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Abstract: The exposure to plant defense chemicals has negative effects on insect feeding activity
and modifies insect gut microbial community composition. Dendroctonus valens is a very destructive
forest pest in China, and harbors a large diversity and abundance of gut microorganisms. Host pine
defensive chemicals can protect the pines from attack by the holobiont. In this study, boring length of
D. valens feeding on 0 mg/g α-pinene and 9 mg/g α-pinene concentration in phloem media for 6 and
48 h were recorded, and their gut bacterial communities were analyzed in parallel. Nine milligram
per gram α-pinene concentration significantly inhibited boring length of D. valens and altered its
gut microbial community structure after 6 h. The inhibition of boring length from 9 mg/g α-pinene
in diets ceased after 48 h. No significant differences of the bacterial communities were observed
between the beetles in 0 and 9 mg/g α-pinene concentration in phloem media after 48 h. Our results
showed that the inhibition of the feeding behavior of D. valens and the disturbance to its gut bacterial
communities in 9 mg/g α-pinene concentration in phloem media after 6 h were eliminated after
48 h. The resilience of gut bacterial community of D. valens may help the beetle catabolize pine
defense chemical.
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1. Introduction

Gut microbiota are ubiquitous for insect herbivores and are often critical to insect biological
performance and ecological functioning, such as augmentation of nutritional availability [1–3],
protection of insects from pathogens and parasites [4,5], facilitation of pheromone production [6,7],
and detoxification of harmful toxins produced by the host plant defense system [8,9]. The gut
microbiome has also been recognized as a major force in shaping insect-plant interactions [10–12].
In addition to degrading plant compounds that would supplement missing nutrients [13],
these microbial symbionts are capable of tolerating and detoxifying defensive chemicals of host
plants [9,14,15]. On the contrary, the defensive chemicals of host plants along with decreased nutrition
adversely affect insects’ growth and development [16], which can influence herbivore’s gut microbial
community compositions when herbivores feed on plant tissues [17–19].
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Bark beetles (Curculionidae: Scolytinae) are known as the most damaging pests of coniferous
forests worldwide, which has caused extensive conifer tree mortality and economic damage [20–23].
Conifers are able to defend themselves against attacks with various resistance mechanisms [24],
e.g., elevated levels of induced defensive chemicals, including monoterpenes, which pose significant
barriers to the beetles’ utilization of plant substrates [25–28]. In addition, the defensive chemicals
influence bark beetles’ associated microorganisms including growth of vectored fungi [29,30],
and survival of their associated bacteria [9,31]. Some of these microbes can assist bark
beetle-microorganisms holobiont to degrade or metabolize the toxic chemicals of host plants [15,32],
while others help to facilitate the beetles’ pheromone production ability [7], and thus have vital
ecological functions for the adaptation and reproduction of beetles. Furthermore, at the community
level, a metagenome-wide study of associated microbiota of Dendroctonus ponderosae showed that many
genes belonging to several genera are involved in defensive terpene degradation [33].

The red turpentine beetle (RTB), Dendroctonus valens LeConte (Scolytinae), is a very destructive
pest in China, and was introduced to China in the early 1980s from North America and has caused
mortality of millions of healthy pine trees [23,34]. The diversity of the gut bacteria has been well
investigated using culture dependent method, and some of the gut bacteria have been proven to
simultaneously help produce the pheromone verbenone of D. valens and degrade 20%–50% host
defensive chemical α-pinene [7,9]. Meanwhile, the tolerance of three D. valens gut bacteria to different
concentrations of α-pinene are species-dependent [9]. Although we know the toxic activities of
α-pinene to both D. valens and its gut bacteria [9,35,36], the influence of α-pinene on the feeding
behavior of D. valens and its gut bacterial community structure in vivo is little known. The goal of this
study was to study how pine defensive chemical α-pinene influences feeding behavior of D. valens,
and to further test whether the chemical influences its gut bacterial community structure.

2. Results

2.1. The Influence of α-Pinene on the Boring Length of Dendroctonus valens

The boring length of D. valens in 9 mg/g α-pinene 6 h feeding group was significantly less than
those in 0 mg/g α-pinene 6 h feeding group (Mann–Whitney U-test, p < 0.05, Figure 1). There were no
significant differences of boring length of D. valens between 0 mg/g α-pinene 48 h feeding group and
9 mg/g α-pinene 48 h feeding group.
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phloem media after 6 h and 48 h. The data were analyzed using independent t-test or Mann–Whitney 
U-test depending on the results of the test of normality and homogeneity of variance. Asterisks indicate 
a statistically significant difference (** p < 0.01); NS, not significant; RTB, red turpentine beetle. 

