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Abstract
Schizopygopsis stoliczkai (Cyprinidae, subfamily Schizothoracinae) is one of the major 
freshwater fishes endemic to the northwestern margin of the Tibetan Plateau. In the 
current study, we used mitochondrial DNA markers cytochrome b (Cyt b) and 16S 
rRNA (16S), as well as the nuclear marker, the second intron of the nuclear beta- actin 
gene (Act2), to uncover the phylogeography of S. stoliczkai. In total, we obtained 74 
haplotypes from 403 mitochondrial concatenated sequences. The mtDNA markers 
depict the phylogenetic structures of S. stoliczkai, which consist of clade North and 
clade South. The split time of the two clades is dated back to 4.27 Mya (95% 
HPD = 1.96–8.20 Mya). The estimated split time is earlier than the beginning of the 
ice age of Pleistocene (2.60 Mya), suggesting that the northwestern area of the Tibetan 
Plateau probably contain at least two glacial refugia for S. stoliczkai. SAMOVA sup-
ports the formation of four groups: (i) the Karakash River group; (ii) The Lake Pangong 
group; (iii) the Shiquan River group; (iv) the Southern Basin group. Clade North  included 
Karakash River, Lake Pangong, and Shiquan River groups, while seven populations of 
clade South share the haplotypes. Genetic diversity, star- like network, BSP analysis, as 
well as negative neutrality tests indicate recent expansions events of S. stoliczkai. 
Conclusively, our results illustrate the phylogeography of S. stoliczkai, implying the 
Shiquan River is presumably the main refuge for S. stoliczkai.
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historical demography, phylogeography, Pleistocene glacial refugia, Schizopygopsis stoliczkai, 
Tibetan Plateau

1  | BACKGROUND

The hypotheses that landscape biogeographic features and climate 
change characterize the evolutionary and ecological processes act as 
the basis of the modern phylogeography theories (Avise, 2000; Avise 
et al., 1987; Mezzasalma et al., 2015). The Quaternary geographic 
and climatic changes across the Tibetan Plateau (TP) area shift the 

habitats of the endemic species, shaping the current distribution 
of the endemic fauna and intraspecific phylogeographic patterns 
(Jin & Liu, 2010; Li et al., 2015; Liu et al., 2015; Zhao et al., 2011). 
Therefore, the investigation of the phylogeography of the species 
endemic to the TP helps to achieve the following goals: to clarify the 
genetic structure and historical demography of the local population 
and to identify the relative roles of contemporary verses historical 
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processes that have facilitated to shape the modern distribution 
(Avise, 2000).

As the highest and largest plateau over the world, the TP has the 
average altitude of ~4,500 m and the area of 2.5 × 106 km2 (Zheng, 
Xu, & Shen, 2002). The formation of the TP is caused by the collision 
of India and Eurasia around 50–45 million years ago (Mya) (Lippert, 
Van Hinsbergen, & Dupont- Nivet, 2014; Zhisheng, Kutzbach, 
Prell, & Porter, 2001). The uplift processes of the TP is a contro-
versial issue (Li & Fang, 1999; Tapponnier et al., 2001). Harrison & 
Copeland (1992) and Lippert et al. (2014) suggest that the rapid up-
lifting of TP begin at about 20 Mya and the present elevation of the 
TP be reached by about 8 Mya. Alternatively, Cui et al. (1998) and Li 
et al. (2014; Hou, Li, Song, Meng, & Zhang, 2015) state that the TP 
reaches its maximum height before 8 Mya followed by the exten-
sively faulting and a recent rapid uplift occurring at about 3.6 Mya 
which is accompanied by the formation of the largest glacier in the 
Northern Hemisphere. Both hypotheses admit the formation of the 
TP is probably a long- standing topographic process, and the latter 
emphasizes its recent uplift step in Quaternary (Peng, Ho, Zhang, & 
He, 2006).

