Najas (Triest, 1988; Wang et al., 2010; Yang, 2000).
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Conservation priority on Najas ancistrocarpa

Since Redding and Mooers (2015) and Isaac et al. (2007)
introduced their concept of prioritizing species for conser-
vation purposes, also known as the EDGE of Existence
programme, this has become a common approach in con-
servation biology (Dogs, cats, and kin: Agnarsson, Kunt-
ner, & May-Collado, 2010; Snakes: Fenker, Tedeschi,
Pyron, Nogueira, & de, 2014; Gaiarsa, Alencar, Valdujo,
Tambosi, & Martins, 2015; Mammals: Isaac et al., 2007;
Amphibians: Isaac et al., 2012; Coral reef species: Huang,
2012; Mice: Malaney & Cook, 2013; Birds: Jetz et al.,
2014). Here, we have applied this conceptual method to
evaluate the conservation priority of the regionally, and
probably  globally, endangered species  Najas
ancistrocarpa.

Our Tuatara analysis calculated EDGE scores for 11
species or minimum clusters of Najas, amongst which N.
ancistrocarpa received the second highest score of phylo-
genetic conservation prioritization after N. chinensis
(Table 2). It is however noteworthy that at least three pop-
ulations of N. chinensis exist in Japan (prefectures of
Fukushima, Okayama, Saga: Ito et al., 2017) and that a
specimen collected in 2004 from Pavia, Italy, was
revealed to belong to this species, though whether it is of
indigenous or alien origin remains unclear (Ito et al.,
2017). In contrast, the habitat loss of N. ancistrocarpa
started at least 25 years ago (‘H. Hara, personal communi-
cation, 1981 in Lowden, 1986) and the locality from
which our N. ancistrocarpa was collected is one of a few
existing populations in the whole distribution range.
Hence, in terms of biodiversity conservation, attention is
paid to the extremely rare and evolutionarily relatively
unique N. ancistrocarpa in order to avoid the significant
loss of evolutionary diversity of Najas.

Future perspective

The present study represents a case study evaluating con-
servation priorities in a phylogenetic context in a selected
plant genus. Because the dataset used in this study (matK,
rbcL, rpoB, rpoCl1, and nrITS) is based on frequently
used sequence regions (e.g., DNA barcoding; Chase et al.,
2005; Kress, Wurdack, Zimmer, Weigt, & Janzen, 2005),
this will allow broadening of the scope of future work to
focus on higher taxonomic levels, such as the family
Hydrocharitaceae or the order Alismatales.
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