Figure 1. The boring length (Mean ± SEM) of Dendroctonus valens feeding in 0 and 9 mg/g α-pinene
phloem media after 6 h and 48 h. The data were analyzed using independent t-test or Mann–Whitney
U-test depending on the results of the test of normality and homogeneity of variance. Asterisks indicate
a statistically significant difference (** p < 0.01); NS, not significant; RTB, red turpentine beetle.
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2.2. Alpha Diversity

In the 25 representative gut samples of D. valens from four different treatments, we obtained
a total of 2,614,017 sequences (99.8% of the total trimmed 2,618,895) and grouped into 2722 Operational
Taxonomic Units (OTUs) at 97% similarity cut-off level. Rarefaction analysis showed that the OTUs
of 25 samples gradually increased and then reached stable values with the increase of the number of
measured sequences, which indicate that most bacterial sequences obtained by the MiSeq sequencing
system reflected the abundance and diversity of the microbiota (Figure 2). Alpha diversity was
estimated by five indices including number of OTUs, ACE, Chao1, Shannon, and Simpson. There were
no significant differences among four groups in three diversity indices (Number of OTUs, Chao1 index,
ACE index) (Table 1). Shannon diversity index of the samples in 9 mg/g α-pinene 48 h feeding group
was significantly lower than the index of other three feeding groups (Table 1; F3,21 = 4.31, p < 0.05).
Simpson diversity index of the samples in 9 mg/g α-pinene 6 h feeding group was significantly higher
than the index in 0 mg/g α-pinene 6 h feeding group (Table 1; F3,21 = 16.07, p < 0.05).

Table 1. Comparison of diversity indices (Mean ± SEM) among different groups. Different superscript
letters indicate significant differences across treatments (p < 0.05); OTUs, Operational Taxonomic Units.

Index 0 mg/g α-Pinene 6 h 9 mg/g α-Pinene 6 h 0 mg/g α-Pinene 48 h 9 mg/g α-Pinene 48 h

Number of OTUs 273.8 ± 28.62 306.6 ± 30.14 277.0 ± 26.36 268.1 ± 17.76
ACE diversity 455.4 ± 57.56 527.5 ± 54.89 441.2 ± 62.43 402.4 ± 33.63
Chao diversity 443.0 ± 49.51 532.7 ± 52.08 449.8 ± 64.44 403.1 ± 35.85

Shannon diversity (H) 1.62 ± 0.09 b 1.86 ± 0.02 b 1.61 ± 0.14 b 1.52 ± 0.05 a

Simpson diversity 0.49 ± 0.02 a,b 0.60 ± 0.00 b 0.48 ± 0.02 a,b 0.46 ± 0.02 a
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2.3. Principal Component Analysis of the Gut Microbiota of D. valens

Based on the detected OTUs across the 25 samples, an non-metric multidimensional scaling
(NMDS) ordination analysis result showed that D. valens gut bacterial communities in 9 mg/g α-pinene
6 h feeding group clustered independently and distinctly from other three feeding groups (0 mg/g
α-pinene 6 h, 0 mg/g α-pinene 48 h, and 9 mg/g α-pinene 48 h), which were similar to each other,
and the result was confirmed in the NMDS diagram using the Jaccard similarity metric (Figure 3a;
analysis of similarities (ANOSIM), p < 0.001). Community compositions of gut samples in 9 mg/g
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α-pinene 6 h feeding group were significantly different from those gut samples in 0 mg/g α-pinene
6 h, 0 mg/g α-pinene 48 h, and 9 mg/g α-pinene 48 h feeding groups (Table S1, ANOSIM, p < 0.05),
and no statistical difference exist in bacterial community composition of D. valens gut samples among
0 mg/g α-pinene 6 h, 0 mg/g α-pinene 48 h, and 9 mg/g α-pinene 48 h feeding groups (Table S1).
The phylogeny-based weighted UniFrac principal coordinate analyses considering relative abundances
of OTUs showed similar results, which was further corroborated by a dissimilarity test PERMANOVA
(Figure 3b; PERMANOVA, p < 0.05).
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Figure 3. Principal component analysis of all bacterial communities. (a) Non-metric multidimensional
scaling (NMDS) diagrams of 25 samples, based on Jaccard distance matrix for bacterial communities
that consisted of OTUs (97% similarity level). Bacterial communities of samples in 9 mg/g α-pinene 6 h
feeding group were significantly separated from the other three feeding groups (ANOSIM, p < 0.01);
(b) Principal coordinate analysis (PCoA) plots based on the weighted UniFrac metric for bacterial
communities. Permutational multivariate analysis of variance indicated the bacterial community of
samples in 9 mg/g α-pinene 6 h feeding group was significantly different with the other three feeding
groups (PERMAOVA, p = 0.001). The red square represents samples in 0 mg/g α-pinene 6 h feeding
group, orange circle represents samples in 9 mg/g α-pinene 6 h feeding group, blue triangle represents
samples in 0 mg/g α-pinene 48 h feeding group, and green triangle represents samples in 9 mg/g
α-pinene 48 h feeding group.
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2.4. The Analysis of Community Composition at Genus Levels