Schizopygopsis stoliczkai (Figure 1) belongs to the subfam-
ily Schizothoracinae (Cyprinidae). The species distributes in rivers 
and lakes in the northwestern of the TP (Figure 2), including rivers 
of Karakash, Shiquan, and Xiangquan, as well as lakes of Pangong, 
Manasarovar, and Kunggyu. The Shiquan River and Xiangquan River 
originate in the Himalayas, which are the upstream of the Indus River. 
The Karakash River, from the Karakoram to West Kunlun Mountain, 
is a tributary of the Tarim River Basin, the largest endorheic basin in 
the world. Because of the difficulty in sampling, S. stoliczkai is consid-
ered by the IUCN as a “not evaluated” species (IUCN 2010). Previous 
research mainly focus on the biodiversity (Mirza & Bhatti, 1999; 
Raghavan, Philip, Dahanukar, & Ali, 2013), the complete mitochon-
drial genome (Zhang, Chen, & Ding, 2016), and the morphology of 
S. stoliczkai (Kun- Yuan et al., 2016); however, its intraspecific phyloge-
ography is rarely studied.

It has been reported that the current phylogenetic pattern of the 
extant schizothoracine is driven by the environmental changes and 
river system transition caused by the uplift of the TP (Guo et al., 2016; 
Li, Tang, Zhang, & Zhao, 2016; Li et al., 2015; Zhao et al., 2011). Based 
on the studies of schizothoracine, we hypothesized that the current 
phylogenetic pattern of S. stoliczkai also reflects the ancient geo-
graphic and climate changes in the northwest of the TP (McQueen, 
Post, & Mills, 1986; Wu & Wu, 1992). To test this assumption, we 
collected 403 samples from all the recorded inhabits of S. stoliczkai 
in China (Figure 2) (Wu & Wu, 1992). The phylogeographic history of 
S. stoliczkai is reconstructed using both mitochondrial [cytochrome b 
(Cyt b), 16S rRNA (16S)] and nuclear [the second intron of the nu-
clear beta- actin gene (Act2) genes] markers. In the current study, we 
successfully described the phylogeography and evolutionary history of 
S. stoliczkai. Meanwhile, the genetic diversity implicated the Shiquan 
River is a potential refuge center for S. stoliczkai.

F IGURE  1 The study species, Schizopygopsis stoliczkai in Shiquan 
River

F IGURE  2 Map of sampling sites in our 
field surveys. The information of sampling 
sites referred to Table 1. The colors of 
the circles mean four groups defined by 
SAMOVA. The circle size denotes the 
number of observed individuals. KR, 
Karakash River; SR Shiquan River; PL Lake 
Pangong; SB, Southern Basin
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2  | MATERIALS AND METHODS

2.1 | Ethics statement

All animal experiments were approved by the Animal Care and Use 
Committees of the Northwest Institute of Plateau Biology, Chinese 
Academy of Sciences and the Agriculture Department of Qinghai 
Province, China.

2.2 | Sample collection

A total of 403 individuals of S. stoliczkai were collected during 2010 to 
2015 (Table 1). The 20 localities covered all of the described distribu-
tion in China of this fish, including outflow drainages (the Xiangquan 
River and the Shiquan River), inflow drainage (the Karakash River), 
and isolate lakes (the Lake Kunggyu, the Lake Manasarovar, and 
the Lake Pangong) (Figure 2). In addition, nine closely related spe-
cies (Gymnocypris eckloni, Oxygymnocypris stewartii, Schizopygopsis 
younghusbandi, Schizopygopsis microcephalus, Schizopygopsis pyl-
zovi, Gymnocypris przewalskii, Diptychus maculatus, Gymnodiptychus 
dybowskii, and Gymnodiptychus pachycheilus) of the subfamily 
Schizothoracinae were referred as outgroups. All the samples were 
captured by seining or net casting, which were labeled and kept in 
95% ethanol for the subsequently molecular analyses. All vouchered 

specimens were stored in the Northwest Institute of Plateau Biology, 
Chinese Academy of Sciences.

2.3 | DNA extraction, PCR amplification,  
and sequencing

Total DNA was extracted from the ethanol- fixed tissue using pro-
teinase K digestion followed standard three- step phenol/chloro-
form extraction procedure (Maniatis, 1982). Afterward, two mtDNA 
fragments were amplified in all 403 samples: 1,140 bp of complete 
Cytochrome b gene (Cyt b) and 1,118 bp of complete 16S rRNA 
gene (16S). The nuDNA marker (Act2) of 497 bp was amplified and 
sequenced in the 186 representative samples of each population 
(Table 1).

