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Abstract Reducing parameter uncertainty of process-based terrestrial ecosystem models (TEMs) is one of
the primary targets for accurately estimating carbon budgets and predicting ecosystem responses to climate
change. However, parameters in TEMs are rarely constrained by observations from Chinese forest
ecosystems, which are important carbon sink over the northern hemispheric land. In this study, eddy
covariance data from six forest sites in China are used to optimize parameters of the ORganizing Carbon and
Hydrology In Dynamics EcosystEms TEM. The model-data assimilation through parameter optimization
largely reduces the prior model errors and improves the simulated seasonal cycle and summer diurnal cycle
of net ecosystem exchange, latent heat fluxes, and gross primary production and ecosystem respiration.
Climate change experiments based on the optimized model are deployed to indicate that forest net primary
production (NPP) is suppressed in response to warming in the southern China but stimulated in the
northeastern China. Altered precipitation has an asymmetric impact on forest NPP at sites in water-limited
regions, with the optimization-induced reduction in response of NPP to precipitation decline being as large
as 61% at a deciduous broadleaf forest site. We find that seasonal optimization alters forest carbon cycle
responses to environmental change, with the parameter optimization consistently reducing the simulated
positive response of heterotrophic respiration to warming. Evaluations from independent observations
suggest that improving model structure still matters most for long-term carbon stock and its changes, in
particular, nutrient- and age-related changes of photosynthetic rates, carbon allocation, and tree mortality.

1. Introduction

Process-based terrestrial ecosystem models (TEMs) are used for estimating global/regional carbon budgets
[Pacala et al., 2001; Morales et al., 2007; Le Quéré et al., 2009; Piao et al., 2009], for attributing ecosystem
responses to increasing atmospheric CO2 and climate change [Cramer et al., 2001; McGuire et al., 2001; Piao
et al., 2015; Huang et al., 2015; Zhu et al., 2016] and for projecting future climate-carbon cycle feedback via
coupling with general circulation models [Friedlingstein et al., 2006; Sitch et al., 2008; Arora et al., 2013]. The
results from land surface models are affected by uncertainties from model structure [Shugart et al., 2010;
Antonarakis et al., 2014], initial condition definitions [Carvalhais et al., 2010], climate forcing [Berthelot et al.,
2005; Zhao et al., 2012], spatial resolution [Potter et al., 2013; Pappas et al., 2015], and parameter values
[LeBauer et al., 2013]. In parallel with the incorporation of new processes, parameter uncertainty needs to
be reduced as it explains a large proportion of the variance of vegetation carbon fluxes and storage through
photosynthesis, respiration, carbon turnover rates, and water balance [Knorr and Heimann, 2001; Zaehle et al.,
2005; Pappas et al., 2013]. Meanwhile, the tendency to incorporate new processes introduces more uncertain
parameters, possibly further increasing the spread of model results during the development stage [Prentice
et al., 2015]. Therefore, assimilating observed information to optimize model parameters is necessary and
should be frequently repeated when the new parameters are introduced during the model development.
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Eddy flux towers measure ecosystem-scale CO2, energy, and water fluxes, which can be used for constraining
model parameters and consequently improving TEMs performance [Baldocchi et al., 2001; Williams et al.,
2009]. A pioneer work by Wang et al. [2001] found that a key parameter common to the photosynthesis
scheme of most land surface models, Jmax (electron transport capacity), was best determined by incorporat-
ing the diurnal variation of 3 week mean net CO2 flux measured at six paired crop-pasture sites in southeast
Australia. Applying a similar gradient-based parameter optimization method, Reichstein et al. [2003] esti-
mated photosynthetic parameters at three Mediterranean sites and emphasized that the estimation of
leaf-level parameters should not ignore the observed H2O (i.e., latent heat) flux, either. More recently, the
application of Bayesian optimization allowed a variety of uncertain parameters to be considered in one cost
function using both the observed CO2 and H2O fluxes of forests involved with different plant functional types
(PFTs) in North America [Braswell et al., 2005; Knorr and Kattge, 2005], Europe [Friend et al., 2007; Santaren
et al., 2007, 2014; Bacour et al., 2015], and in the Amazon [Verbeeck et al., 2011]. Despite differences in the
number and type of constrained parameters in each study, the advantage of eddy covariance measurements
has been demonstrated in terms of improving site-level simulations of CO2 and H2O fluxes in both simple and
complex models [Jarvis et al., 2004; Williams et al., 2005; Wang et al., 2007].

However, to our knowledge, only a few studies have paid attention to assimilating the seasonal cycle of
observed fluxes from Chinese forest ecosystems, which have been shown as an important carbon sink over
the northern hemispheric land [e.g., Piao et al., 2005], in particular, subtropical forests [Yu et al., 2014]. Typical
applications of a better seasonal model include improved simulations of river discharge and water budgets in
China and better prior estimates of the net carbon exchange for atmospheric CO2 inversion studies [e.g.,
Peylin et al., 2013]. Due to lack of the observational constraints, currently simulated carbon and water fluxes
from these ecosystems are thus uncertain [Piao et al., 2012]. Although several parameter optimization studies
are based on multisite/multi-PFT assimilations of observed CO2 and H2O fluxes from the FLUXNET global net-
work [Kuppel et al., 2014; Peylin et al., 2016; Raoult et al., 2016], the corresponding optimized parameters may
not be representative for China because FLUXNET only contains very few Chinese forest sites and the esti-
mated parameters have been shown to vary from site to site [Groenendijk et al., 2011; Xiao et al., 2011]. To
our knowledge, onemodel parameter optimization only has, so far, been performed in China, for a coniferous
forest [Ju et al., 2010]. Considering the special Asian monsoon climate which brings plenty of water and heat
resources during the growing season [Yu et al., 2014], whether the CO2 and H2O fluxes from a variety of forest
types in China can be captured by the optimized TEM or not still remains an unknown issue.

The impact of climate change on Chinese forest ecosystem has not been fully quantified due to lack of mea-
surements (e.g., manipulation experiments) [Wu et al., 2011, Figure 1; Lu et al., 2013a], and it is therefore
unknown whether the responses of forest carbon cycles to changed climate are adequately represented in
the current TEMs. Uncertainty thus still persists within the current state-of-the-art carbon cycle models
[e.g., Peng et al., 2009], although they have been shown to be able to qualitatively reproduce the terrestrial
ecosystem response to changed environmental factors compared to some manipulative experiments
[Luo et al., 2008]. Accurate quantification of sensitivity of the simulated terrestrial carbon cycle processes
to altered climate, however, remains a bottleneck ([e.g., T. Wang et al., 2011; X. Wang et al., 2014; Wang
et al., 2017] models inability to reproduce the observed response of carbon cycle to climate variability on
interannual scales and on regional spatial pattern) for accurately estimating regional climate-carbon cycle
feedback, which will in part influence the climate in the future [Luo, 2007; Piao et al., 2013]. Although the
assumption-centered approach [see Medlyn et al., 2015] can be used to utilize data from ecosystem experi-
ments to reduce the model uncertainty, however, improvements of regional model applied in China would
need local experiment data, which are currently rare. Consequently, the optimized TEM not only provides
us the potential of looking into the impact of climate change on forests in China but also enables us to further
quantify the uncertainty brought by parameters in terms of the modeled response to altered temperature
and precipitation, which is rarely considered in previous studies [e.g., Gerten et al., 2008].

In this study, we optimized parameters of the ORCHIDEE (ORganizing Carbon and Hydrology In Dynamics
EcosystEms) TEM [Krinner et al., 2005; Peylin et al., 2016] related to photosynthesis, respiration, and phenology
processes using eddy covariance data from six forest sites (five PFTs) in China. The optimized model is further
applied to investigate the change of the model response to hypothetical changes in temperature and preci-
pitation amount. We aim to address the following scientific questions: (1) Howwell does the optimizedmodel
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describe the temporal dynamics (in particular, the seasonal cycle) of CO2 and H2O fluxes measured from
forest ecosystems in China? (2) What is the impact of flux assimilation on the model parameters? (3) To
what extent does the optimized parameter set affect the model response of ecosystem carbon fluxes to
altered temperature and precipitation?