The sequences could be assigned to 79 genera and their abundance are shown in Table S2,
and a total of 72 genera was shared by four different groups (Figure 4), which account for
98.66%–99.87% of the total sequences in the respective samples (Table S2). The genera with
an abundance of at least 0.1% of the total number of reads in at least one sample are presented
in Table 2. The gut samples in 9 mg/g α-pinene 6 h feeding group has a significantly higher proportion
of Erwinia spp. and significantly lower proportion of Sphingomonas spp. than samples in 0 mg/g
α-pinene 6 h, 0 mg/g α-pinene 6 h, and 9 mg/g α-pinene 48 h feeding groups (Table 2; Erwinia,
One-way ANOVA, F3,21 = 9.02, p < 0.05; Sphingomonas, One-way ANOVA, F3,21 = 8.89, p < 0.05).
The proportion of genera Burkholderia in gut samples of 9 mg/g α-pinene 6 h feeding group was
significantly lower than those in gut samples of 9 mg/g α-pinene 48 h feeding group (Table 2; One-way
ANOVA, F3,21 = 3.54, p < 0.05).

Table 2. Shared genera among groups. Identity of the genera shared by four different groups and their
average abundance (mean± SEM) within each group are displayed. The genera that had an abundance
of at least 0.1% of the total number of reads in at least one sample were present. The sum of all taxa
present in the table within each group is shown in the last row of the table. Different superscript letters
indicate significant differences across treatments (p < 0.05).

Phylum Phylogenetic
Group (Genus)

0 mg/g α-Pinene
6 h %

9 mg/g α-Pinene
6 h %

0 mg/g α-Pinene
48 h %

9 mg/g α-Pinene
48 h %

Actinobacteria
Rhodococcus 20.42 ± 0.86 17.15 ± 1.99 20.48 ± 2.40 21.58 ± 0.99

Salinibacterium 0.93 ± 0.20 1.00 ± 0.17 1.17 ± 0.29 1.19 ± 0.20

Proteobacteria

Burkholderia 1.05 ± 0.16 a,b 0.69 ± 0.12 a 1.22 ± 0.09 a,b 1.33 ± 0.19 b

Erwinia 5.80 ± 1.96 b 24.41 ± 5.74 a 4.05 ± 2.30 b 2.37 ± 1.17 b

Pseudomonas 0.26 ± 0.06 0.10 ± 0.03 0.29 ± 0.09 0.36 ± 0.12
Sphingomonas 70.35 ± 1.62 b 55.85 ± 4.26 a 71.69 ± 1.30 b 72.24 ± 1.56 b

Sum 98.81 ± 0.00 99.20 ± 0.00 98.91 ± 0.00 99.06 ± 0.00
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3. Discussion