PCR was performed in 35 μl reactions containing 50–200 ng of 
DNA, 3 μl of dNTP mix (2.5 mm each), 1 U TaKaRa rTaq (TaKaRa Corp., 
Dalian, China), 3.5 μl 10× reaction buffer, and 0.7 μl of each primer 
(10 mm). All reactions were performed under the following thermal cy-
cler conditions: denaturation at 95°C for 5 min followed by 35 cycles 
of 95°C for 30 s, annealing at 48–60°C for 30 s (Table 2), and extension 
at 72°C, 90 s for Cyt b, 16S, and 45s for Act2, respectively, and with 
a final extension at 72°C for 10 min. After visualization of the frag-
ments using 1% agarose gel, the PCR products were sequenced from 
both ends using an ABI PRISM 3700 sequencing system (Beijing Tianyi 

TABLE  1 Descriptive statistics by population site for Schizopygopsis stoliczkai

Basin PC Latitude Longitude Altitude N NH h (D) π

No. of sequences

Cyt b 16S ACT- 2

KR K1 36.381 77.985 3,607 10 3 0.378 (0.181) 0.00018 10 10 6

KR K2 36.564 78.160 3,327 35 2 0.111 (0.070) 0.00005 35 35 0

KR K3 36.200 76.771 4,046 5 1 0.000 (0.000) 0.00000 5 5 0

SR S1 32.270 79.935 4,244 19 12 0.936 (0.037) 0.00226 19 19 19

SR S2 31.954 80.148 4,344 50 18 0.807 (0.052) 0.00132 50 50 6

SR S3 32.134 81.273 4,610 29 15 0.874 (0.054) 0.00185 29 29 28

PL B1 33.633 79.817 4,270 30 4 0.193 (0.095) 0.00012 30 30 6

PL B2 33.451 79.819 4,250 30 7 0.464 (0.111) 0.00023 30 30 6

PL B3 33.363 79.670 4,263 18 3 0.386 (0.128) 0.00023 18 18 18

PL B4 33.567 78.838 4,297 10 1 0.000 (0.000) 0.00000 10 10 10

PL B5 33.504 79.017 4,301 10 2 0.200 (0.154) 0.00009 10 10 10

PL B6 33.390 79.380 4,362 10 3 0.378 (0.181) 0.00018 10 10 6

PL BB 33.213 79.693 4,314 8 3 0.464 (0.200) 0.00022 8 8 10

LM ML 30.935 81.300 4,610 20 5 0.626 (0.110) 0.00069 20 20 7

LM M1 30.743 81.593 4,595 30 9 0.811 (0.050) 0.00104 30 30 6

LM M2 30.604 81.507 4,592 8 2 0.429 (0.169) 0.00019 8 8 6

KL G1 30.667 82.056 4,789 30 10 0.837 (0.044) 0.00110 30 30 8

KL G2 30.539 82.573 4,900 19 6 0.538 (0.133) 0.00102 19 19 14

XR X1 31.116 80.770 4,374 26 6 0.815 (0.041) 0.00133 26 26 6

XR X2 31.500 79.817 3,695 6 3 0.733 (0.155) 0.00155 6 6 14

PC, population code; N, population size; NH, number of haplotypes; h, haplotype diversity; D, standard deviation; π, nucleotide diversity; KR, Karakash 
River; SR, Shiquan River; XR, Xiangquan River; PL, Lake Pangong; LM, Lake Manasarovar; KL, Lake Kunggyu.
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Huiyuan Bioscience and Technology Incorporation, Beijing, China). All 
the primers were synthesized by Beijing Tianyi Huiyuan Bioscience 
and Technology Incorporation (Beijing, China). The sequences have 
been deposited in the GenBank library under the Accession Nos. 
KY032009–KY033062 (Appendices S1 and S2).

2.4 | Sequence matrix and saturation test

The DNA sequences were assembled and analyzed by Seqman soft-
ware (DNASTAR Inc., Madison, WI, USA). We conducted the align-
ment and the manual calibration of all the sequences using MEGA 
software v6.06 (Tamura, Stecher, Peterson, Filipski, & Kumar, 2013). 
The PHASE algorithm implemented DNAsp software was used to 
phase the double chromatograph peak of Act2 sequences with de-
fault parameters. Phase results were asserted by posterior value 
greater than 85%, and were taken for the following analysis (Garrick, 
Sunnucks, & Dyer, 2010; Librado & Rozas, 2009). We estimated in-
dices of substitution saturation (Iss and Iss.c) for Cyt b using DAMBE 
(reference).

