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A B S T R A C T

Human activities are affecting biodiversity to a greater extent than ever. Consequently, tools that can efficiently
monitor changes in communities are becoming increasingly important. In the case of birds and other vocalizing
animals, it has been suggested that passive acoustic methods can be used for this purpose. Multiple acoustic
indices have been developed recently, to be used as proxies for species diversity. Preliminary results have been
promising. Yet, before the indices can be applied widely, it is necessary to understand better how well they
reflect the communities to be monitored, and how they perform under diverse environmental conditions. Here,
we tested seven of the available indices, on sound recordings made in two biodiverse regions in Yunnan
Province, south China. We assessed each index’s performance by measuring its correlation to bird species
richness and diversity, estimated using point-count surveys. Each survey was conducted by an expert observer, at
the same time each recording was made, and for the same duration. We also tested whether the performance of
the indices was affected by levels of environmental dissimilarity between the sites sampled. We found that
although no index showed a very strong correlation with species richness or diversity, three indices (the acoustic
entropy, acoustic diversity and acoustic evenness indices) performed consistently better that the other four,
showing moderate correlations. The levels of environmental dissimilarity among the sites did not seem to affect
the performance of any of the indices tested, suggesting consistency − an important property for the indices to
have. We conclude that although the acoustic indices have the potential to be used for passive acoustic mon-
itoring, perhaps they need to be refined further before they can be applied widely. Meanwhile, they should be
tested in more environments to reveal fully their potential and limitations.

1. Introduction

Humans are modifying landscapes at unprecedented rates, often
with detrimental effects on biodiversity (Sala et al., 2000). To assess the
extent to which species are affected by it is important to develop reli-
able monitoring tools that can cover large temporal and spatial scales at
a low cost. Recent advances in the field of ecoacoustics (Sueur and
Farina, 2015) suggest that for vocalizing animals, these monitoring
requirements could be realized using acoustic methods (Acevedo and
Villanueva-Rivera, 2006; Bardeli et al., 2010; Depraetere et al., 2012;
Tucker et al., 2014; Borker et al., 2015; Roca and Proulx, 2016).

Acoustic methods have been already used successfully to answer a
range of ecological and conservation questions (Laiolo, 2010; Blumstein

et al., 2011; Sueur et al., 2014; Sueur and Farina, 2015; Grant and
Samways, 2016). For example, they have been used to map the occu-
pancy range and territory of chimpanzees and birds (Furnas and Callas,
2015; Kalan et al., 2015; Kalan et al., 2016), to study the behaviour and
estimate the abundance of elephants (Wrege et al., 2017), to assess the
species richness of insect communities (Roca and Proulx 2016), to study
how individual birds use habitat (Kirschel et al., 2011), and to estimate
bird diversity (Celis-Murillo et al., 2009; Sedlacek et al., 2015). Indeed,
much of the recent research in acoustic methods has been focused on
birds (Gasc et al., 2016), for multiple reasons: birds are abundant and
therefore are part of most acoustic communities (Bardeli et al., 2010),
many birds vocalize prolifically and thus can be captured easily by the
acoustic sensors, and birds provide many ecosystem services and are
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thus good indicators of ecosystem health (Sekercioglu, 2006).
Acoustic methods have obvious advantages over the traditional

surveying methods since acoustic devices can potentially collect data
for longer periods, in a less intrusive way, and at a lower cost (Bardeli
et al., 2010). In some cases, comparisons have shown that acoustic
surveys can be more accurate than traditional surveys, as researchers
have been found to detect more species when listening to the sounds in
the laboratory than when surveying the birds in the field (Celis-Murillo
et al., 2009). The methods of measuring biodiversity acoustically gen-
erally follow two directions. The first has been concerned with the
identification of different species, often those with very distinct calls,
through computer aided signal processing. This approach generally
requires the compilation of a library of bird songs from the species of
interest, and the development of pattern recognition algorithms, which
identify the acoustic fingerprints of those species. This method, thus far,
has been applied only to a small number of species (Bardeli et al.,
2010), and unfortunately it can quickly become impractical for mon-
itoring whole communities, when a large number of species needs to be
considered.