The toxic activities and the influence of host defensive chemicals on bark beetles’ associated
microbes at species level have already been investigated [9,31,37]. Host defensive chemical α-pinene
has been shown to attract bark beetles [28,38], and is toxic to beetles at high concentration [25,28,36].
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Some studies showed that α-pinene could be converted to verbenol which is a precursor chemical
of D. valens verbenone pheromone [7,39]. The current study evaluated the influence of chemical
defensive chemical α-pinene on the gut microbiota of Chinese D. valens in vivo using high throughput
pyrosequencing approach, and results showed that the concentration of host defensive monoterpene
α-pinene in diets altered the gut bacterial community of D. valens (Figure 3). Specifically, the gut
bacterial communities of D. valens in the 9 mg/g α-pinene 6 h feeding group were significantly different
in the beetles feeding on 0 mg/g α-pinene phloem media after 6 h (Figure 3). This suggests that high
concentrations of α-pinene are capable of altering the community structure of D. valens gut microbiota
within a short time period (6 h). Similar results have shown that plant defensive chemicals influence
herbivore insect gut microbiota in other systems, e.g., aspen defense chemicals were reported to
influence the midgut bacterial community composition of Lymantria dispar L. [19,40], and the gut
microbial community structures of Neotoma bryanti and Neotoma lepida were altered by plant secondary
metabolites [41].

The community structure change of the gut microbiota of D. valens feeding in 9 mg/g α-pinene
concentration in phloem media after 6 h (Figure 3) may be linked to the toxic effects of the monoterpene
to the microorganisms. Previous studies suggested that the amount of host defensive monoterpenes
in beetles’ guts may accumulate to a very high level when feeding on substrates containing high
concentration of the chemicals [38,42], and the tolerance of microorganisms to different concentrations
of α-pinene is species dependent [9,31]. As the concentrations of α-pinene in D. valens guts in vivo were
not quantified and the influence of the chemical to each gut bacteria was not assayed, this speculation
need more evidence to support our claim. Meanwhile, the community structure change of gut
microbiota might be due to the antifeedant effects of the defense chemical on the bark beetles
(Figure 1), which would subsequently influence both nutrition and monoterpene intake of the beetle.
The toxic effects of host defense chemicals like monoterpenes on bark beetles have been documented
in previous studies [9,36] and other systems [43,44]. In addition to toxic substances, the available
nutrition contained in food was also reported to influence the gut bacterial community structure [17,45].
We found that the relative percentage of Erwinia in 9 mg/g α-pinene 6 h feeding group increased
compared to other groups (Table 2). The increase of Erwinia may attribute to the decreasing numbers
of bacteria in genera Sphingomonas and Rhodococcus since the bacteria in genus Erwinia are sensitive to
high concentration of α-pinene. The antifeedant effect of 9 mg/mL α-pinene at 6 h would preclude
the chemical from entering the beetle’s intestinal track, which may promote its growth. Therefore,
whether the differences of the community composition are caused by toxic activities of α-pinene to gut
bacteria, antifeedant effects, decreased nutrition intake of D. valens, or a combination of them requires
further research to verify the mechanism.

Furthermore, our evidence suggests that the influence of α-pinene on the D. valens gut bacterial
community is not permanent and irreversible, and the structure change of D. valens gut microbiota of
beetles feeding on 9 mg/g α-pinene in phloem media after 6 h has been recovered to a stable status
after 48 h (no significance of gut community structures among 0 mg/g α-pinene 6 h, 0 mg/g α-pinene
48 h, and 9 mg/g α-pinene 48 h feeding groups) (Figure 3). A stable gut community structure is very
important for insect hosts’ growth and survival, which has been proven in mammal animals and
insects [46–48]. For example, the gut microbiota of Pyrrhocoris apterus is remarkably stable, which plays
an important role for host nutrition [48,49]. The mating preference of Drosophila melanogaster could be
irreversibly abolished by antibiotic treatment, which would influence its intestinal microbiota [46,50].
The functional importance of the stability of the gut bacterial community to D. valens need more
research to explore and verify.

Our results support the hypothesis that the gut microbiota of D. valens is capable of helping the
beetle detoxify host pine defensive chemicals. The three most abundant genera found in D. valens
gut microbiota in our study are known to play a role in toxin metabolism (Table 2). The most
predominant genus, Sphingomonas (Table 2), is reported to catabolize monoterpenes and other aromatic
compounds [51–53]. The bacteria in genera Rhodococcus and Burkholderia, which also have high
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abundance in D. valens gut bacteria communities (Table 2), are reported to degrade monoterpenes,
e.g., α-pinene, limonene [54–56]. It is also possible that other less abundant gut microbes (e.g., bacteria
in genus Pseudomonas) help the beetle catabolize and further detoxify plant defense chemicals or
perhaps other functions related to detoxification processes, such as free-radical scavenging [33,41].
In the future, we plan to conduct community metagenomic sequencing to learn about gene-centred
details relevant to the detoxification of pine terpene defenses by the gut microbiota of D. valens.