2. Materials and Methods
2.1. Forest Sites in China

Six forest sites were selected to provide the observed fluxes andmeteorological forcing in this study (Table S1
in the supporting information and Figure 1). Based on their climate zones, vegetation phenology type, and
physiognomy, the vegetation types of these sites are classified into five categories: tropical evergreen broad-
leaf forest (TrBE, in Dinghushan (DHS)) [Yu et al., 2006], temperate evergreen broadleaf forest (TeBE, in
Ailaoshan (AIL)) [Zhang et al., 2010], temperate evergreen needleleaf forest (TeNE, in Qianyanzhou (QYZ))
[Yu et al., 2006], temperate deciduous broadleaf forest (TeBD, in Hunan Yueyang (HNY) and Anhui
Huaining (ANH)) [Zhou et al., 2011] and boreal deciduous needleleaf forest (BoND in Huzhong (HUZ))
[Wang et al., 2010]. These sites generally represent the main forest types in China and span a relatively wide

Figure 1. Locations of the six eddy covariance flux sites dominated by five forest types in China. The plant functional type
(PFT) for each site is defined based on their climate zones, vegetation phenology type, and physiognomy (see Table S1).
The seasonal cycle of the monthly temperature and precipitation are also shown beside the map of the climatological
mean annual temperature (MAT, derived from the China forcing data set over 1981–2010) for each site and for the year
when the model’s parameters are optimized.
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range of climate zones in China: Mean annual temperatures (MAT) decrease from 22.5°C to�2.2°C along with
increased latitude and mean annual precipitations (MAP) are higher for sites in southern China (>800 mm)
than in northeastern China (<800 mm) (Table S1). Temperatures and precipitations at the six sites have simi-
lar seasonal cycle, with abundant precipitation usually occurring over spring and summer periods due to the
activity of the East Asia monsoon system (Figure 1). More detailed information on the forest sites including
site history and canopy height can be found in descriptions from references that are listed in Table S1.

2.2. Data and Processing
2.2.1. Carbon and Water Fluxes
Measured half-hourly net ecosystem exchange (NEE) and latent heat (LE) for 3 years at TrBE site in DHS and
for 2 years at the other sites (Table S1) are used in this study. Detailed gap-filling methods and quality flag
were only provided for two sites (TeBD HNY and ANH) from the global FLUXNET data set (http://www.flux-
data.org/), and a large proportion of gaps remains in the data from other sites accessed from the
ChinaFLUX (http://www.chinaflux.org/enn/index.aspx) or the AsiaFLUX (http://www.asiaflux.net/) sites. To
obtain a relatively continuous record, measured NEE and LE time series at these sites were firstly gap filled,
and NEE was then partitioned into gross primary production (GPP) and ecosystem respiration (Reco) through
algorithms described in Reichstein et al. [2005] using the eddy covariance gap-filling and flux-partitioning
software available online (http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/index.php). Because the
method of friction velocity (u*) correction is controversial [Papale et al., 2006; Baldocchi, 2008] and not all
the sites provide the variable u*, we disabled this option during the gap-filling processing. Although GPP is
termed an observation in this study, one should keep in mind that this flux is, in fact, deduced from NEE with
an empirical model and therefore not directly measured at any of the forest sites.
2.2.2. Meteorological Forcing
Driving the ORCHIDEE model needs quasi-continuous meteorological forcing (see Table S2) with a
temporal resolution of 30 min. If the temporal interval of the forcing data is longer than that, the model
interpolates the meteorological fields into half-hourly fields. Some original meteorological observations
were missing for each site, and data gaps exist in these records. We thus reconstructed the site-level
meteorological forcing by complementing observed records with data from the China meteorological
forcing data set (3 h interval, 0.1° × 0.1° grid over China, 1979–2015) [He, 2010]. This China forcing data
set was produced by merging observed meteorological records (particularly, observed wind, air tempera-
ture, relative humidity, sunshine duration, precipitation, and surface pressure over stations in China) with
the model reanalysis from Princeton forcing data [Sheffield et al., 2006]. Chen et al. [2011] showed that this
data set has reduced biases in the simulated land surface temperature in China compared to the Global
Land Data Assimilation System forcing data. The reconstruction of 3 h site-level meteorological forcing
is performed in the following steps:

First, the half-hour meteorological variables from site observed records are resampled (for temperature,
specific humidity, surface pressure, and wind speed), averaged (for downward shortwave radiation and
longwave radiation), or accumulated (for precipitation) every 3 h to match the temporal resolution from
the China forcing data set. Then, the China forcing data set is corrected using available site data with a
linear regression equation, given that there is a scale mismatch between site measurements and the
China forcing data set over the corresponding pixels. Then, the linear regression equation is applied to
correct the China forcing data set and the corrected series is used to fill the gaps in the observed records.
For precipitation, we fill the gaps with data directly extracted from the China forcing data set and
constrain the annual precipitation amount to match the annual precipitation from either the site or the
nearest meteorological station (data available from 1981 to 2010). Note that the reconstruction is applic-
able to the TrBE, TeNE, and two TeBD sites. For the two other forest types (i.e., TeBE and BoND) where all
the meteorological variables are missing, the forcing of the sites is directly replaced by corresponding
pixel values from the China forcing data set.

2.3. The ORCHIDEE Data Assimilation System

The model-data fusion framework used in this study is called the ORCHIDEE Data Assimilation System
(ORCHIDAS, https://orchidas.lsce.ipsl.fr/index.php), which consists of the ORCHIDEE TEM and a Bayesian
inversion framework [e.g., Kuppel et al., 2014; Bacour et al., 2015; MacBean et al., 2015; Peylin et al., 2016].
The ORCHIDEE model includes processes of the terrestrial carbon cycle, vegetation dynamics, and the
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energy, water, and momentum exchange between the atmosphere and biosphere [Krinner et al., 2005]. This
model can be either forced in an “off-line”mode by climate forcing data or coupled to an atmospheric model
to simulate the fluxes from the land surface globally and regionally. The latest trunk version (Revision 3035) of
ORCHIDEE is used here to simulate site-level CO2 (NEE and GPP) and LE fluxes in this study. To perform a simu-
lation at each forest site, we prescribe the vegetation fraction and set the soil texture parameters according to
the high spatial resolution soil database of Shangguan et al. [2014] based on the 1 million scale Soil Map of
China. Then, we drive the model forced by the reconstructed 3-hourly (the forcing is interpolated to
30 min within the model) gap-filled meteorological measurements at each site. The meteorological forcing
and CO2 concentration during the data period of each site is repeatedly cycled until the vegetation biomass
and soil carbon pool reach equilibrium [see also Santaren et al., 2014; Kuppel et al., 2014].

The optimization follows a Bayesian inversion framework. An optimal parameter set is obtained finding the
minimum of a cost function defined by the sum of the mismatch between (1) simulated and observed fluxes
and (2) the prior and optimized parameters [Peylin et al., 2016, equation (1)] weighted by their respective
errors. The observation error covariance matrix that accounts both for measurement uncertainties andmodel
structural errors, is determined as the root-mean-square error (RMSE) between the prior simulations and the
observations as in Kuppel et al. [2014]; and the prior uncertainty onmodel parameters is defined as 40% of the
prior parameter range for parameter term as in Bacour et al. [2015]. The cost function is minimized through a
gradient-based algorithm called L-BFGS [Byrd et al., 1995], with its setting following Kuppel et al. [2012, 2014].
In this study, we include the GPP together with measured NEE and LE in the cost function due to the interest
of improving the model’s capability to reasonably simulate the vegetation productivity as well as the carbon
and water fluxes. At each site, daily NEE, LE, and partitioned GPP for the year of optimization (i.e., the optimi-
zation year, Table S1) are flagged as the good quality data if the daily value is computed from the half-hourly
data with less than 50% gaps within a day (see section 2.4.2). The same quality filtering was applied to data
from the other years that are not used to optimize the parameters but reserved for cross-year validation.
Following previous studies [Kuppel et al., 2014; Bacour et al., 2015], we define the observation errors as the
RMSE of fluxes between observations and the prior simulations during the optimization year.

2.4. Analysis
2.4.1. Sensitivity Analysis and Parameter Selection
The ORCHIDEEv3035 version has updated many key processes as well as new parameters related to photo-
synthesis, autotrophic respiration (Ra), heterotrophic respiration (Rh), phenology, and soil water availability.
Previous ORCHIDEE optimization studies used a parameter set consistent with a previous version (e.g., the
“AR5” version used, for instance, in Kuppel et al. [2014] and Peylin et al. [2016]). Therefore, in this study we first
perform a sensitivity analysis using the Morris method [e.g., Lu et al., 2013b] to select the most important
parameters for ORCHIDEEv3035 through ranking parameters by their mean effect (i.e., change in NEE, LE,
and GPP resulted from relative change in parameters) on the model output (i.e., NEE, LE, and GPP in this
study, see detailed steps of this method in Lu et al. [2013b]). For each site, the 10 most influential PFT-specific
parameters for NEE, LE, and GPP are separately selected, to generate the parameter set for each PFT (Table S3
for the parameter description and Table S4 for the prior ranges for each PFT). These selected parameters are
then optimized at each site using theORCHIDAS optimization scheme. The prior parameter range (see Table S4)
is determined based onminimum prior standard deviation (usually 40% of the prior value) and literature ana-
lysis (http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/UserGuide, parameters range table).
2.4.2. Evaluation Metrics and Independent Observations
Following previous studies [Kaminski et al., 1996; Peng et al., 2015], we define the following metrics at daily or
monthly time scales to assess the difference between observations and simulations (including prior and pos-
terior (i.e., optimized) simulations, corresponding to parameters before and after optimization, respectively),
as well as the simulated seasonal cycle of the fluxes:

Root-mean-square error (RMSE):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

αsimi � αobsi

� �2s
(1)

Mean bias (MB):
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MB ¼ 1
n

Xn
i¼1

αsimi � αobsi

� �
(2)

Amplitude bias (AB):

AB ¼ αsimamplitude � αobsamplitude (3)

Agreement of the seasonal cycle (Fs):

Fs ¼
αsim; αobs
� �
αobs;αobsh i ; (4)

where αsimi and αobsi are the simulated and observed fluxes at the ith day of 1 year, respectively; αsimamplitude and
αobsamplitude denote the seasonal amplitude (defined as the difference between the maximum and minimum
monthly mean values) of simulated and observed fluxes, respectively; and αsim and αobs are 12-tuple
vectors containing the monthly anomaly values (i.e., monthly mean subtracted by annual mean) of simulated
and observed fluxes (excluding NEE), respectively. The symbol < ,> denotes the inner product of two
vectors. For a better model-data fit, the MB, RMSE, and AB are expected to be close to 0, and Fs should
approach 1, beyond which the simulations are expected to overestimate the observation and vice versa.