The second direction for evaluating biodiversity acoustically aims at
estimating the richness of a community, without the identity of the
species being consequential. It is based on the assumption that higher
species richness translates into higher acoustic complexity (Sueur et al.,
2014). Hence, by measuring the complexity of an acoustic community
one can infer the diversity of the community. However, processing large
amounts of acoustic data remains a challenge. One way the data can be
processed is by having experienced ornithologists listen to the sounds,
or segments of the sounds (Zhang et al., 2016) to identify the species
recorded. Processing the acoustic data in the laboratory, however, often
takes longer than it would take if surveys were conducted in the field
(Wimmer et al., 2013). Moreover, the retained dependency on experi-
enced observers maintains the risk of measurement bias and keeps the
survey costs high. Consequently, to unlock the full potential of acoustic
monitoring methods, it is useful to develop efficient automated pro-
cessing techniques.

Automated techniques for estimating diversity can be technically
challenging for multiple reasons: species vocalizing simultaneously
make the task complicated (Zhang et al., 2016), often unwanted sounds
mask the species to be recorded, and spatial and temporal variations in
the geophysical conditions of an area affect the characteristics of the
recordings (Darras et al., 2016). In spite of the difficulties, several at-
tempts have been made to develop algorithms that measure the di-
versity of an acoustic community, with promising results (Sueur et al.,
2014). For example, Boelman et al. (2007) developed the bioacoustic
index (BIO), which estimates acoustic complexity by measuring varia-
tions in signal intensity (amplitude). The index was tested in a reserve
in Hawaii and was found to correlate with the abundances of birds
(Boelman et al., 2007). Sueur et al. (2008b) developed the acoustic
entropy index (H), which is the product of the spectral and temporal
entropies of the recorded sounds, measured using the Shannon-Wiener
diversity index. They tested the index at two coastal forests in Tanzania
and found that it correlated (logarithmically) with the number of vo-
calizing animal species (Sueur et al., 2008b). Similarly, Depraetere
et al. (2012) introduced the acoustic richness (AR) index. Depraetere
et al. (2012) noticed that in regions with low signal-to-noise ratios (e.g.,
temperate regions with low species diversity and high anthropogenic
noise), the inclusion of the spectral entropy may result in biased results
(Depraetere et al., 2012). Therefore, they based the acoustic richness
index on the temporal entropy of the sound, while also taking into
account the overall amplitude (Depraetere et al., 2012). The index was
tested in three woodland habitats in a protected area in France and was
found to correlate positively with the species richness of birds
(Depraetere et al., 2012).

Villanueva-Rivera et al. (2011) developed the acoustic diversity
index (ADI), which similarly to the acoustic entropy index uses the
Shannon-Weiner index to estimate acoustic complexity. ADI divides

spectrograms into multiple frequency bands and calculates the diversity
in the proportions of each band occupied by sounds above a certain
amplitude threshold, usually −50 dB relative to full scale (dBFS). The
same information is used to calculate the acoustic evenness index (AEI),
also developed by Villanueva-Rivera et al. (2011), which is measured
using the Gini coefficient, and is therefore negatively related to ADI
(Villanueva-Rivera et al., 2011). Pieretti et al. (2011) added the
acoustic complexity index (ACI), which estimates the diversity of an
acoustic community by measuring the variations in intensities within a
recording, based on the assumption that animal sounds, unlike an-
thropogenic noises, usually vary considerably in sound intensity. The
index divides recordings into multiple frequency bins and temporal
subsets, and calculates the differences in the intensities of adjacent
sounds, with the final ACI value being the grand total of those differ-
ences. The index was tested in a national park in northern Italy and was
found to correlate with the number of bird vocalizations. Kasten et al.
(2012) introduced the normalized difference soundscape index (NDSI),
which although not designed to assess the levels of animal diversity, but
instead to measure anthropogenic disturbance (by calculating the ratio
of anthropogenic sounds to sounds generated by biological organisms),
was found to correlate with the presence of birds (Fuller et al., 2015).