4. Materials and Methods

4.1. Insects

Adult beetles were captured during the dispersal phase using Lindgren funnel traps baited
with kairomone lure ((+)-α-pinene: (−)-β-pinene: (+)-3-carene = 1:1:1) (Aldrich, Shanghai, China)
from May to June 2014. Field trapping was conducted in the Tunlanchuan Forestry Station (N 37◦48′,
E 111◦44′, average elevation 1400 m), west of Gujiao, China. Sexes of bark beetles were distinguished
by listening for stridulation produced by males [57,58]. Log bolts (≥30 cm) were cut into 0.5 m lengths
and two pairs of adult beetles were introduced to each bolt after the cut ends of bolts were waxed,
then bolts were placed in plastic boxes (40 cm diameter, 50 cm height) at room temperature [9,36].
Beetles from the next generation were collected as they emerged from infested bolts.

4.2. The Boring Lengths of D. valens at 0 and 9 mg/g Concentration of Host Defensive Compound α-Pinene

To make phloem medium, Pinus tabuliformis phloem was freeze-dried, ground, and autoclaved
to sterilize and remove volatile monoterpenes, as described previously [7]. Six grams of agar
(NewProbe, Beijing, China) was mixed with 180 mL boiling distilled water and twelve grams of
ground phloem, then the corresponding amount of α-pinene was dissolved in pentane (HPLC purity;
J&K Scientific) [36], and it was added into medium after cooling to about 50 ◦C (final concentration of
α-pinene: 0, 9 mg/g, respectively) [7]. Nine milligram per gram was set as a concentration of α-pinene
of host pines after beetles’ attack because the mean quantities of α-pinene range from 0.1 mg/g
to 1.6 mg/g in phloem tissue of healthy tree [36], and the concentration of the chemical around beetle’s
galleries would increase 5–10-folds after beetles’ attack [59]. About 3.5 mL of phloem medium was
then poured into each glass tube (1 cm diameter, 5 cm height), and the glass tubes were stoppered at
both ends by plastic caps and sealed with parafilm, and then phloem medium was dried for 12 h.

Adult beetles (n = 200) were randomly chosen and separated into two groups and weighed,
and then introduced into the media individually after they had been starved for 12 h. It has been
reported that the long chain of behavioral steps of bark beetles from landing to continued oviposition
was divided into several phases, and the beetles walk on the logs under attack within the first day,
and then they would complete nuptial chamber construction in the next 1–2 days [60]. Therefore, 6 and
48 h was selected as two time-points. After 6 h feeding at room temperature, the boring lengths of half of
the beetles in each group were measured (40 beetles in 0 mg/g α-pinene concentration in phloem media,
47 beetles in 9 mg/g α-pinene concentration in phloem media) (AL 204, Mettler Toledo, Inc., Shanghai,
China), and 13 beetles (6 beetles in 0 mg/g α-pinene concentration in phloem media, 7 beetles in
9 mg/g α-pinene concentration in phloem media) were randomly chosen for gut microbiota analysis.
After 48 h feeding, the boring lengths of the remaining beetles were measured individually (39 beetles
in 0 mg/g α-pinene concentration in phloem media, 39 beetles in 9 mg/g α-pinene concentration in
phloem media), and 12 beetles (5 beetles in 0 mg/g α-pinene concentration in phloem media, 7 beetles
in 9 mg/g α-pinene concentration in phloem media) were randomly chosen for gut microbiota analysis.
Boring lengths for those beetles that failed to enter the media were scored as zero and dead beetles
were discarded.
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4.3. DNA Extraction, PCR, Pyrosequencing, and Sequence Processing