To quantify the improvement of the seasonal cycle agreement index as a result of the optimization, we
further subtract the absolute value of the difference between 1 and Fs for the prior simulations by the same
metric obtained with the optimized simulations to obtain an improvement-indicated index so called Ii (i.e.,
positive value denotes an improvement and vice versa). To exclude the potential impact of low-quality data
on the model evaluation, any daily value having more than 50% gaps of half-hourly values within a day is
flagged as the low quality and excluded from the observed record (and also from the corresponding simula-
tion) when calculating all metrics. But this criterion cannot be applied over the AIL site where the observed
daily data are only available without any quality control.

We also use three independent observation data, namely, the soil organic carbon (SOC) density in top 1 m,
the aboveground tree biomass, and the satellite-derived leaf area index (LAI), to further evaluate whether
the performance of the optimized ORCHIDEE model is improved in terms of soil carbon and structural char-
acteristics. Yang et al. [2007] produced a map of SOC density between 0 and 1 m in China according to the
second national soil survey and regional field surveys [National Soil Survey Office, 1998]. Based on this map
[Yang et al., 2007, Figure 3], we extracted the observed range of SOC at each of the forest sites. To make the
model output comparable with the observations, we combined carbon in the litter and soil pools to compute
the SOC density for both the prior and posterior simulations. Because themodel does not simulate vertical pro-
files of SOC, we allocated all the simulated SOC density to the 0–1 m depth interval following Todd-Brown et al.
[2013] who evaluated SOC stocks in the CMIP5 models. We used an independent data set of multiyear
(2001–2013) mean aboveground forest biomass (AGB) in China obtained through integrating satellite pro-
ducts and groundmeasurements from amachine learning algorithm by Yin et al. [2015], to evaluate simulated
AGB before and after the parameter optimization. Considering that the uncertainty of this data set is not
provided, we also performed a comprehensive search on all available biomass data that are reported at each
of the forest sites from the published papers (see Table S5). These studies are all conducted after the year of
2000, and the data can therefore represent the typical characteristics of AGB during the optimization year.
2.4.3. Simulation With Altered Temperature and Precipitation
To compare the difference in model responses to temperature (T) and precipitation (P) between prior and
optimized simulations, we design a series of experiments driving the ORCHIDEE model with altered tempera-
tures and precipitations in the meteorological forcing data set. For altered temperature scenarios, we define
five sets of forcing: year-round temperature evenly (i.e., each value increased by a same magnitude through
the whole time series) increased by 0 K (T, control simulation), 0.5 K (T + 0.5 K), 1 K (T + 1 K), and 2 K (T + 2 K).
For altered precipitation, seven scenarios are considered where the relative precipitation amount is changed:
year-round precipitation amount evenly decreases by 30% (P� 30%), 20% (P� 20%), 10% (P� 10%), and 0%
(P, control simulation) and increases by 10% (P + 10%), 20% (P + 20%), and 30% (P + 30%). The simulations are
performed using both the prior and posterior parameter set for each site during the year when the para-
meters are optimized but not during the other years. The optimization years were chosen because of a better
performance of the model in reasonably simulating the seasonal cycle of forest carbon cycle at these sites.
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Changes in the simulated net primary production (NPP), Rh, and NEE are illustrated in the results to show the
impact of the optimized parameters on the transient response of the simulated carbon cycle to changed
climate conditions.

Note that the hypothetical climate change scenarios are idealized since they do not consider the covariation
among the climate variables. They are designed to be compared to the results from the forest manipulative
experiments where only one environmental variable is often varied. The ecosystem response under realistic
climate change projections [e.g., T. Wang et al., 2014; Wang et al., 2016] where covariation exists among
climate variables is not accounted for currently but needs to be further explored. We also extracted the pro-
jected change (2081–2100 to 1986–2005) in MAT (K) andMAP (%) by climatemodels from the CoupledModel
Intercomparison Projection phase 5 (CMIP5) under different Representative Concentration Pathways (RCPs)
for each of the forest sites in China.

3. Results
3.1. Performance of the Optimized Model
3.1.1. Reduced Model Biases in NEE
For the prior simulation, NEE yearly mean is close to zero following the model spin-up (Figure 2). By contrast,
observed NEE shows a net annual mean CO2 uptake (i.e., negative NEE ranging from �1019.9 to
�177.85 gC m�2 yr�1 across the sites). The prior simulations overestimate NEE for all PFTs, with a mean bias
(i.e., MB) ranging from 0.41 to 3.09 gC m�2 d�1 (Table 1). The TrBE site has the lowest model-data mismatch
with respect to NEE, with a MB and RMSE of 0.41 gC m�2 d�1 and 1.61 gC m�2 d�1, respectively. By contrast,
the largest biases in the prior NEE are found at the two TeBD sites, with MB and RMSE exceeding
3.0 gC m�2 d�1. At the deciduous forest sites the simulated NEE seasonal amplitude is underestimated
and the amplitude bias (AB) has a more negative bias at these sites (<�2.3 gC m�2 d�1) than at the
evergreen sites.

The optimized NEE shows a significant improvement in the model-data fit for all PFTs, with a mean RMSE
reduction of 32% across the sites (Table 1). The TrBE, TeBE, TeNE, and TeBD sites all show a reduction in
the RMSE of>30%, and the MB is reduced by 61% on average. The seasonal cycle of NEE is very well matched
after optimization at the TrBE and TeNE sites (Figures 2a and 2c), indicating that optimized parameters can

Figure 2. Seasonal cycle of the observations (OBS, black line), prior (PRIOR, blue line), and posterior (POST, red line) simula-
tions of the net ecosystem exchange (NEE, gC m�2 d�1) for each forest site for the optimization year. The curve is
smoothed over a 15 day moving window.
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explain the intra-annual variance of NEE for these two PFTs. Without considering the bias in mean value, the
phase of the seasonal cycle of NEE is substantially improved after optimization at the TeNE, BoND, and two
TeBD sites (Figure 3a). The modeled phase at TrBE site almost has no improvement after the optimization,
indicating that the optimization reduces the prior biases only through reducing the annual mean NEE. The
phase of the seasonal cycle at TeBE site is not well reproduced by both the prior and posterior simulations,
probably because the meteorological forcing at this site is directly taken from the China forcing data set that
might not well resolve the site-scale heterogeneity. Another cause for this mismatch between simulated and
observed NEEmaymost likely be related to lack of quality control that leads to some unrealistic daily values in
the observational records at this site. Ignoring that the NEE is overestimated during winter, a significant
improvement of the seasonal cycle of NEE can also be found at the deciduous forest sites (Figures 2d–2f),
in particular, for summer carbon uptake (see reduced AB in Table 1).