Despite these promising results, before the indices can be widely
adopted for monitoring purposes, it is important to understand better
how accurately they reflect the communities to be monitored, and how
they perform under diverse environmental conditions. The indices are
all relatively recent, and thus only a handful of studies have assessed
their efficacy to date. In one of those studies, Fuller et al. (2015) found
that out of all the indices they tested − in a fragmented forested
landscape in Australia − H and NDSI correlated the most with the
species richness of birds. Machado et al. (2017) measured several of the
above indices in a protected area in Central Brazil and found that al-
though NDSI did not correlate strongly with bird species richness, it
reflected well the presence of anthropogenic disturbance. Machado
et al. (2017) also found the ADI was the most appropriate proxy for the
bird species richness in their area. Harris et al. (2016), who also tested
some of the same indices but in a marine environment, found that H
and ACI were good proxies for the biodiversity in fish reef communities.

Currently, it is uncertain how widely applicable and consistent these
relationships are. Furthermore, it is unclear to what extent dissimilar
levels of abiotic and biotic conditions affect the efficacy of the indices.
For example, the acoustic entropy’s logarithmic relationship to species
richness suggests that the index’s efficacy may be reduced in highly
diverse areas. Different conditions affect not only the number of species
present and their vocalizations, but also the acoustic properties of an
area (Darras et al., 2016). Therefore, the question arises whether the
scale of the survey influences which index is most applicable: specifi-
cally, should it matter whether the survey is all conducted within a
small area, or whether different environments with different bird
communities are sampled over a wider region? Here, we tested the
acoustic entropy, acoustic diversity, acoustic evenness, acoustic rich-
ness, acoustic complexity, bioacoustic index, and NDSI at two forested
and highly biodiverse regions in Yunnan Province, in south China, lo-
cated approximately 290 km apart and at different elevations. We
measured each index’s correlation to bird species richness and diversity,
estimated using conventional point-count surveys conducted by an
expert observer at the same time as the recordings. Further, we tested
whether the indices perform better when the analysis included only
samples with similar environments and similar species compositions,
compared to analyses in which samples with dissimilar environments
and compositions are also included. The selected study regions provide
optimal conditions for answering these questions, as they capture a
wide range of environments due to their large altitudinal and land-use
gradients, and host a large number of species. Earlier applications of the
indices involved mostly small scale, low-diversity systems.

C. Mammides et al. Ecological Indicators 82 (2017) 470–477

471



2. Methods

2.1. Study regions and sites

We conducted this study in two regions of Yunnan Province, the
province of China that has the most biodiversity (Yang et al., 2004). The
first study region was located in the Xishuangbanna Dai Autonomous
Prefecture, the most southern prefecture of Yunnan, within a 15 km
radius from the Xishuangbanna Tropical Botanical Garden (XTBG,
21°55′N, 101°15′E), a research center of the Chinese Academy of Sci-
ences (CAS) that is located in the town of Menglun. The landscape
consists of rubber plantations with some small fragments of tropical
rainforest and some larger protected reserves. Surveys in this region
were carried out at forty-seven of the study sites established by Liu and
Slik (2014), in which they studied the effects of forest fragmentation on
trees. Sites were located within 23 forest fragments of varying sizes,
ranging from 0.9 to 13872.9 ha; elevation ranged from 541 and 1477 m
asl.

The second sampling region was located in Jingdong County, of
Yunnan Province, within a radius of 10 km from the Ailaoshan Station
for Subtropical Forest Ecosystem Studies (24°32′N, 101°01′E), also a
CAS research station, situated within the Ailaoshan National Nature
Reserve. The landscape is dominated by subtropical primary forest,
although there are scattered patches of secondary forest, as well as
patches of forests dominated by pine trees (Pinus yunnanensis and Pinus
kesiya var. langbianensi), and also farmlands nearby. To ensure that the
performance of the indices was tested in diverse environments, fifty
study sites were selected belonging to four different land-use types:
fifteen sites were located in relatively undisturbed forest, twelve sites in
disturbed broadleaf forest, thirteen in pine forest, and ten in farmlands.
The elevation ranged from 1570 to 2616 m asl. Pine forest sites domi-
nated the lower elevations (< 2020 m asl), while relatively undisturbed
sites occurred at higher elevations (> 2390 m asl).

