
Natural hybridization and reproductive isolation
between two Primula speciesFA

Summary Natural hybridization frequently occurs in
plants and can facilitate gene flow between species,
possibly resulting in species refusion. However, various
reproductive barriers block the formation of hybrids
and maintain species integrity. Here, we conducted a
field survey to examine natural hybridization and
reproductive isolation (RI) between sympatric popula-
tions of Primula secundiflora and P. poissonii using ten
nuclear simple sequence repeat (SSR) loci. Although
introgressive hybridization occurred, species bound-
aries between P. secundiflora and P. poissonii were
maintained through nearly complete reproductive
isolation. These interfertile species provide an excellent
model for studying the RI mechanisms and evolutionary
forces that maintain species boundaries.

Natural hybridization is common in plants, and has
many evolutionary consequences. Introgressive hybrid-
ization increases species diversity and ecological
adaptability (Jensen et al. 2005; Abbott et al. 2013),
and excessive introgressive hybridization results in gene
flow and, eventually, species refusion which blear
species boundary (Rieseberg and Ellstrand 1993;
Runyeon Lager and Prentice 2000). By contrast,
reproductive isolation (RI) blocks the formation of
hybrids and promotes species isolation (Rogers and
Bernatchez 2006; Baack et al. 2015). Most studies on
plant RI have focused on only one or a few particular
barriers to limit interspecific gene flow, although there
are exceptions (e.g., Scopece et al. 2013; Baek et al.
2016; Ma et al. 2016). To determine how species
boundaries are maintained between hybridizing spe-
cies, it is important to understand both the causes and
results of hybridization (Furches et al. 2013) and the
reproductive barriers that determine the relationship
between species boundaries and hybridization of taxa
(Widmer et al. 2009; De hert et al. 2012).

Primula L. is a genus of flowering plants with a
heterostylous breeding system and extreme species
richness, particularly in the eastern Sino-Himalaya

region (between 90° and 100° E and 25° to 30° N)
(Richards 2003). Only two cases of natural hybridization
have been reported in this region (Zhu et al. 2009; Ma
et al. 2014). Interspecific hybridization between
P. secundiflora Franchet and P. poissonii Franchet was
identified using nuclear internal transcribed spacer (ITS)
sequences (Zhu et al. 2009). However, the status of the
hybrid individuals and interspecific RI were not
mentioned. To explore the consequence of hybridiza-
tion and the maintenance of species boundaries
between these two species, we identified the genetic
structure of 110 individuals in the sympatric populations
using ten SSR (simple sequence repeats) loci. In
addition, we conducted field experiments in Shangri-
La to evaluate the contribution of various reproductive
barriers (pre-pollination isolation: phonological and
pollinator-mediated isolation; post-pollination isolation:
seed number, viability and germination) to the total RI
between these two species (File S1).

The number of alleles per locus ranged from 5 to 11
(average 7.9); the allele size range and number of
alleles per locus are shown in Table S1. Results from
the NEWHYBRIDS program suggested that 97 of the 100
morphological parental individuals were pure parental
species (with posterior probabilities of �90.7%), while
the remaining three individuals were backcrosses to
P. poissonii. All ten hybrids were backcrosses to
P. poissonii (with posterior probabilities of �85.8%;
Figure 1A). We assigned individuals that had been
previously morphologically identified as P. secundiflora
to one cluster with high probability (q¼ 0.993
� 0.001) using the STRUCTURE software and those
that had been previously morphologically identified
as P. poissonii to the other cluster with a similarly high
probability (q¼ 0.985� 0.005). The mean estimated
proportion of P. secundiflora was 0.340� 0.017 in the
ten hybrids (Figure 1B). P. poissonii and P. secundiflora
individuals were separated into two clusters in PCoA
(Figure 2).
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The total isolation of each species was quite high,
i.e., 1.0000 for P. secundiflora and 0.9968 for P. poissonii
when it served as mother donor (Table 1). Post-
pollination isolation explained 54.70% and 51.76% of
the total isolation for P. secundiflora and P. poissonii,
respectively, which is a little more than that explained
by pre-pollination isolation. Pollinator-mediated barriers
and low interspecific seed number contributed themost
to the total RI. Post-pollination isolation limited
interspecific gene flow when pre-pollination isolation
was permeable. Detailed information for each barrier
was documented in File S2. Although introgressive
hybridization had occurred, species boundaries were
maintained by multiple reproductive barriers. As
the flowering times of the two species were nearly
coincident, flowering time represents only a minor
reproductive barrier. Pollinator assemblage mediated
barriers contributed an asymmetric moderate isolation,
with stronger isolation in P. poissonii, because all the
visits to P. secundiflora were from Hymenoptera
(bumblebees and Anthophora species), whereas
about 30% of visits to P. poissoniiwere from Lepidoptera
(butterflies). These findings suggest that pre-
pollination barriers between P. secundiflora and
P. poissonii were not complete, in such case,