The reduced bias of NEE mainly reflects reduced values of parameter KSoilC representing a reduction of the
initial soil carbon pool (Figure 4a) and changes in parameters MRc and GRfrac (Figures 4b and 4c) providing
a reduction of autotrophic respiration (Ra) at the southern China subtropical forests (i.e., TrBE, TeBE, TeNE,
and two TeBD sites). The reduced bias of NEE at the above sites (except for TrBE) and cool climate forests
(i.e., BoND) also results from increased maximum photosynthetic rate parameters (i.e., Vcmax25, ARJV, and
BRJV, i.e., intercept and slope of a linear function representing the ratio of Jmax25 to Vcmax25,
Figures 4d–4f). More detailed discussions of parameter changes are given in section 4.1. The decreased
respiration parameters have reduced (increased) the overall ecosystem respiration (Reco) at sites in southern
(northeast) China (Figure S1). We also use the observed diurnal amplitude of NEE to cross check the

Table 1. List of the Mean Biases (MB), Root-Mean-Square Error (RMSE), and Amplitude Biases (AB), Between the
Simulated and Observed Daily Net Ecosystem Exchange (NEE, gC m�2 d�1) for Each Plant Functional Type (PFT) Before
(Prior) and After (Post) Parameter Optimization During the Optimization Year

PFT

MB RMSE AB

Prior Post Prior Post Prior Post

TrBE 0.41 0.22 1.61 1.05 1.07 0.01
TeBE 1.76 0.12 2.39 1.56 0.03 �0.22
TeNE 1.41 �0.19 1.92 1.23 �0.81 0.48
TeBD(HNY) 3.09 1.08 3.78 2.47 �3.01 0.74
TeBD(ANH) 3.04 1.07 3.65 2.34 �2.44 0.23
BoND 0.66 �0.59 1.86 1.59 �2.37 0.34

Figure 3. Agreement of the seasonal cycle (i.e., Fs) of the (a) net ecosystem exchange (NEE), (b) latent heat (LE), and
(c) gross primary production (GPP) for the prior (PR), posterior (PO), and the Ii index indicating the improvement of the
seasonal cycle at each forest site during the year when the model’s parameters are optimized. For the best modal-data fit,
the Fs should approach 1.
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optimizedmodel that only assimilating daily eddy covariance data. With optimized parameters, daytime peak
CO2 uptake in the summertime (i.e., mean diurnal cycle) is enhanced at the QYZ TeNE, HUZ BoND, and two
TeBD (HNY and ANH) sites, which improves the model fit to observed maximum daytime NEE (Figure S2).
3.1.2. Enhanced Performance of Simulated LE and GPP
Systematic model biases of LE and GPP are found at the TeNE, BoND, and the two TeBD sites, where the
annual total LE is underestimated by 27%, 53%, and 25% (24%), respectively (Figures S3c–S3f and Table
S6). This reflects the model shortcoming in capturing the summer high LE fluxes, possibly caused by plenty
precipitation brought by the Asian monsoon. Summer GPP is also underestimated in the prior model run at
these four sites (Figures S4c–S4f), reflecting the coupling between evapotranspiration (ET) and GPP from the
model’s equations. For two other sites, the model overestimates the GPP at the TrBE site (Table S7, MB for
prior simulation: 5.12 gC m�2 d�1), while it underestimates GPP at the BoND site (MB for prior simulation:
�3.07 gC m�2 d�1) according to the observations.

After the optimization, the underestimation of LE at the TeNE, BoND, and two TeBD sites in HNY (and in ANH)
is reduced by 10%, 20%, and 8% (4%) of the observed LE, respectively. The enhanced performance of

Figure 4. (a–h) Prior (black) and posterior (blue and red) values of some parameters related to soil respiration, autotrophic respiration, vegetation photosynthesis,
and stomatal conductance (see Table S3) for the five plant functional types (PFTs). Note that the error bar for posterior values of each parameter denotes the
posterior uncertainty produced by the data assimilation system and they are marked as red if the prior values are outside of this uncertainty. IDs shown on the x
axis indicate the forest types corresponding to each of the forest sites listed in Table S1. Optimized parameter results for TeBD are obtained by assimilating
both data from HNY and ANH sites.
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the simulated LE mainly occurs in summer, when GPP has also been improved at these four sites
(Figures S4c–S4f). These results indicate that the optimization is more effective in improving simulations of
the carbon and water fluxes, particularly in the productive season when temperatures are high. This is also
supported by the improved diurnal cycle of the posterior simulations, with both peak daytime LE and GPP
substantially enhanced at the QYZ TeNE, HUZ BoND, and two TeBD (HNY and ANH) sites and in better agree-
ment with the observed amplitude of the summer mean diurnal cycle of these fluxes (Figure S2). In addition
to increased maximum photosynthetic rates (Figures 4d–4f), the decreased value of parameter b1 (controlling
the sensitivity of stomatal conductance to vapor pressure deficit, VPD) at the four sites (Figure 4h) enhances
leaf-scale stomatal conductance at high VPD [Yin and Struik, 2009], which also matches the observed GPP
(when GPP is included as a constraint, Figures S4c–S4f) and seasonal amplitude of NEE (Figures 2c–2f).

The phase of the seasonal cycle of LE and GPP from the prior simulations is in better agreement with obser-
vations than that of NEE (Table S8 and Figures S3 and S4). The correlation coefficients between the prior and
observed LE and GPP are larger than 0.77 (p < 0.001) at all sites except for TeBE, indicating that the intra-
annual variability of these fluxes is generally well captured by ORCHIDEE. On the other hand, the lower
correlation (R< 0.67; daily values) of LE and GPP between prior simulations and observations at the TeBE site
likely reflects the shortcoming of meteorological forcing which is directly taken from the China meteorologi-
cal forcing data set. The model reasonably captures the seasonal cycle of LE and GPP at the TeBE site on
monthly time scales (with generally low MB and RMSE, Tables S6 and S7), but the timing of daily variations
is not properly captured at this site.

The optimized simulations further improve the model agreement for the seasonal cycle of LE and GPP. The
agreement of the seasonal cycle (i.e., Fs) of the LE has been improved at four out of the six sites after the opti-
mization, with the largest increase of Fs of 0.2 at the BoND site (Figure 3). The Fs of LE at the TeNE and two
TeBD sites in HNY (and in ANH) has also been improved (i.e., shown by Ii) by 0.11 and 0.11 (0.03), respectively.
On the other hand, the seasonal cycle of GPP is largely improved for all PFTs, with an improvement ranging
from 0.05 to 0.43 (higher positive value denotes a greater improvement). Although the increased Ii of GPP has
come at the expense of a decline in Ii of the LE at the TrBE site, its Fs of LE is still close to 1 (0.83 in Figure 3). The
general enhancements of Fs (Figure 3) indicate a more reasonable seasonal cycle (e.g., the change from
growing to nongrowing season) of simulated LE and GPP after the optimization at the forest sites in China
(Figures S3 and S4).

Although the enhanced seasonal cycle performance is explained by improved fits to observed peak GPP and
LE during summer time (Figures S3 and S4), the optimization of phenology-related parameters also adjusts
the phase of these fluxes on the shoulder seasons. The directional changes of optimized phenology para-
meters are found qualitatively similar to other assimilation results using ORCHIDEE, with an increased specific
leaf area (SLA, facilitating foliar development in the early season) and reduced LAIMAX for the TeBD sites
(Figures S5a and S5b) consistent with the result of a deciduous broadleaf forest in France [Bacour et al.,
2015]. Increasing the temperature threshold parameter that triggers earlier leaf senescence (Figure S5g)
was also found by MacBean et al. [2015] in their normalized difference vegetation index-based optimization
of phenology parameters. In contrast, the threshold of the growing degree days accumulation that sets leaf
onset in deciduous forest is reduced for the site ANH having TeBD (Figures S5d–S5f), which is contrary to the
increased threshold found by MacBean et al. [2015].

3.2. Validation of the Optimized Model
3.2.1. Cross-Year Validation
To examine the performance of the optimized model, we use the optimized parameters to simulate fluxes in
other years. Figure 5 shows the RMSE of NEE, LE, and GPP over the years during which data are not used for
optimization. Similar to the optimization year, the overestimated NEE predicted by the prior simulations in
the other years is generally reduced (Figure S6), shown by a decreased RMSE between the observations
and the model simulations (Figure 5) at most forest sites (except for the BoND where the sample size of
high-quality observations in 2007 is quite small, Figure S6g). These results demonstrate the robustness of
the optimized parameters in reducing the cross-year overestimation of the simulated NEE (RMSE is on aver-
age improved by 20%) in Chinese forest sites, with the largest improvement by 32% occurring at the TrBE site
in 2004.
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The cross-year predictive ability of the optimized model in terms of the LE and GPP is likely dependent upon
how large the reduction of RMSE is in the optimization year. For instance, the optimized parameters largely
reduce RMSE of simulated LE by 31.33Wm�2 in the validation year (2007) at the BoND site (Figures 5f and S7g).
This result is similar to the largely reduced RMSE of LE by 20.53 Wm�2 in the optimization year (2008), and the
optimized LE has a smaller RMSE compared to the observation errors at this site (i.e., 73.02 Wm�2 in Table S6),
implying that the optimized parameters have systematically improved the simulated LE at this site in different
years. Another cross-year improvement of LE is found at the TeBD site in HNY (Figure S7e), where the opti-
mized parameters in 2006 have reduced the RMSE by 7.22Wm�2 in the validation year of 2005. This reduction
is even larger than the 5.75 W m�2 reduction in 2006 (Figure 5d and Table S6). For GPP, the cross-year pre-
dictive skill of the optimized parameters is found to be improved at the TrBE and BoND sites (Figures S8a,
S8b, and S8g), where the RMSE is reduced by over 2 gC m�2 d�1 (Figures 5c and 5f), comparable to the
reduced RMSE of over 2.15 gC m�2 d�1 at these two sites in the optimization year (Table S7). Overall, the
RMSE is reduced on average by 11% for LE and by 14% for GPP among these forest sites, with the largest
improvements by 40% and 58% at the BoND site in 2007 for LE and GPP, respectively.
3.2.2. Cross-Site Validation
Since the data from two TeBD sites are available, we investigate whether the error reduction by optimization
of parameters at one site can be transferred to the other site for the same PFT as claimed by Wang et al.
[2012]. Applying the parameters optimized by assimilating fluxes from ANH in 2006, the model predicts bet-
ter NEE (and LE) at the HNY site for the same year, with RMSE reduced by 1.42 gC m�2 d�1 (and 1.53 Wm�2),
which is within the observation errors (Table S9). Similar improvements are also found at the ANH site when
the optimized parameters from the HNY site for 2006 are used, corresponding to a reduction in the RMSE of
1.37 gC m�2 d�1 and 8.04 W m�2 for NEE and LE, respectively. These cross-site validations suggest that the
optimized model parameters which result in improvements in simulated NEE and LE can be transferred
between the two TeBD sites, in particular, during the optimization year.