2.2. Data collection

To ensure that the acoustic data were directly comparable to the
data collected using the point-count surveys, we made the recordings at
the same time as observing the birds. SKD was the observer at
Xishuangbanna and LK was the observer at Ailaoshan. Both observers
had experience in identifying birds in their regions of more than two
years and hence were experts about the respective avifaunas. During
the point-count surveys, all individuals heard or seen within a 15-min
time period and a radius of 50 m were recorded and identified to the
species level. The acoustic data were recorded using an omnidirectional
microphone (Sennheiser ME62), mounted on a tripod at breast height
and placed next to the observer, attached to a Marantz Professional
recorder (Model PMD 661), at a sampling rate of 44.1 kHz (16 bits, one-
channel). The data were saved in a waveform audio file format (wav).
The microphone was switched on the moment the point-count survey
commenced, and switched off, 15 min later, when the survey ended.

Each site at Xishuangbanna was surveyed twice, once during the
wet season and once during the dry season, resulting in 94 samples. The
wet season survey was carried out between June and August 2014, and
the dry season survey between November and December of 2014. Each
site at Ailaoshan was surveyed once, in November of 2015, resulting in
50 samples. In total, 144 samples were collected at 97 sites (Table 1). At
both regions, the minimum distance between the sites was 250 m. All
surveys were conducted in the morning, between 07:00 and 10:45 AM,
when the birds were most active. Upon arrival to the site, observers
waited two minutes before they started each survey, to minimize pos-
sible bias due to disturbance.

2.3. Data analysis

Data were analysed using the R programming language (R Core

Team, 2016). The bird species richness was calculated using the spec-
number function in the “vegan” package (Oksanen et al., 2016). The
diversity was calculated using the diversity function, in that same
package, and using Shannon-Weiner index. All acoustic indices, except
AR and ACI, were calculated using the multiple_sounds function in the
“soundecology” package (Villanueva-Rivera and Pijanowski, 2016),
using the default settings. ADI’s and AE’s default maximum frequency is
set to 10 kHz, while the size of the frequency bands is set to 1 kHz. The
maximum frequency of the BIO index is set to 8 kHz, while its minimum
frequency is set to 2 kHz. In the case of NDSI, anthropogenic sounds are
defined as all sounds between 1 and 2 kHz, while biological sounds as
those between 2 and 11 kHz. AR and ACI were calculated using the
corresponding functions (AR and ACI) in the “seewave” package (Sueur
et al., 2008a). In AR, the default settings were used. In ACI, which al-
lows for frequency limits to be set, the frequency was set between 2 and
10 kHz to mirror the settings of most of the other indices. To measure
the correlations between each index and the bird species richness and
diversity, the Pearson’s correlation coefficient was used. Analyses were
run separately for each region and season (i.e. Xishuangbanna wet
season, Xishuangbanna dry season, and Ailaoshan), resulting in six
correlation values for each index tested.

For the second part of the analysis, in which we compared each
index’s performance in similar vs. dissimilar environments, we first
grouped the sites into categories based on their environmental simi-
larity (Table 1). Sites at Ailaoshan were grouped according to their
land-use type, and sites at Xishuangbanna according to the size of their
fragment. In Xishuangbanna, fragments of dissimilar size had different
environmental conditions because of differences in plant composition,
canopy height, and structural complexity (SKD, personal observation).
To capture these environmental differences, we grouped fragments into
three categories: small (< 100 ha, n = 17 sites), medium (100 ha<
x < 1000 ha, n = 15 sites) and large (> 1000 ha, n = 15 sites). To
ensure that the fragments selected for this part of the analysis were
most distinct, we removed all sites located in medium sized fragments.
In total, there were 82 remaining sites, resulting in 114 samples, re-
presenting six different environments (i.e. in Ailaoshan, relatively un-
disturbed forest, disturbed forest, pine forest, farmland; in Xishuang-
banna, small fragments, and large fragments).

Using the 114 samples, we created six datasets of incrementally
increased environmental dissimilarity. Each dataset was composed of
one hundred sets, and each set consisted of ten separate, randomly
selected, samples. In the most environmentally similar dataset, each set
was drawn only from samples that belonged to the same type of en-
vironment. For example, the first set could be made of ten samples all
collected in small fragments, while the second set could be made from
ten samples all collected in pine forest. The other datasets differed in
that the sets could be made from samples in different environments,
with the number of environments increasing for each dataset: the sets in
the second dataset could be made of samples that belonged to two
environments, and so forth, until the sixth dataset, which could draw on
samples from any of the six environments. To generate each of the

Table 1
Number of samples collected in each region, categorized according to the sites’ en-
vironmental similarity. There were 47 sites at Xishuangbanna and 50 sites at Ailaoshan.
Sites at Xishuangbanna were surveyed twice, once during the wet season and once during
the dry season, while sites at Ailaoshan were surveyed once, resulting in 144 samples in
total.