2.5 | Population genetic structure and molecular  
diversity

The mitochondrial concatenated DNA (MCD) was directly used to 
evaluate genetic diversity, the population genetic structure, and popu-
lation demographic history of S. stoliczkai.

Genetic diversities including nucleotide diversity (π) and haplotype 
diversity (h) (Nei, 1987) were calculated by DNAsp v5.1 (Librado & 
Rozas, 2009). The identical haplotype for all the sequences was ob-
tained with the program DNAsp v5.1 (Librado & Rozas, 2009). The 
median- join networks were reconstructed and visualized using 
Network v4.6 (Bandelt, Forster, & Röhl, 1999).

We used the software SAMOVA 2.0 (Jaffré, Joly, & Haidar, 2004) 
to define the groups of S. stoliczkai population from all the sampling 
locations. The spatial analysis of molecular variance (SAMOVA) was 
employed to search from 2 to 10 potential population units. Arlequin 
v3.0 (Excoffier, Laval, & Schneider, 2005) was used to estimate the 
pairwise genetic differentiation (FST) values.

Demographic history was assessed using both neutral test meth-
ods and Bayesian skyline plots (BSP). The Tajima’s D (Tajima, 1989) and 
Fu’s Fs (Fu, 1997) were calculated in neutral test to evaluate popula-
tion expansion. These neutrality tests were implemented in Arlequin 

v3.0 (Excoffier et al., 2005) with 10,000 permutations. BSP was em-
ployed with the software BEAST v1. 7.4 to evaluate population size 
change over time (Drummond, Suchard, Xie, & Rambaut, 2012). Due 
to the small number of haplotypes (h = 3), the Karakash River group 
was excluded from BSP analysis. BSP set up Bayesian skyline pro-
cess and a random starting tree. The length of Markov Chain Monte 
Carlo (MCMC) chains were 50,000,000 generations, and sampling was 
drawn every 1,000 steps.

2.6 | Phylogenetic analyses

Phylogenetic topologies of MCD were constructed using Bayesian 
inference (BI) methods implemented in MrBayes v3.2 software 
(Ronquist et al., 2012). The close relatives of S. stoliczkai, S. youn-
ghusbandi, S. microcephalus, S. pylzovi, G. eckloni, G. przewalskii, 
and O. stewarti were included. The root of phylogenetic tree was 
O. stewarti. The best- fit nucleotide substitutions models, TrN + I for 
Cyt b, HKY for 16S, and HKY + I for Act2, were selected from the 
88 common models using the Akaike Information Criterion by soft-
ware JModelTest v2.14 (Darriba, Taboada, Doallo, & Posada, 2012). 
To analyze the posterior distributions from BI, we ran two concur-
rent MCMC analyses with one cold chain and three heated chains 
beginning with random trees (Li et al., 2015; Zhang et al., 2013). For 
MCD, MCMC chains were performed for 5,000,000 generations with 
a burn- in fraction to 25%, sampled and printed every 100 steps. The 
convergence was assessed as the average standard deviation of the 
split frequencies smaller than 0.01 (Tang, Feng, Wanghe, Li, & Zhao, 
2016). For Act2, we performed 2,000,000 generations of MCMC 
chains, sampling every 1,000 steps.