The beetles from 0 mg/g α-pinene phloem media and 9 mg/g α-pinene phloem media after
6 h (0 mg/g α-pinene 6 h feeding group and 9 mg/g α-pinene 6 h feeding group) and 48 h (0 mg/g
α-pinene 48 h feeding group and 9 mg/g α-pinene 48 h feeding group) were dissected, and then the
bacteria genomic DNA of each insect gut sample was extracted by using a TIANamp Bacteria DNA kit
(TianGen, Beijing, China) according to the manufacturer’s instructions, respectively. The PCR reactions
were carried out in a 20 µL of solution containing 10 ng of DNA, 1 µL of 10 µM of each primer, 2 µL of
2.5 mM dNTPs, 0.3 µL Fastpfu polymerase (Transgene, Beijing, China), and 4 µL 5× Fastpfu buffer.
The amplifications were performed in an ABI GeneAmp® 9700 thermal cycler (Applied Biosystems,
Foster City, CA, USA) with an initial denaturation step at 95 ◦C for 10 min followed by 30 cycles
of annealing and extending (each cycle occurred at 95 ◦C for 30 s followed by 55 ◦C for 30 s and
an extension step at 72 ◦C for 45 s) and the final extension at 72 ◦C for 10 min using 16S rRNA primers
341F (5′-CCTAYGGGRBGCASCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) [61]. The final
PCR products were analyzed by electrophoresis in 1.5% agarose gel followed by staining with ethidium
bromide and visualization under ultraviolet light. The purified amplicons were pyrosequenced on
an Illumina platform (Illumina MiSeq PE250, Illumina, CA, USA).

Paired-end reads were assembled with FLASH (V1.2.7, Available online: www.ccb.jhu.edu) and
low-quality reads were filtered using the QIIME (Quantitative Insights Into Microbial Ecology) software
packages (V1.9.0, Available online: www.qiime.org) with default parameters [62]. Chimeras were
checked and removed with UCHIME [63] and qualified sequences were clustered into Operational
Taxonomic Units (OTUs) at 97% sequence similarity with a UPARSE algorithm [64]. The representative
OTU was selected based on the most abundant sequence in each OTU, and then taxonomic
identification was performed using the RDP classifier [65] algorithm implemented in QIIME and using
the Greengene database under a confidence threshold of 80% (Available online: http://greengenes.
secondgenome.com) [66].

4.4. Statistical Analysis

In comparisons of the boring length of beetles between 0 and 9 mg/g α-pinene feeding groups,
means of cases were tested using independent t-test or Mann–Whitney U-test, depending on the results
of the test of normality and homogeneity of variance. Data were analyzed using SPSS 12.0 (SPSS Inc.,
Chicago, IL, USA) for Windows, and figures were drawn using Origin 8.5 (Origin Lab Corporation,
Northampton, MA, USA).

For MiSeq data analysis, rarefaction curves were estimated using the “alpha_rarefaction.py”
script in QIIME to test whether the sequencing efforts adequately represented the bacterial diversity
within each sample. Two richness estimators (the abundance-based coverage estimator (ACE) and
a nonparametric richness estimator based on distribution of singletons and doubletons (Chao1))
and two diversity indices (Shannon and Simpson index) were calculated for the samples using
the “alpha_diversity.py” script in QIIME. The diversity indices of four groups and the relative
abundances of different genera were compared using One-way ANOVA test followed by Bonferroni
test (equal variances) or One-way Brown-Forsythe’s ANOVA test followed by Dunnett’s T3
test (unequal variances). Non-metric multidimensional scaling (NMDS) was used to visualize
the phylogenetic distance (Jaccard similarity) between the bacterial communities from different
samples. Composition differences were tested using ANOSIM with 10,000 permutations using PAST
software [67,68]. The representative sequences of all OTUs were used to construct neighbor-joining
trees. The phylogenetic tree together with sample sequence abundance data were used for weighted
Unifrac PCoA (principal coordinate analysis) which considers both relative abundance and different
branch lengths in a tree, through the online Fast Unifrac program [69]. A Permutational Multivariate
Analysis of Variance based on the weighted UniFrac distance (PERMANOVA, “PermanovaG” function
in the “GUniFrac” package of R) was used to test for differences in community composition between
four sample groups [70].

www.ccb.jhu.edu
www.qiime.org
http://greengenes.secondgenome.com
http://greengenes.secondgenome.com
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5. Conclusions

In summary, our results suggested that 9 mg/g α-pinene concentration significantly inhibited
feeding behavior of D. valens and altered its gut microbial community structure after 6 h. The inhibition
of feeding behavior from 9 mg/g α-pinene in diets ceased after 48 h. No significant differences of the
bacterial communities were observed between the beetles in 0 and 9 mg/g α-pinene concentration in
phloem media after 48 h. We found that both the inhibition of the feeding behavior of D. valens and
the disturbance to its gut bacterial communities by high concentration of host defensive α-pinene in
phloem media after 6 h were eliminated soon after 48 h, which suggests the quick adaptation of both
the beetle and its gut microflora to high concentration of host defensive chemical.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/10/1734/s1.
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