Xishuangbanna Ailaoshan

Size Fragments Sites Samples Habitat Sites Samples

Small 14 17 34 Relatively undisturbed
forest

15 15

Medium 6 15 30 Disturbed forest 12 12
Large 3 15 30 Pine forest 13 13

Farmland 10 10

C. Mammides et al. Ecological Indicators 82 (2017) 470–477

472



hundred sets, in each dataset, we followed a two-step process. First, we
randomly selected from which environments the samples would be
drawn from − following the appropriate rules for the dataset as to the
number of environments − and then we randomly selected ten samples
from those specific environments. This process ensured that not all of
the hundred sets, in each dataset, would come from the same combi-
nations of environments. We chose to limit our number of samples
within each set to ten, because a higher number would have prevented
us from having samples from one environment only. For example, there
were only ten farmland sites; similarly, other land-uses had a small
number of sites too.

For each of the generated sets, we measured the Pearson’s correla-
tion coefficient between each of the seven acoustic indices and the
species richness of birds (as diversity, in the first analysis, had similar
results with species richness). To obtain an overall estimate for each
acoustic index for each of the six datasets, we averaged the resulting
hundred coefficients. To assess the variation in our results, we mea-
sured the corresponding standard deviations. To assess the extent to
which different environments translated into differences in species
composition, we ran a non-metric multidimensional scaling (NMDS)
analysis using the metaMDS function in the “vegan” package (Oksanen
et al., 2016).

3. Results

3.1. Summary of the bird surveys using point counts

In total, 106 bird species were recorded at Xishuangbanna, 78
during the wet season and 92 during the dry season (Supplementary
material Appendix A). Out of those, 64 were recorded during both
seasons. At Ailaoshan 98 species were recorded in total. 22 species were
recorded in both regions (Supplementary material Appendix A). On
average, sites at Xishuangbanna had 13.34 species (s= 3.41) during
the wet season, and 13.32 species (s = 4.99) during the dry season.
Primary forest sites at Ailaoshan had 10.93 species (s= 5.12), sec-
ondary forest sites had 11.33 species (s= 3.08), pine forests had 11.00
species (s= 1.83), and farmlands had 11.80 species (s= 2.57).

The results of the NMDS analysis confirmed that Ailaoshan and
Xishuangbanna have distinct bird communities (Fig. 1). Moreover, at
Ailaoshan there are clear differences in the composition of species
across sites belonging to different land-use types. The distinction is not
as prominent at Xishuangbanna, although the results do confirm that
there is some difference between the compositions of species at sites in
small fragments versus those in large fragments.

3.2. Indices’ performance

Species richness of birds correlated highly with diversity, ranging
from 0.84 (at Ailaoshan) to 0.97 (at Xishuangbanna during the wet
season). Consequently, their relationships with the acoustic indices
were very similar (Table 2). However, the relationships between the
acoustic indices and the number of bird species (and diversity) varied
considerably depending on the index examined, the region, and the
season (Table 2, Figs. 2 and 3 for the relationship between species
richness and the indices). Three indices, though, consistently ranked
higher than the rest. These were the acoustic entropy, the acoustic di-
versity, and the acoustic evenness indices (Table 2). Acoustic entropy
was the best index, in terms of the strengths of the correlations, in both
seasons in Xishuangbanna, whereas acoustic diversity and acoustic
evenness were best in Ailaoshan (positive correlation for acoustic di-
versity, negative for acoustic evenness). The other four indices per-
formed poorly in at least one survey. The correlation between the
acoustic richness index and the bird diversity was in all occasions in the
opposite direction of that expected (i.e., negative instead of positive).
Both the bioacoustic index and the normalized difference soundscape
index had poor or negligible correlations during the wet season in
Xishuangbanna (rrichness = −0.34 and -0.01 for BIO and NDSI, respec-
tively; the correlations were in the opposite direction than expected).
The acoustic complexity index had a weak correlation in all three sur-
veys (rrichness ≤ 0.21), and was negative for species richness during the
dry season in Xishuangbanna (rrichness = −0.03).