2.7 | Divergence time estimation

The time of divergence was estimated using a lognormal relaxed clock 
(uncorrelated) approach in BEAST v1. 7.4 (Drummond et al., 2012). 
We used the Bayesian skyline process as the method of the tree prior. 
Due to the absence of fossil records the subfamily Schizothoracinae, 
the molecular clock was calibrated using the estimated split time 
of Schizothoracinae fishes and an accurate geological event date 
calibrated the molecular clock: (i) the Kunlun- Huanghe Movement 
occurred 1.1–0.6 Mya (He & Chen, 2007), (ii) D. maculatus vs. the 
G. dybowskii- G. pachycheilus clade (7.77 ± 0.51 Mya), (iii) G. dybowskii 
vs. G. pachycheilus (3.54 ± 0.39 Mya) (He, Chen, Chen, & Chen, 2004; 

TABLE  2 Primer sequences used in this study

Markers Gene Primer name Sequence (5′–3′)
Product 
length (bp)

Annealing 
temperature (°C) References

Mitochondrial Cyt b L14724 GACTTGAAAAACCACCGTTG 1,140 52 Xiao, Zhang, and Liu 
(2001)H15915 CTCCGATCTCCGGATTACAAGAC

16S 16Sp1F CTTACACCGAGAARACATC 1,118 48 Li et al. (2008)

16Sp1R CTTAAGCTCCAAAGGGTC

Nuclear Act2 Act18U21 GCTCCAGAAAAACCTATAAGT ~490 52 Markova et al. (2010)

Act554L21 CTCACTGAAGCTCCTCTTAAC

info:ddbj-embl-genbank/KY032009
info:ddbj-embl-genbank/KY033062
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Li et al., 2015). Three independent MCMC analyses were conducted 
with 150,000,000 generations of 20% as burn- in.

3  | RESULT

3.1 | Sequence characteristics

In MCD, 56 variable sites with 37 parsimony informative sites were 
identified in Cyt b and 25 variable sites with eight parsimony informa-
tive sites were determined in 16S. The MCD contained 74 haplotypes 
(Appendix S1), without stop codons, insertions, or deletions. For the 
nuclear marker, 497 bp of Act2 segments were sequenced in 186 sam-
ples, which included eight parsimony informative sites and 13 haplo-
types. The sequence information was deposited in GenBank with the 
Accession Nos. KY032009–KY033062 (Appendices S1 and S2). For 
all sites of Cyt b, the values of substitution saturation index Iss were 
0.01. Given 32 OTUs, the critical Iss.c value is 0.757 for a symmet-
rical true tree, and 0.454 for an asymmetrical one. The observed Iss 

was significantly lower than both Iss.c values, indicating that Cyt b se-
quences did not reach saturation and were suitable for genetic analysis.

3.2 | Genetic diversity and population genetic  
structure

The number of haplotypes, haplotype diversity (h), and nucleotide di-
versity (π) values within each population and in the overall population 
of S. stoliczkai are presented in Table 1. The overall nucleotide diver-
sity (π) and the haploid- type diversity (h) of concatenated mitochon-
drial sequences were 0.00446 and 0.894, respectively.

The FST values between 20 populations of S. stoliczkai are listed in 
Table 3, ranging from −0.088 to 1.000. The highest significant values 
of group differentiation were achieved when K was equal to 4, indicat-
ing S. stoliczkai was separated as four groups (Figure 3): the Karakash 
River group including K1, K2, and K3, the Lake Pangong group contain-
ing B1, B2, B3, B4, B5, B6, and BB, the Shiquan River group consisting 
of S1, S2, and S3, and the Southern Basin group including ML, M1, M2, 
G1, G2, X1, and X2. The hierarchical SAMOVA analysis showed that 
75.91% of the genetic variance was found among groups when K was 
equal to 3 and 85.70% of the genetic variance was reached when K 
was equal to 4 (Table 4).

3.3 | Haplotype network and phylogeographic  
structure

Based on the MCD, the phylogenetic analysis showed S. stoliczkai was 
comprised of two distinct lineages (Figure 4, left). All of the specimens 
distributed in the north of Ayilariju Mountains (Figure 2) belonged to 
the clade North (clade N), and the rest were grouped into clade South 
(clade S). In the clade N, the Karakash River and the Lake Pangong 
groups were clustered in a monophyly, respectively. The Southern 
Basin group was a paraphyly. The clade S included all the populations 
from the Southern Basin group. The detailed information of outgroups 
in the BI tree was shown in Appendices S1 and S3.