post-pollination barriers would work to restrict hybrid-
ization. Here, we showed that interspecific hybridized F1
seed numbers were significantly lower than those for
the intraspecific crosses, especially when P. secundiflora
was the maternal donor. Furthermore, embryo devel-
opment failurewas common in seeds produced by inter-
specific crossing, and the seed viability resulting from
hybridization was significantly lower than that in
intraspecific crosses, visible under X-ray as empty seeds
and stunted embryos. Finally, low germination rate is a
known post-pollination barrier preventing hybridiza-
tion, and similarly, we found low germination rates for
hybrid seeds in both P. poissonii and P. secundiflora.

Disturbed habitats might maximize the opportuni-
ties for interspecific hybridization (Arnold 1997). A
convincing evidence is sunflower hybrid swarms that
formed following habitat disturbance due to grazing,
and/or trail and road construction (Heiser 1979). In
another case, sheep disturbance was believed to be
a cause for hybridization of Psidium socorrense and
P. sp. aff. Sartorianum (L�opez-Caamal et al. 2014).
Grazing activity from livestock is common in the
P. secundiflora� P. poissonii populations, and may
have created habitat disturbances and favored the
formation of hybrids. Once F1s arise, they can backcross

Figure 1. Bayesian clustering analysis of Primula poissonii, the hybrids, and P. secundiflora using nSSR data
Clustering results based on the programs (A) NEWHYBRIDS and (B) STRUCTURE for K¼ 2.
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to parental species, following a classic pattern of natural
hybridization (Arnold 1997; Rieseberg and Carney 1998).
The differences between the two parental species in
heteromorphic incompatibility might explain the

occurrence of backcrosses to P. poissonii. Viable seed
was generally set only when pollination occurred
between different morphs (termed as “legitimate”
crosses in Primula), but in many species illegitimate

Figure 2. Plot of genetic structure (PCoA) based on variation at 10 nSSRs of Primula poissonii, P. secundiflora, and
hybrids
The x-axes and y-axes represent 62.21% and 5.88% of the variance in genetic structure, respectively.

Table 1. The strength of each reproductive barrier component, and the absolute contribution of this component
to total reproductive isolation when Primula secundiflora and P. poissonii served as mothers

Components of RI Absolute contribution to total RI

Reproductive barriers P. secundiflora, P. poissonii, P. secundiflora, P. poissonii,

Phenological 0.130 0.111 0.1304 0.1111

Pollinator mediated 0.371 0.416 0.3226 0.3698

Pre-pollination RI 0.4530 0.4809

Seed number 0.980 0.704 0.5361 0.3654

Seed viability 0.895 0.788 0.0098 0.1211

Seed germination 0.989 0.902 0.0011 0.0294

Post-pollination RI 0.5470 0.5159

Total RI 1.0000 0.9968
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pollinations (selfs or crosses between plants of the
same morph) result in some seed set (Richards 2003).
When crosses happened on P. poissonii mothers,
more seeds could be produced, while few or no seeds
could be formed on P. secundiflora mothers. It is
possible that the weak heteromorphic incompatibility
system in P. poissonii provided a greater chance for
hetero-specific pollen grains to penetrate their stigmas
and styles. Similarly, for another pair of Primula species,
P. beesiana and P. bulleyana, where the numbers of F1
seeds are substantially lower on P. bulleyana mothers
(Ma et al. 2014).

Overall, despite the sympatry, synchronous flower-
ing times and shared pollinators, we found that
P. poissonii and P. secundiflora maintained species
integrity for long periods of time due to strong RI,
reducing the instances of natural hybridization. These
naturally hybridizing Primula species with different
incompatibilities, offer a unique chance to understand
the evolutionary importance of RI in heterostylous
species.
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