3.3. Differences in index performance between similar and dissimilar
environments

When the different levels of environmental similarity were tested,
the correlation coefficients between each of the seven acoustic indices
and the species richness of birds were very similar, and the corre-
sponding standard deviations were large (Table 3). The substantial
overlap between the correlation coefficients of each dataset indicated
that there were no significant differences between the different kinds of
datasets. As expected from the results in the section above (3.2), the
acoustic entropy, acoustic diversity, and acoustic evenness performed
better than the other four indices (Table 3).

4. Discussion

Overall, the correlations between the seven indices tested and the
bird species richness were lower than what would be expected if the
indices were to be used effectively to monitor bird communities.
Currently, measuring the diversity of animals using acoustic methods is
likely to still require the input of experienced observers, who would
have to listen to the recorded sounds and identify the species manually
(Darras et al., 2016; Zhang et al., 2016), hence spending a lot of time
and effort (Wimmer et al., 2013).

4.1. Indices’ performance

Of all the indices examined, acoustic entropy (Sueur et al., 2008b),
acoustic diversity and acoustic evenness (Villanueva-Rivera et al.,
2011) performed the best. Machado et al. (2017) also found that the
acoustic diversity index performed well in their area, and that it was
highly correlated with the acoustic evenness and the acoustic entropy
indices (the corresponding spearman correlations were −0.999 and
0.703). All three indices divide sounds into multiple frequency bands
and involve a measurement of the diversity of the acoustic signal (Sueur
et al., 2008b; Villanueva-Rivera et al., 2011), and this is likely to be a
key feature to be measured when estimating the complexity of the
acoustic communities.

Our results, as far as the acoustic entropy index being among the
best performers, are in accordance also with the findings of Fuller et al.

Fig. 1. Results of the non-metric multidimensional scaling (NMDS) analysis, showing the
differences in species compositions between the sites at the two regions and within the six
environments. Ailaoshan: △ = Relatively undisturbed forest; += Disturbed forest;
○ = Pine forest; □ = Farmland; Xishuangbanna: ●= Small Fragments; ▲ = Large
Fragments. Ellipses represent one standard deviation from the centroid of each en-
vironment.
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(2015); however, in their study they found that NDSI also correlated
with bird presence. In our case, NDSI did not show any consistent
patterns. Although the correlation was relative high for the surveys at
Xishuangbanna during the dry season, the corresponding correlation for
the wet season was much lower and in the opposite direction (Table 2).
Perhaps this is because NDSI does not measure species richness per se,
and its results depend on the levels of anthrophonies (1–2 kHz) relative
to the levels of biophonies (2–11 kHz). Theoretically, varying levels of
anthropogenic noise can result in dissimilar NDSI values even when
species richness is relatively constant. Contrariwise, relatively larges
differences in species richness can result only in small changes in NDSI
if the anthropogenic noise does not vary much, and is especially low.
Consequently, the index may not accurately reflect the richness of the
bird communities under these conditions. This may explain why it can
perform imperfectly in some situations, as in our case at Xishuangbanna
during the wet season, where most of the NDSI values were clustered
around the positive end of the spectrum (the median value was 0.85),
indicating very low levels of human-related sounds, but failing to reflect
the variation in bird species (Fig. 3).

Surprisingly, the acoustic richness index, which was found to cor-
relate positively with bird species richness in temperate environments
(Depraetere et al., 2012), showed the opposite trend in our case. For our
data, in general the higher the bird richness the lower the value of this
index was (Fig. 3). It should be mentioned that the index was designed
for environments with low species diversity and low signal-to-noise
ratios. On the contrary, our regions are highly diverse, and although
there were some cases of high levels of anthropogenic noise, the signal-
to-noise ratio in our recordings is most probably higher than in tem-
perate regions with high human presence.