By contrast, the biases of the simulated GPP are only reduced for the site in HNY but not in ANH (Table S9).
Since the optimization tends to increase simulated GPP at the site in ANH, we find that the GPP predicted by
optimized parameters from HNY is overestimated at the end of the growing season (not shown).

Figure 5. (a–f) Histograms of the root-mean-square error (RMSE) of the net ecosystem exchange (NEE, gC m�2 d�1), gross
primary production (GPP, gC m�2 d�1), and latent heat (LE, 10 Wm�2) between simulations (prior, blue bar and posterior,
red bar) and observations for each forest site during years when the model’s parameters are not optimized.
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To reduce the inconsistency between the two sites, we thus performed the multisite optimization by consid-
ering fluxes observed at the two sites in 2006 and obtained an optimized parameter set. Compared to directly
applying the optimized parameters from the other site, applying parameters from the multisite optimization
generally shows better performances at both of the two forest sites (Table S9). For the HNY site, the reduction
in RMSE of NEE, LE, and GPP after the optimization can be as large as 42%, 13%, and 26%, respectively.
Although the GPP bias is still large at the site in ANH (2.29 gC m�2 d�1, 15% exceeding the observation
errors), the multisite optimization has a lower RMSE compared to directly applying parameters from optimi-
zation at the site in HNY. The general improvements at the two TeBD sites suggest that the multisite optimi-
zation that contains information from both sites performs better in simulating the CO2 and H2O fluxes for
simulation of TeBD.

3.3. Change in Responses of Carbon Cycling to Altered Temperature and Precipitation

To further test the impact of the optimization on responses of the ecosystem carbon cycling to climate
change, we drive the model by incorporating parameters either before or after optimization under the
designed scenarios of altered temperature and precipitation amount. Following previous studies [e.g., Luo
et al., 2008; Peng et al., 2013b], we paid attention mainly on NPP, Rh, and NEE and to the effect of change
in temperature and precipitation without accounting for their cross correlations, which vary upon climate
regimes and may change between present day and future climate.
3.3.1. Change in Response to Warming
The response of the simulated NPP, Rh, and NEE to warming is almost linear at most forest sites (Figure 6), we
thus define themean sensitivity of NPP, Rh, and NEE to the increased temperature as a half of the difference of
the annual values between the scenario of T + 2 K and the control simulation in the following paragraphs.

The annual NPP predicted by the prior simulations consistently declines with increased air temperature at
sites from southern China, with a mean negative sensitivity of NPP to temperature ranging from
�51.85 gC m�2 yr�1 K�1 to �10.69 gC m�2 yr�1 K�1 among these sites (Figures 6a, 6d, 6g, 6j, and 6m).
This indicates that warming has an adverse impact on the simulated vegetation productivity of the southern
forest ecosystem. On contrary, warming increases NPP simulated at the BoND site in northern China, where
the prior NPP increases with the temperature at a rate of 10.63 gC m�2 yr�1 K�1. Generally, this difference in
the spatial pattern of the warming response remains after the parameter optimization, but the magnitude of
the response is changed. The largest increase of the sensitivity of NPP to warming is found at the TrBE site
(Figure 6a), where the temperature sensitivity of NPP has been increased (i.e., more negative) by
26.9 gCm�2 yr�1 in the optimized simulation. While the largest decline (i.e., less negative) of the temperature
sensitivity of NPP occurs at the TeNE site (Figure 6g), where the sensitivity decreased by
15.36 gC m�2 yr�1 K�1 after the optimization. Relatively small changes of the magnitude of the temperature
sensitivity of NPP are found at the two TeBD sites, with the temperature sensitivity of NPP increasing (i.e.,
more negative) by 6.27 gC m�2 yr�1 K�1 and reduced (i.e., less negative) by 13.54 gC m�2 yr�1 K�1 for the
site in HNY and in ANH, respectively (Figures 6j and 6m).

The effect of optimization on annual NPP sensitivity to temperature depends on individual sensitivities of
GPP and Ra. For example, an increase of parameters E_Vcmax and E_Jmax (Figures S5i and S5j) that
makes maximum photosynthesis rates more responsive to a unit temperature increase in the modified
Arrhenius formulation [see also Medlyn et al., 2002] of ORCHIDEE, results in a larger positive sensitivity
of GPP to temperature during the intra-annual cold time period and a larger negative sensitivity of
GPP during the time when temperature is higher than the optimum temperature [Medlyn et al., 2002].
As a result, the more negative temperature sensitivity of GPP at the TrBE site after optimization (Figure S9a)
reflects the larger decrease in GPP during the warm time period within a year. In addition, the decreased
value of parameter MRc at the TrBE, TeBE, TeNE and two TeBD sites in southern China (Figure 4b) produces
a consistent decrease in the positive temperature sensitivity of the maintenance respiration (Rm) [Santaren
et al., 2014, equation (A15)] (Figures S9b, S9e, S9h, S9k, and S9n) (see more detailed discussions in
section 4.2).

The response of Rh to increased temperature is positive for the prior simulations and has a relatively small
divergence when compared to NPP across different PFTs, with the mean sensitivity of respiration to
warming ranging from 9.48 gC m�2 yr�1 K�1 to 14.87 gC m�2 yr�1 K�1 (Figures 6b, 6e, 6h, 6k, 6n,
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and 6q). After the optimization, the positive sensitivity of Rh to warming is consistently reduced due to
the decrease of parameter KSoilC (Figure 4a) except for the HUZ site with BoND. In HUZ, the reduced
temperature sensitivity of Rh is attributed to increased water stress after the optimization. The
optimization causes a mean decrease of 44% in Rh sensitivity across all of the forest sites (Table S10).
The maximum decrease of 7.76 gC m�2 yr�1 K�1 is found at the TrBE site and minimum decrease of
1.95 gC m�2 yr�1 K�1 occurs at the BoND site.

As a result of the balance between NPP and Rh, the simulated NEE generally increases with warming at
forest sites in southern China for both the prior and posterior simulations (Figures 6c, 6f, 6i, 6l, and 6o),
suggesting that the capacity of simulated carbon uptake at these sites is reduced with increased air
temperature whether the parameters are optimized or not. Nonetheless, benefiting from consistently
reduced Rh sensitivity, the response of NEE to warming is lessened after the optimization at the TeBE,
TeNE, and two TeBD sites. For instance, the maximum decline in the response of NEE to warming is found
at the TeBD site in ANH (Figure 6o), where the mean sensitivity of the annual NEE to warming declines by
20.99 gC m�2 yr�1 K�1. While for another TeBD site in HNY, the mean sensitivity decrease by
1.24 gC m�2 yr�1 K�1 (Figure 6l). In contrast to NEE response to warming in southern China, the impact
of parameters on simulated carbon cycling response is found much smaller for the BoND in northeast
China (Figure 6r). This is because the response of NPP is comparable to that of Rh at this site; therefore,
the direction of response of NEE to warming could be changed but the magnitude is quite small
(Figure 6r). Overall, the mean sensitivity of NEE to warming decreases by 4.19 gC m�2 yr�1 K�1 after
the optimization across all the forest sites in China.

Figure 6. Modeled change in the (a, d, g, j, m, and p) net primary production (NPP, gCm�2 yr�1), (b, e, h, k, n, and q) heterotrophic respiration (Rh, gCm�2 yr�1), and
(c, f, i, l, o, and r) net ecosystem exchange (NEE, gC m�2 yr�1) under the four warming scenarios (T + 0.5 K, T + 1 K, T + 1.5 K, and T + 2 K) compared to the
controlled simulations at the TrBE (Figures 6a–6c), TeBE (Figures 6d–6f), TeNE (Figures 6g–6i), TeBD (HNY) (Figures 6j–6l), TeBD (ANH) (Figures 6m–6o), and
BoND (Figures 6p–6r) site (see ID and site names in Table S1). The prior simulation results are shown by the blue line (and colored bars), while the posterior
simulation results are shown by the red line (and bars with red cross-hatching pattern).
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3.3.2. Change in Response to Altered Precipitation Amount
To better quantify the water limitation on the carbon cycle, we also defined the sensitivity of fluxes to soil
moisture variation as the slope of a linear regression between carbon flux and soil moisture anomalies, which
are derived from the difference of annual values between six altered precipitation scenarios (i.e., P� 30%,…,
P + 30%) and the control simulation.