The haplotype network of MCD for S. stoliczkai also indicated 
the existence of four groups (Figure 4, right), which was in line with 
the tree topologies. The distance between clades N and S was nine 

F IGURE  3 Summary of results of spatial analysis of molecular 
variance (SAMOVA) in Schizopygopsis stoliczkai populations. K, 
number of groups; FCT, variation among groups

TABLE  4 Hierarchical analysis of molecular variance (AMOVA) based on MCD Schizopygopsis stoliczkai

K Source of variation df
Sum of  
squares

Variance  
components

Percentage of 
variation p value

3 Among groups 2 1,377.25 5.64 75.91 .00

Among populations within regions 17 300.16 0.88 11.84 .00

Within populations 383 349.30 0.91 12.25 .00

Total 402 2,026.73 7.44

4 Among groups 3 1,653.74 5.65 85.70 .00

Among populations within regions 16 23.67 0.03 0.47 .00

Within populations 383 349.30 0.91 13.83 .00

Total 402 2,026.73 6.59

K, number of groups; df, degrees of freedom.

info:ddbj-embl-genbank/KY032009
info:ddbj-embl-genbank/KY033062
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mutational steps. The haplotype divergence within the groups of 
the Shiquan River, the Karakash River, the Lake Pangong, and the 
Southern Basin were 16, 3, 4, and 10 mutational steps, respectively. 
The Shiquan River group was considered as the ancestor of the other 
three groups as they had the highest genetic diversity. Moreover, the 
Lake Pangong group and the Southern Basin group displayed star- like 
shapes, indicating recent population expansions. Some intermediate 
haplotypes were missed in the network, which was probably resulted 
from the population extinction or depression. However, the nuclear 

gene network (Figure 5) and BI tree (Appendix S2) could not show 
such topology of the clade N and clade S.

3.4 | Divergence dating and historical demography

The molecular clock (Figure 4, boxes) predicted the divergence between 
the clade N and clade S occurred at about 4.27 Mya (95% HPD = 1.96–
8.20 Mya). The split time between the Lake Pangong group and the 
Shiquan River group was at 2.81 Mya (95% HPD = 1.11–5.61 Mya). 

F IGURE  4 The BI tree (left) and the corresponding median- joining network (right) assessed by 16S–Cyt b combined sequences. The numbers 
above the branches indicate the Bayesian posterior probabilities. Mean time to the TMRCA with 95% highest posterior density (95% HPD) 
in parenthesis for the key nodes is given in the boxes (Mya). The details of those haplotypes see Appendix S1. The detail of outgroups see 
Appendices S1 and S3. In the network, the circle size denotes the number of observed individuals, scaling in the lower. The small white circles 
represent missing intermediate haplotypes. KR, Karakash River; SR, Shiquan River; PL, Lake Pangong; SB, Southern Basin
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Divergent time between the Karakash River group and the Shiquan 
river group was at 1.13 Mya with 95% HPD of 0.26–2.71 Mya.

In neutrality test (Table 5), negative Fu’s Fs values and Tajima’s D 
values indicated that the quick expansion occurred in all the groups. 
BSP results (Figure 6) were consistent with neutrality test, supported 
the population expansion. Within clade N, the moderate demographic 
expansion happened in the Shiquan River group in early 0.03 Mya, and 
the Lake Pangong group maintained stability during the last 0.05 Mya 
(Figure 6). In clade S, a pronounced demographic and relatively recent 
expansion happened the Southern Basin group in 0.025 Mya (Figure 6).

4  | DISCUSSION

The current study was the first intraspecific phylogeographic study 
of S. stoliczkai. We conducted the intensive sampling to construct the 

phylogeographic relationship among different populations of S. stolic-
zkai. The results indicated the population structure and demography 
of S. stoliczkai were probably related to the glacial cycles and the uplift 
of the TP.