The acoustic complexity index also performed ineffectively at our
sites, although it has been shown to perform well in some other areas
(Pieretti et al., 2011). For example, Farina et al. (2011) used the
acoustic complexity index to analyse the soundscape of a landscape in
Eastern Liguria in Italy, dominated by maqui vegetation, and found that
it related to the presence and activity of the birds − although the exact
correlation was not assessed. Harris et al. (2016) found that the acoustic
complexity index correlated highly with the animal diversity and
evenness in reef fish communities. The acoustic complexity index,

Table 2
The results of the Pearson’s correlation analyses, measuring the relationship between each acoustic index and the species richness and diversity of birds at each region and season.
Correlations at Xishuangbanna were based on 47 sites, surveyed once during each season, and at Ailaoshan on 50 sites. (W) stands for wet season and (D) for dry season. S stands for avian
species richness and H′ stands for Shannon-Weiner avian diversity. H = acoustic entropy index, ADI = acoustic diversity index, AE = acoustic evenness index, AR = acoustic richness
index, ACI = acoustic complexity index, BIO = bioacoustic index, NDSI = normalized difference soundscape index.

Region/Season H ADI AE AR ACI BIO NDSI

S H′ S H′ S H′ S H′ S H′ S H′ S H′

Xishuangbanna (W) 0.51 0.49 0.35 0.36 −0.40 −0.39 −0.46 −0.45 0.21 0.16 −0.34 −0.29 −0.01 −0.01
Xishuangbanna (D) 0.59 0.66 0.55 0.62 −0.54 −0.61 −0.24 −0.24 −0.03 0.06 0.23 0.20 0.54 0.60
Ailaoshan 0.36 0.30 0.56 0.47 −0.57 −0.46 −0.08 −0.10 0.04 0.06 0.37 0.22 0.35 0.27

Fig. 2. Scatterplots showing the relationship between the three best performing acoustic indices and the bird species richness at each region and season. Lines represent the linear
regression slope and shaded areas indicate the 95% confidence intervals. Abbreviations as in Table 2.
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however, is thought to be sensitive to certain anthropogenic noises and
geophonies, such wind and rain (Depraetere et al., 2012), and this may
partly explain the low correlations in our case. Although we avoided
conducting the surveys during bad weather conditions, such as heavy
rain, it is likely that our acoustic data have been contaminated to a
certain level by geophysical sounds, such as mild winds and drizzles,
which could have varying intensities. In addition, some variable

anthropogenic sounds may have influenced our results, especially at
sites within and near farmlands, near roads, and near human settle-
ments. Yet, these type of conditions are typical of field studies, and
probably unavoidable, and therefore for the indices to be used under
natural conditions these limitations need to be overcome. Researchers
have already emphasized the need for developing algorithms to filter
unwanted noise more effectively and/or flag sound segments with low

Fig. 3. Scatterplots showing the relationship between the rest of the acoustic indices and the bird species richness at each region and season. Lines represent the linear regression slope
and shaded areas indicate the 95% confidence intervals. Abbreviations as in Table 2.

Table 3
Averaged (x ) Pearson’s correlations coefficients and standard deviations (s), showing the relationship between each acoustic index and the species richness of birds when the six datasets
of varying levels of environmental similarity were tested. Abbreviations as Table 2.

Number of environments H ADI AE AR ACI BIO NDSI

x s x s x s x s x s x s x s

1 0.40 0.23 0.54 0.16 −0.58 0.18 −0.10 0.34 0.07 0.34 0.19 0.29 0.36 0.31
2 0.44 0.24 0.57 0.16 −0.59 0.18 −0.10 0.34 0.03 0.30 0.22 0.29 0.45 0.29
3 0.39 0.25 0.55 0.18 −0.59 0.19 −0.06 0.33 0.07 0.31 0.22 0.26 0.32 0.34
4 0.40 0.25 0.55 0.17 −0.59 0.18 −0.06 0.35 0.03 0.29 0.23 0.30 0.37 0.32
5 0.40 0.24 0.54 0.16 −0.57 0.18 −0.07 0.35 0.11 0.34 0.23 0.28 0.42 0.32
6 0.43 0.23 0.56 0.17 −0.59 0.18 −0.10 0.37 0.09 0.29 0.20 0.32 0.41 0.32