Except for two sites (i.e., the TrBE and BoND, Figures 7a and 7p) which are probably not water limited, the
annual NPP in the prior simulations shows an asymmetric response with respect to the addition and
removal of precipitation at four out of six forest sites (i.e., the TeBE, TeNE, and two TeBD sites,
Figures 7d, 7g, 7j, and 7m). Large decreases of NPP are found for lower precipitation scenarios, while
relatively small increases are found under increased precipitation (Figures 7d, 7g, 7j, and 7m). For instance,
the decrease of annual NPP can be as large as �106.5 gC m�2 yr�1 under the scenario of P � 30% but
the increase is only 13.69 gC m�2 yr�1 when increasing precipitation by 30% at the TeBE site. Similarly, the
decline of the annual NPP simulated at the two TeBD sites exceeds 70 gC m�2 yr�1 under the lower
precipitation scenario but its increase does not exceed 40 gC m�2 yr�1 even under the most abundant pre-
cipitation scenario. By contrast, the responses of the prior NPP show less sensitive to the altered precipitation
amount at the TeNE site and are extremely small at the TrBE and BoND sites. The water stress at the TrBE and
BoND sites is not severe, confirming that humid sites are less responsive to change in precipitation amount
[Gerten et al., 2008]. The optimization does not change the asymmetric response at the four forest sites,
although the magnitude of the response does change. The response of NPP to increase or decrease in pre-
cipitation amount is only slightly enhanced or diminished at the TeBE and TeNE sites (Figures 7d and 7g);
by contrast, the response of NPP to altered precipitation amount is shown to be largely reduced (by 61%)
at the ANH TeBD site but enhanced for the same PFT in HNY (Figures 7j and 7m). The different response at
these two sites is due to decreased parameter Humcste, which alleviates soil moisture stress on photosynthetic
rates and stomatal conductance at the ANH TeBD forest (Figure S5k), thus reducing the positive NPP sensitiv-
ity to soil moisture (Table S11). By contrast, this parameter is not optimized at the TeBD site in HNY and
reduced soil moisture due to enhancement of LE (Figure S3d) increases the positive NPP sensitivity to soil
moisture at this site (Table S11).

The impact of precipitation reduction on simulated Rh is consistent among all the forest sites, shown by the
lower Rh predicted by the prior simulations ranging from �46.71 gC m�2 yr�1 to �13.55 gC m�2 yr�1 under
the scenario of P� 30% (Figures 7b, 7e, 7h, 7k, 7n, and 7q). The optimization generally reduces this response
at the TrBE (by 68%), TeBE (by 53%), TeNE (by 17%), BoND (by 59%), and the TeBD site in HNY (by 17%). In
contrast, the negative impact (increase in Rh) of precipitation scenarios P � 20% and P � 10% is significantly
enhanced at the TeNE site (Figure 7h).

By comparison, the increased precipitation scenarios generally result in a smaller increase in Rh than the
precipitation depletion scenarios for the prior simulations. The optimization further reduces this smaller
response for most PFTs except for the BoND where the response of Rh to increased precipitation is consider-
ably enhanced by the optimized parameters (Figure 7q). Nonetheless, in southern China, again, the para-
meter optimization does not change the asymmetric responses of simulated Rh to altered precipitation
amount but regulates the magnitude of the different responses at the various sites.

Because of the variable response of NPP and Rh to altered precipitation amount among the six forest sites, the
response of NEE at these sites varies from site to site (Figures 7c, 7f, 7i, 7l, 7o, and 7r). These responses can be
generally classified into three categories. First, the response of Rh to altered precipitation amount dominates
that of NEE at the TrBE and BoND sites (Figures 7c and 7r), where the NPP shows almost no responses to the
altered precipitation amount. The impact of the optimization on the responses of NEE is thus similar to those
of Rh at the two sites. Second, the precipitation reduction has a larger impact on the NPP than on Rh at the
TeBE and the two TeBD sites both for the prior and posterior simulations (Figures 7f, 7l, and 7o). The optimi-
zation at these three sites regulates the magnitude of the increased NEE (i.e., less carbon uptake) under the
scenario of reduced precipitation amount and results in a lower NEE (more carbon uptake) under the abun-
dant precipitation scenarios at the TeBE and TeBD in HNY. Third, the response of NEE to altered precipitation
amount at the TeNE is dominated by that of Rh for the posterior simulations under the scenarios of P � 20%
and P � 10%, suggesting that the optimization tends to produce a more negative NEE under the conditions
of less precipitation depletion at this site.
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4. Discussion
4.1. Impact of the Optimized Parameters on the Model Improvements

The results of this study show that the overestimated prior NEE simulations have been reduced (Figure 2), and
the seasonal agreement of the LE and GPP is improved by the optimizations (Figure 3). These improvements
are realized through optimizing parameters related to processes of the Rh, Ra, vegetation photosynthesis, and
phenology (Table S3).

The observed NEE is not in equilibrium at a yearly time scale (Figure 2), which is opposite to the prior assump-
tion of the model equilibrium state [Pietsch and Hasenauer, 2006; Wutzler and Reichstein, 2007; Carvalhais
et al., 2010; Kuppel et al., 2014; Peylin et al., 2016]. To reach a realistic nonsteady state initial condition, the
optimization process reduces the value of parameter KSoilC (Figure 4a) in order to diminish the size of the
initial soil carbon pool and subsequently reduce simulated Rh, resulting in a net carbon sink. Decrease of this
parameter is also reported by previous optimization studies mainly at TeBD and TeBE forest sites outside
China [Kuppel et al., 2012; Bacour et al., 2015], showing that it is an effective parameter that accounts for past
anthropogenic activity at each site that results in a nonequilibrium state (for example, forest management,
logging, and land use change). Our results suggest that the optimization also reduces this parameter at
the TrBE and TeNE sites (Figure 4a), reflecting the need to widely optimize this parameter at the southern
forest sites in China.

Figure 7. Modeled change in the (a, d, g, j, m, and p) net primary production (NPP, gCm�2 yr�1), (b, e, h, k, n, and q) heterotrophic respiration (Rh, gCm�2 yr�1), and
(c, f, i, l, o, and r) net ecosystem exchange (NEE, gC m�2 yr�1) under the six precipitation amount scenarios (P � 30%, P � 20%, P � 10%, P + 10%, P + 20%, and
P + 30%) compared to the controlled simulations at the TrBE (Figures 7a–7c), TeBE (Figures 7d–7f), TeNE (Figures 7g–7i), TeBD (HNY) (Figures 7j–7l), TeBD (ANH)
(Figures 7m–7o), and BoND (Figures 7p–7r) site (see ID and site names in Table S1). The prior simulation results are shown by the blue line (and colored bars), while
the posterior simulation results are shown by the red line (and bars with red cross-hatching pattern).
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Figure S10 shows the SOC density from prior and posterior model simulations and sampled from the inven-
tory of SOC map from Yang et al. [2007]. Due to its SOC equilibrium assumption, the prior model gives a simi-
lar SOC density across the six forest sites ranging from 9.7 kg m�2 to 14.4 kg m�2, overestimating SOC at the
TrBE (in DHS), TeBE (in AIL), TeNE (in QYZ), and two TeBD (in HNY and ANH) sites in southern China and under-
estimating SOC at the BoND (in HUZ) site in northeastern China. The parameter optimization changes the
KSoilC (Figure 4a) that adjusts the seasonal amplitude and annual mean value of NEE, in a consistent direction
to reduce biases of SOC density, with a reduction of RMSE reaching 39% across all forest sites (Figure S10). Yet
at some sites like the DHS TrBE forest, optimized SOC becomes lower than the observation whereas the prior
model simulation was consistent with the observation, probably suggesting a too fast turnover rate that is
not optimized in this study. Given that the observed SOC density and its range shown in this study are still
extrapolated based on a network of spatial SOC measurements, more accurate soil stock measurements near
the forest sites are urgently needed to optimize parameters (e.g., residence time) related to the soil
carbon pools.

On the other hand, the enhanced carbon uptake predicted by the optimized simulation can be partly attrib-
uted to decreased Ra during the growing season at the southern sites, as found in Kuppel et al. [2012] at 12
TeBD sites outside China, and evidenced by the reduction in MRc and GRfrac values (corresponding to the
reduced Rm and growth (Rg) respiration, respectively; Figures 4b and 4c). To further quantify the effect of
the above respiration parameters (i.e., KSoilC, MRc, and GRfrac), we perform additional simulations during
which the three respiration parameters are prescribed by prior values while the others are optimized. The
results show that the RMSE of NEE is substantially increased at the TrBE site without considering effects of
these respiration parameters. For the other forest sites in southern China, a large proportion of the reduced
RMSE of NEE is found unable to be explained without considering effects of the respiration parameters (TeBE,
86%; TeNE, 21%; TeBD sites in HNY, 48%; and in ANH, 47%), suggesting the pervasive importance of these
respiration parameter in southern China.