4.1 | Phylogeography and population expansion of 
S. stoliczkai

Geological movement and climatic fluctuations play an essential 
role in the phylogeography pattern of many species endemic to the 
TP (Jin & Liu, 2010; Li et al., 2015, 2016; Liu et al., 2015; Zhang 
et al., 2013; Zhao et al., 2011). In our study, the estimation of the 
divergence time for S. stoliczkai (Figure 4) was broadly consistent 
with these studies. The age of the most recent ancestor of clade 
S and clade N was estimated at about 4.27 Mya, following by the 
divergence between the Lake Pangong group and the Shiquan 
River group as well as between the Karakash River group and 
the Shiquan River group. The molecular date estimates obtained in 
the present study corresponded well with the hypothesis that the 
formation of the QTP underwent the upheaval, flaunting, and the 
recent uplift (Hou et al., 2015; Li et al., 2014). Meanwhile, both in 
mtDNA (Figure 4) and nuclear sequences (Appendix S2), seven pop-
ulations within clade S shared the common haplotypes and lacked 
the population structures, which were probably results from the 
repeated separation and the connection of drainages in the South 
Basin due to the glacial–interglacial cycles and/or tectonic move-
ment during the Quaternary period (Bingyuan, Fubao, Yichou, & 
Qingsong, 1982; Yang & Scuderi, 2010; Zou & Dong, 1992).

Multiple analyses, including BSP, star- like network and negative neu-
trality tests all supported the population expansion in S. stoliczkai. The 
population expansion had been reported in other schizothoracine fishes, 
including Diptychus maculatus (Li et al., 2016), Gymnodiptychus dybowskii 
(Li et al., 2015), and Schizothorax nukiangensis (Chen, Du, & He, 2015). In 
the current study, we found the S. stoliczkai experienced the population 
expansion from 0.05 to 0.025 Mya. Similarly, Li et al. showed Diptychus 
maculatus that distributed closely to S. stoliczkai also underwent the pop-
ulation expansion at about 0.025 Mya (Li et al., 2016), which was in good 
line with our results. Therefore, we speculated that the population ex-
pansion of S. stoliczkai was possibly benefited from the humid and warm 
climate during the interglacial period (Yang & Scuderi, 2010).

F IGURE  5 The median- joining network derived from Act2 
segments. The lineages represented by different colors and the circle 
size denating the amount of observations are labeled in lower right 
corner
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TABLE  5 Genetic diversity, neutrality tests, as well as number of specimens and haplotypes of each clade

Group
No. of  
specimens

No. of  
haplotypes π h (SD)

Neutrality test

Tajima’s D Fu’s Fs

KR Group 50 3 0.00007 0.153 (0.067) −1.16,435 −1.828*

SR Group 98 32 0.00166 0.856 (0.031) −1.66,138* −17.715**

PL Group 116 17 0.00016 0.301 (0.057) −2.45,978** −24.258**

SB Group 139 22 0.00105 0.774 (0.031) −1.61,657* −9.161**

Clade North 264 52 0.00246 0.816 (0.018) −1.14,852 −21.952**

KR, Karakash River; SR, Shiquan River; PL, Lake Pangong; SB, Southern Basin.
π denotes nucleotide diversity; h (SD) is haplotype diversity with standard deviation.
Significant pairwise differences: *p < .05, **p < .01.
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4.2 | Multiple glacial refugia in the northwest 
edge of the Tibetan Plateau

Many species endemic to the TP area has multiple glacial refugia, 
such as Gymnocypris chilianensis (Zhao et al., 2011) and Nanorana 
parkeri (Liu et al., 2015). In the current study, we found the separa-
tion of clade N and S (4.27 Mya) was much earlier than the onset 
of the ice age (2.6 Mya) (Gribbin, 1983), which implicated that the 
clade N and S occupied different refugia during Quaternary glacia-
tions. Moreover, a series of geochronological researches proved the 

existence of melting water in the upstream of the Indus River in the 
ice age (Owen, Caffee, Finkel, & Seong, 2008; Schäfer et al., 2002; 
Shi, 2002; Zhou, Wang, Wang, & Xu, 2006), which was likely to be 
the habitat for S. stoliczkai during ice age. However, it was difficult 
to predict the accurate refuge for clade S due to the lack of the 
population structure. The highest genetic diversity of the Shiquan 
River group (Tables 1 and 5; Graham, VanDerWal, Phillips, Moritz, 
& Williams, 2010) implied that the Shiquan River was probably the 
refuge for clade N.

Conclusively, we clearly depicted the population structure of 
S. stoliczkai, with four subdivisions corresponded well to the sepa-
rated drainages. The results also implicated that S. stoliczkai occupied 
multiple refugia during the Quaternary glaciations in the different 
habits. Based on the population demography analysis, we speculated 
that the population of S. stoliczkai was expanded, which was highly 
likely due to the warm and humid climate during the interglacial 
period.
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