C. Mammides et al. Ecological Indicators 82 (2017) 470–477

475



signal-to-noise ratios (Gasc et al., 2013; Bedoya et al., 2017).
The bioacoustic index correlated only weakly with the bird com-

munities (≤0.37) and the correlation was even negative at
Xishuangbanna during the wet season. It should be noted here that the
algorithm used for the bioacoustic index, available in the “sounde-
cology” package, is a modified version of the original one presented by
Boelman et al. (2007), and therefore should not be expected to give the
same results (Villanueva-Rivera and Pijanowski, 2016). The index is
calculated by estimating the total area under a spectrum curve in an
amplitude-frequency plot and relies in differences in the maximum
intensities (across all frequencies sampled) to detect differences in an-
imal communities. At our sites, which are very diverse, differences in
maximum intensities may not represent accurately differences in spe-
cies richness. It is also possible that the low correlations can be at-
tributed to some extent to sounds generated by non-avian organisms.
Although, the large majority of the vocalizing animals in our samples
were birds, they were occasions in which insects were recorded too,
such as cicadas (Cicadidae spp.) and crickets (Gryllidae spp.). Machado
et al. (2017) also found that the bioacoustic index performed incon-
sistently.

It is possible that some of the disparity between the results obtained
using the seven indices and the point-count surveys is due to covering
different acoustic spaces. A key assumption in our study is that the
radius covered by the point-count surveys and the microphone was the
same (i.e. 50 m). We believe that in forested environments such as ours
the assumption is valid. Previous research has shown that acoustic
surveys are usually effective within a 50 m threshold (Sedlacek et al.,
2015). However, we must acknowledge that there could have been
some variation − especially at Ailaoshan where we sampled different
types of land-uses − because acoustic spaces have been shown to be
affected by land-use types and vegetation structure (Darras et al.,
2016).

4.2. Differences between similar and dissimilar environments

Darras et al. (2016) also question whether differences between sites
in their environmental and structural characteristics make such an
impact on the sampled acoustic space that it would “influence acoustic
diversity indices”, since “sites with higher sound transmission would
have a higher chance of yielding a higher acoustic diversity”. If this
effect is large, studies that cover a wide range of environments could
find weaker correlations. Further, it is not known whether some of the
indices are influenced by environmental variance in ways that others
are not.

Despite including quite distinct environments − such as open
farmland versus closed-canopy forest that had distinct bird commu-
nities (as per Fig. 1) − our study did not show significant differences
between simulations that included environmental differences and those
that did not. All the indices acted in the same way in this exercise. This
suggests that results from the acoustic indices obtained in dissimilar
environments or at different scales are comparable. This is an important
property for indices to have; their performance needs to be consistent at
large scales and under different environmental conditions. It is possible
that including more distinct environments, such as deserts versus
rainforests, could produce different results; however, most studies using
acoustic complexity indices to estimate biodiversity will be conducted
in areas without such extreme variation. Our results should be inter-
preted with some caution though, because the large numbers of species
at our study regions meant that several sites within a region had dis-
similar composition despite their environmental similarity, potentially
affecting the results. In the future, it would also be useful to have
structural data from the sites that quantify the environmental effects
more precisely. Also, it is possible that the results may have been in-
fluenced to some extent by inter-observer bias, since the two regions
were surveyed by different observers. However, we are confident that
any such effect is small enough not to have affected our conclusions.

When the data from the two regions are analysed independently, the
results are qualitative the same (Supplementary material Appendix B).

4.3. Conclusions

Although our results support the idea that the acoustic indices have
the potential to be used for monitoring bird communities (Sueur and
Farina, 2015), the relatively low correlations, and the somewhat in-
consistent performances of the indices reported in the literature, sug-
gest that there are still limitations to be overcome before they can be
widely adopted. However, the field of ecoacoustics is advancing rapidly
(Sueur and Farina, 2015) and major improvements are to be expected
as these indices are refined and more are developed (Sueur et al., 2014).
Additionally, acoustic equipment is improving too, and becoming more
affordable, suggesting that automated passive monitoring of vocalizing
animal communities may become a common practise in the near future
(Bobryk et al., 2016). In our study, we did not use autonomous re-
cording units, which are becoming increasingly common (Merchant
et al., 2015; Joshi et al., 2017). It would be interesting to evaluate in
future studies whether the type of equipment used influences the re-
sults. In the meantime, it is important that researchers continue to test
the available indices and technology, under different conditions and in
dissimilar environments, to understand better their efficacy and reveal
their capabilities and limitations.
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