Although the optimized respiration parameters have been recognized as the most influential contributors to
NEE in this study as well as a previous work on TeBD [Kuppel et al., 2012], we find that the optimization
increases themaximum carboxylation capacity of Rubisco (Vcmax) and Jmax (increasing with parameters called
ARJV and BRJV in ORCHIDEE, Figures 4d–4f) are of comparable importance for the TeBD in this study. By using
prior values of the three photosynthetic parameters (i.e., Vcmax25, ARJV, and BRJV) but optimized values of
the others, we rerun the model at these two sites and find that 33% (35%) of the reduced RMSE of NEE in the
optimized simulations in HNY (ANH) could be explained by the enhanced photosynthesis capacity. In fact, the
effect of the optimized three photosynthetic parameters is quite clear across the other PFTs since we assimi-
lated GPP data into the ORCHIDAS system, with the photosynthetic parameters increased at the TeBE, TeNE,
BoND, and two TeBD sites, decreased at the TrBE site (Figures 4d–4f). Except for the TrBE site where the
observed GPP is considerably smaller compared to other PFTs [Liu et al., 2015], other extratropical PFTs all
tend to have higher net assimilation rate. Particularly for the BoND site, the photosynthesis capability is
largely increased to make the simulation fit both the observed GPP and NEE at the BoND site (Figures 2f
and S4f). The respiration parameters at this site thus have to be increased to enlarge the soil and vegetation
respiration and offset the peak NEE uptake in summer.

Including GPP in the cost function might bias the optimized photosynthetic rate parameters (i.e., Vcmax25,
ARJV, and BRJV) as the GPP is separated from observed NEE through standard partitioning method from
Reichstein et al. [2005]. Although this is one of the most conventionally used methods that extrapolates night-
time Reco into daytime and compute GPP through subtracting daytime Reco by NEE, however, other flux-
partitioning methods (e.g., fitting observed daytime NEE with light-response curve) [Gilmanov et al., 2003]
indicate that the method-induced difference of estimated GPP could be as large as 47 gC m�2 yr�1

[Lasslop et al., 2010]. In particular, a recent isotope-based measurement in the Harvard forest has suggested
that GPP could be overestimated by 25% during the first half (i.e., from June to July) of the growing season
[Wehr et al., 2016]. To exclude any potential bias from the partitioned GPP, we thus performed additional
parameter optimization using only observed NEE and LE data. We found that the model fit to daily NEE
and LE after optimization are generally similar to that when including the partitioned GPP from NEE accord-
ing to Reichstein et al. [2005] in the observational vector. Specifically, increased photosynthetic rate para-
meters are coherently found at the TeBE, TeNE, BoND, and two TeBD sites after optimization, with the
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parameter values, e.g., Vcmax25, differing by less than 16% between NEE-LE-based and NEE-LE-GPP-based
optimization (Table S12). This result justifies our conclusion of the increased photosynthetic rate of the opti-
mized model in Chinese temperate forests. In contrast, we observed the opposite change at the TrBE site for
the photosynthetic parameters between the two optimization methods (Table S12 and Figures 4d–4f),
suggesting that assimilating GPP would substantially influence the simulated photosynthesis capability in
tropical forests, where the model skill should be further investigated in the future.

The enhanced photosynthetic capacity at the TeNE and TeBD sites is likely true because the stand ages of
these sites are reported to be only 25 years (TeNE), 7 years (TeBD in HNY), and 18 years (TeBD in ANH) during
the observation period [Zhou et al., 2011; Yu et al., 2014]. The young- to middle-aged forests in southern China
generally have a high rate of carbon sequestration [Pan et al., 2004; S. Wang et al., 2011] and increased nitro-
gen deposition at this region may enlarge their carbon uptake capacity during the growing season [Yu et al.,
2014]. By contrast, the photosynthetic parameters in old forests of the TrBE and TeBE sites are not increased
as large as those at the young forest sites. On the other hand, plenty water resources brought by Asian mon-
soon further facilitate the carbon uptake capacity of the forests during the summertime, probably explained
the enhanced photosynthesis at the extratropical young- and middle-aged forest sites. The young stand age
and plenty summer precipitation thus explain the underestimated AB (Table 1), and summer photosynthesis
(Figures S4c–S4f) predicted by the prior simulations at the TeNE, BoND, and two TeBD sites, especially
contrary to previous findings that the RMSE at TeBD sites outside China is generally small [Kuppel et al.,
2012]. Our results thus suggest that TEMs using prior or globally optimized parameters could underestimate
the carbon sequestration capacity of the young- and middle-aged forests in China.

Besides, the increased total photosynthetic capacity might not be attributed to increased LAI after the opti-
mization, since optimized LAI decreases at most other sites (DHS TrBE,�17%; AIL TeBE, 0%; HNY TeBD,�22%;
ANH TeBD,�9%; and HUZ BoND,�5%; Figure S11), except for the QYZ TeNE site (+31%). We also used three
independent satellite-derived LAI data (i.e., GLASS [Liang and Xiao, 2012], GLOBALMAP LAI [Liu et al., 2012],
and AVHRR GIMMS3g [Zhu et al., 2013]) over forest sites to evaluate the optimized model in LAI simulations.
But there is a large uncertainty in the magnitude and seasonal variations of LAI between different data sets
(Figure S11); for example, at the AIL TeBE and ANH TeBD site, the model biases of annual mean LAI gauged by
different products are in the range of 0.22–0.82 and 0.53–2.54, respectively. Despite of this large uncertainty,
satellite-derived LAI can still tentatively suggest a limited capacity of ORCHIDEE to correctly simulate the LAI
seasonal cycle (e.g., AIL TeBE, Figure S11b). This result highlights the necessity of improving simulation of
canopy structure and carbon allocation to foliage, in particular, though consecutive in situ measurements
of the LAI near the flux tower of Chinese forest sites in future studies.

We further evaluated the simulated AGB based on the observed biomass data from Yin et al. [2015] and
published studies. There is a large uncertainty of AGB across the observation data sets and within the
model-observation comparison (Figure S12). Reason for difference between observed data sets could be
the choice of different plots, plot size, spatial heterogeneity of small-scale forests, and even the quality of
remote sensing data [Yin et al., 2015]. Both prior and posterior models simulating an inconsistent AGB with
observations would be anticipated since AGB is determined not only by photosynthesis but also by carbon
allocation andmortality [Friend et al., 2014]. Unless we consider allocation-related parameters such as the tree
residence time that needs to be constrained by consecutive biomass measurements [see also Thum et al.,
2017] currently unavailable, the optimization-only assimilating eddy covariance flux data are not expected
to improve the simulated AGB (Figure S12).

4.2. Impacts of the Optimized Parameters on Modeled Response to Warming

Climate warming affects ecosystem carbon uptake as a result of the balance between the annual Rh and NPP,
whose response to increased temperature is negative over the middle to low latitudes but positive over the
high latitudes [Berthelot et al., 2005; Friedlingstein et al., 2006; Luo, 2007; Arora et al., 2013]. The different spatial
pattern of the response of NPP to warming (i.e., negative sensitivity in water limited regions and positive ones
in temperature limited ones) and the Rh response in the optimization has been evidenced in Figure 6. The
temperature sensitivity of NPP is negative for sites in southern China and positive for BoND in northeast
China, where the NPP response to warming is more or less consistent to the large-scale observation evidence,
shown by the positive correlation between satellite-derived vegetation index and the maximum temperature
in wet and cool ecosystems [Peng et al., 2013a]. As the response of NPP to climate change depends on the
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balance between GPP and Ra (Rm + Rg) [Piao et al., 2010], we first discuss the impact of optimized parameters
on response of the annual GPP, Rm, and Rg to separate their contributions to NPP. And then the impact of the
optimized parameters on the annual Rh is discussed.

Our results show that GPP in the prior simulations has a negative sensitivity to warming at four out of five
forest sites in southern China (Figures S9a, S9g, S9j, and S9m), due to enhanced soil moisture stress and/or
from the temperature exceeding the photosynthesis optimum value (see Vcmax and Jmax in Yin and Struik
[2009]). Note that these results only represent the hypothetical GPP sensitivity to warming but neglect the
potential impact of changed precipitation. Therefore, we derive the projected change in temperature and
precipitation for each of the forest sites under different RCPs from climate models of the CMIP5. In addition
to warming, we found that most of CMIP5 climate models project a small increase of the MAP within about
10% (Table S13), which could reduce water stress and thereby weaken the negative GPP sensitivity to warm-
ing. By analyzing the intra-annual GPP response to warming, we found that the GPP increase with warming at
the evergreen forest sites due to the enhanced photosynthetic enzymatic activity during winter and at decid-
uous forest sites due to their advanced date of leaf onset (in particular, for TeBD). However, these increases
are all hidden by the adverse impact of warming during summertime except for two sites (TeBE and BoND)
where the intra-annual maximum air temperature is relatively lower. The positive response of GPP to warm-
ing at these two sites (Figures S9d and S9p) clearly benefits from the enhanced photosynthetic enzymatic
activity and extended growing season, respectively.

The impact of the optimized parameters on GPP response to warming is mainly attributed to variations in
parameters related to limiting function of temperature (e.g., E_Vcmax and E_Jmax, the activation energy in
the Arrhenius function). The change in E_Vcmax and E_Jmax after the optimization increases the sensitivity
of Vcmax and Jmax to temperature at the TrBE, TeBD (HNY), and BoND sites and decreases the temperature sen-
sitivity at the TeBE site (Figures S5i and S5j, and S9a, S9j, and S9p). Although the E_Vcmax and E_Jmax are
increased at the TeNE site, the increase of the positive GPP response to warming in winter offsets the increase
of the negative temperature sensitivity during summertime. This leads to an unchanged annual GPP
response to warming at the TeNE site. For the TeBD (ANH) site where E_Vcmax and E_Jmax are not selected
but with three phenology parameters chosen from the Morris analysis (Figures S5d–S5f, and S5i and S5j), we
find that the start date of the growing season has been advanced. The positive response of GPP to warming
in spring offsets some of negative temperature sensitivity of GPP during summertime after the optimization,
thus reducing the temperature sensitivity of the annual GPP at this site (Figure S9m).

In contrast to GPP, the impact of the parameters on responses of Rm to warming is much simpler. The reduced
(increased) MRc at sites in southern (northeast) China corresponds to reduced (increased) temperature sen-
sitivity (Figures 4b and S9). For the Rg, the impact of the optimized GRfrac on Rg is clear shown at the TeNE,
BoND, and two TeBD sites where reduced (increased) GRfrac corresponds reduced (increased) temperature
sensitivity. For the TrBE and TeBE sites, the impact of optimized GRfrac may have been regulated by change
in difference between assimilation inputs and maintenance respiration outputs to plant biomass after the
optimization [Santaren et al., 2014].

The consistent reduction in the sensitivity of Rh to warming (Figures 6b, 6e, 6h, 6k, 6n, and 6q) can be attrib-
uted to two factors. First, the reduced size of the soil carbon pool (i.e., reduced KSoilC, a fraction value deter-
mining the Rh) results in smaller increase of Rh under warmer scenarios, where larger Rh values are expected.
Second, less soil moisture after the optimization is found, in particular, for the TeNE, BoND, and two TeBD
sites, where the posterior LE has been shown to increase during summertime (Figures S3c–S3f). The Rh
response to warming at these sites is thus lessened by the increased water limit, which is consistent with
report of the in situ observations [Yu et al., 2008]. With a plausible projected increase in precipitation within
only 10% coincident to warming for most of forest sites (Table S13), the increased water limitation on Rh
response to warming after optimization is likely to be more or less alleviated in particular at the TeNE,
BoND, and two TeBD (HNY and ANH) sites. Although this phenomenon suggests that slightly increased pre-
cipitation in the future could adjust the magnitude of reduced Rh sensitivity to warming, however, conclusion
of the reduced KSoilC that results in smaller increase of Rh to warming at sites in southern China remains
robust. By contrast, the large increase in Rh under the scenario of P + 10% at the BoND site (Figure 7q),
due to the increased SOC after optimization, implies that 10% increase of MAP in future could reduce the
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water limitation and thereby increase Rh response to ideal warming scenario at the BoND site in
northeast China.

As one of the mechanisms of future CO2 released or uptake by the terrestrial ecosystem is determined by the
kinetic sensitivity of photosynthesis and respiration to warming [Luo, 2007], impact of the optimized para-
meters on temperature sensitivity of the NPP and Rh influences the predicted response of the land carbon
uptake to warming. Our results show that the impact of optimized parameter on temperature sensitivity of
NPP is divergent among the sites due to complicated interactions of parameter impacts on GPP, Rm, and
Rg as discussed above. By contrast, response of Rh to temperature is less divergent due to the model assump-
tion that Rh increases with warming [Luo, 2007]. We further show that response of Rh to warming is consis-
tently reduced by the optimization and the adverse impact of warming on carbon sink (i.e., negative NEE)
is lessened at all extratropical forest sites (Figures 6f, 6i, 6l, 6o, and 6r), indicating that the optimized model
in Chinese forest ecosystems would reduce predicted warming-induced carbon release in the future.

4.3. Impacts of the Optimized Parameters on Modeled Response to Altered Precipitation Amount

The model response of NPP to modified precipitation is asymmetrical at the water-limited forest sites
(Figures 7d, 7g, 7j, and 7m). This asymmetric response as well as its dependence on humid/arid environment
is qualitatively consistent with previous simulations at a grassland site [Peng et al., 2013b] and forest regions
outside China [Gerten et al., 2008]. The reason can be that the response of soil moisture to altered precipita-
tion amount is also asymmetric within TEMs because decreased precipitation causes the depletion in soil
water, while increased precipitation may not always increase the soil moisture. Excessive precipitation will
keep the soil water near saturation, and the surplus water will generate the surface runoff. This model
mechanism thus indicates that the soil depletion/saturation is the main cause for the simulated asymmetric
responses of forest ecosystem to altered precipitation amount.

The impact of optimized parameters on ecosystem response to altered precipitation could be achieved
through either directly regulating the vegetation root profile or indirectly influencing the soil water availabil-
ity. Direct influence of the reduction in parameter Humcste (representing less water stress for vegetation root)
can be evidenced by the TeNE and TeBD (in ANH) sites. Shown by reduced Humcste after the optimization,
NPP at the TeNE and TeBD (in ANH) sites are shown to be less vulnerable to the scenarios of reduced preci-
pitation after the optimization (Figures 7g and 7m). On the other hand, the responses of NPP to reduced
precipitation at the TeBE and TeBD (in HNY) are controlled by increased and reduced soil moisture condition,
resulting from decreased and increased ET after the optimization (Figures S3b and S3d), respectively.
Similarly, the significantly reduced Rh to altered precipitation amount is also found suffered from reduced soil
moisture after optimization under scenarios of P� 20% and P� 10% at the TeNE site. The large increase in Rh
under scenarios of increased P at the BoND site may reflect the effect of increased soil carbon pool once the
water limitation is released after the optimization. These results thus indicate that the impact of optimized
parameters on Rh response could be large under specific precipitation scenarios, emphasizing the impor-
tance of optimization for future simulations under changed precipitation scenarios.

5. Limitations and Future Directions

In this study, we show that the seasonal and diurnal cycles of NEE, LE, and GPP can be improved by assimilat-
ing short-term observations of daily eddy covariance fluxes at six forest sites in China. Comparison between
independent observed and modeled SOC density suggests that the optimized soil carbon parameters
improve SOC stock simulations. But these improvements are not similarly found in the divergent interannual
performance of the optimized model, suggesting that assimilating 1 year eddy covariance flux data is insuffi-
cient to improve the simulations of interannual variability (also see untransferable model bias between differ-
ent time scales inWang et al. [2012], as also found by Santaren et al. [2014]. Thus, a limitation of this study is
the current lack of available long-term eddy covariance data at forest sites in China.

Improving the ORCHIDEE structure still matters most for long-term carbon stock and its changes, in particular,
nutrient- and age-related changes of photosynthetic rates, carbon allocation, and tree mortality (see recent
development in Bellassen et al. [2010] and Naudts et al. [2015]). These “slow” processes are not accurately
described in the current trunk version of ORCHIDEE. For instance, we found that photosynthesis maximum
rates need to be substantially enhanced to match daily eddy covariance fluxes from young and middle-
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aged forest sites in China. But this enhancement cannot be achieved through parameter optimization
because of the lack of model processes relating stand age and nutrient effects to photosynthetic rates.
Future studies should focus on the evaluation [e.g., Wang et al., 2013] of the modified model (including
new processes such as forest management and nutrient limitation) performance on simulating forest growth
(e.g., stand biomass and LAI) once consecutive forest inventory data are available at Chinese forest sites.

How adjusting parameters to improve the seasonal cycle of fluxes alters the temperature/precipitation sen-
sitivity of photosynthesis and respirations depends on the structure of the model, and the role of each para-
meter has been discussed in sections 4.1–4.3. The structure of ORCHIDEE is roughly similar to the one of other
land-surface models (e.g., JSBACH, CLM, and JULES) that contributed to CMIP5 [Ciais et al., 2013] for photo-
synthesis and soil organic C decomposition, so that the identification of important parameters should be
of general interest for other terrestrial models. Nevertheless, considering the response is quantified under
simulations of the hypothetical evenly change in temperature and precipitation, the cross correlations
between climate variables and seasonal distributions of change in temperature/precipitation make it hard
to directly evaluate the results using observed measurements from the eddy covariance data. The evaluation
thus calls for the manipulative ecosystem experiments in Chinese forests, with the other environmental vari-
ables unchanged when investigating the forest temperature/precipitation sensitivities. On the other hand,
more complicated climate change scenarios with cross correlations between environmental variables could
be used to further investigate the change of simulated flux sensitivity resulted from parameter uncertainty.
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