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Abstract

Lauraceae are an important component of tropical and subtropical forests and have major

ecological and economic significance. Owing to lack of clear-cut morphological differences

between genera and species, this family is an ideal case for testing the efficacy of DNA bar-

coding in the identification and discrimination of species and genera. In this study, we evalu-

ated five widely recommended plant DNA barcode loci matK, rbcL, trnH–psbA, ITS2 and the

entire ITS region for 409 individuals representing 133 species, 12 genera from China. We

tested the ability of DNA barcoding to distinguish species and as an alternative tool for cor-

recting species misidentification. We also used the rbcL+matK+trnH–psbA+ITS loci to

investigate the phylogenetic relationships of the species examined. Among the gene regions

and their combinations, ITS was the most efficient for identifying species (57.5%) and gen-

era (70%). DNA barcoding also had a positive role for correcting species misidentification

(10.8%). Furthermore, based on the results of the phylogenetic analyses, Chinese Laura-

ceae species formed three supported monophyletic clades, with the Cryptocarya group

strongly supported (PP = 1.00, BS = 100%) and the clade including the Persea group, Laur-

eae and Cinnamomum also receiving strong support (PP = 1.00, BS = 98%), whereas the

Caryodaphnopsis–Neocinnamomum received only moderate support (PP = 1.00 and BS =

85%). This study indicates that molecular barcoding can assist in screening difficult to iden-

tify families like Lauraceae, detecting errors of species identification, as well as helping to

reconstruct phylogenetic relationships. DNA barcoding can thus help with large-scale biodi-

versity inventories and rare species conservation by improving accuracy, as well as reduc-

ing time and costs associated with species identification.
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Introduction

Lauraceae in China comprise about 25 widely distributed genera (two endemic, two intro-

duced) with 445 species (316 endemic, three introduced) [1, 2]. The family has major ecologi-

cal and economic importance [3]. They play an important role in tropical and subtropical

forests, often as canopy dominants [1, 4, 5–7] and also have economic significance as sources

of medicine, timber, spices, nutritious fruits and perfumes [1, 8, 9]. The fruits of some species

contain abundant oil and fat [1]. However, because of their biological and economic relevance,

some plants have been overexploitated [10], with 109 species now listed as endangered by the

China Species Red List [10].

Because it is important to know whether economic benefit estimates are stable over time

[11], the accurate identification of species is important for their protection. However, the tax-

onomy of Lauraceae, as with other taxonomically complex groups of angiosperms (e.g., Ber-
beris: Roy et al. [12]; Ficus: Li et al. [13]; Curcuma: Chen et al. [14]; Salix: Percy et al. [15];

Rhododendron: Yan et al. [16]), is very poorly resolved. The classification traditionally has

been based mainly on morphological characters, such as phyllotaxis, perianth, inflorescence

type, size of tepals, number of fertile stamens, number of locules per anther, or fate of tepals in

fruit [17–20]. Chinese Lauraceae represent more than 400 species and encompass a broad

range of morphological diversity [1], both reproductive and vegetative [21], of which the for-

mer are regarded as more effective for classification and identification. However, as most spe-

cies are tall trees with small, inconspicuous flowers that are not easy to locate or collect in the

field [3], generic delimitation within the family is problematic [17–20], particularly as many

trees are sterile when sampled (expecially during biodiversity inventories) and must be identi-

fied using vegetative characters [21], making misidentifications inevitable [22]. Even with

flowers and fruits, the identification and discrimination of Lauraceae taxa can be challenging

for non-specialists [4, 21, 23]. So far, scant information is available regarding accurate classifi-

cation and biodiversity assessment within this family, particularly in south-east Asia, so com-

plementary methods of identification and classification are urgently needed for Lauraceae.

DNA barcoding is a technique for taxonomic identification using one or several standard-

ized DNA regions that are universally present in the target lineages and have sufficient

sequence variation to recognize species and identify individuals correctly [24–29]. In order to

choose universal DNA barcodes for plants, various molecular markers have been analyzed,

including the cpDNA regions, matK, rbcL and trnH–psbA [27, 28, 30, 31], as well as nuclear

DNA regions such as ITS (ITS1+5.8S+ITS2) and ITS2 only [32–35]. These regions were cho-

sen based on three main criteria: (a) universality, (b) sequence quality and (c) discriminatory

power [29]. DNA barcoding has been shown to be an important tool for species identification

and as a supplement to traditional morphology-based taxonomy [36, 37, 38]. Nevertheless, rel-

atively little attention has been paid to sources of potential bias which affect species identifica-

tion error rates [39], even though species-level barcodes can be prone to substantial errors

related to morphological identifications [21]. Combining DNA sequences with existing mor-

phological characters may facilitate species identification and classification [38, 40, 41], as well

as broaden our understanding of phylogenetic signal within target lineages [42]. Previous stud-

ies have shown that it is not easy to reconstruct phylogenetic relationships in Lauraceae [7, 41,

43–46], so the affinities of species and generic relationships within many of the major lineages

in the family are still poorly resolved [7, 18, 43, 44, 47, 48].

Accordingly, in the present study we used existing molecular barcodes: three cpDNA

regions (rbcL, matK, psbA–trnH) and the nuclear marker ITS (ITS1+5.8S+ITS2), as well as the

subunit ITS2, to examine the taxonomic classification and phylogeny of Lauraceae. Our main

aims were to:
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1. evaluate barcode universality in Chinese Lauraceae species;

2. assess DNA barcoding performance relative to species identification;

3. determine if these barcodes can also allow for the reconstruction of phylogenetic relation-

ships within the Lauraceae, relative to previously recognized subdivisions and affinities.

Materials and methods

Ethics statement

Collection of these species was conducted in compliance with existing regulations for plants

defined as non-commercial, as determined by local government offices. In addition, these

sample collections were performed in China with the written approval from the National For-

est Bureau and relevant local governments, complying with Chinese and international regula-

tions for the collection of native plant samples.

Sampling

A total of 409 individuals of 133 species from 12 genera of Lauraceae were included in this

study (S1 and S2 Tables, Supporting Information), distributed across eight provinces: Chong-

qing, Guangdong, Guangxi, Hainan, Hunan, Sichuan, Yunnan and Zhejiang, representing

much of the diversity of this family in China. Materials for this study were collected in the field

from 2002 to 2012, with 22 species represented by a single individual and 111 species repre-

sented by two to nine individuals (an average of three samples per species). The Lauraceae

expert at KUN, Hsi-Wen Li, who is one of the co-authors, identified the vouchers (S1 Table)

based on the reproductive or vegetative characters available. All vouchers were stored at the

Herbarium of Xishuangbanna Tropical Botanical Garden (HITBC).

DNA isolation, amplification and sequencing

Total genomic DNA was extracted from silica gel-dried leaf tissue or herbarium specimens

using a modified CTAB method [49]. The plastid markers rbcL, matK, trnH–psbA and nuclear

markers ITS and ITS2 were amplified using multiple primers, following the suggestions of

Dunning and Savolainen [50] and Yu et al. [51]. For example, four primers sets were tested for

matK due to its generally poor performance of amplification and sequencing [52]. DMSO and

BSA were also added to enhance the PCR performance for matK and ITS [53, 54].

PCR was performed in 20 μL reaction mixtures containing 0.2 μL of Taq polymerase (5 U),

2.0 μL of 10 × PCR buffer, 2.0 μL of 25 mM MgCl2, 2 μL of 2.5 mM dNTPs, 1 μL of 10 uM of

each primer, 1 μL of DMSO, 2 μL of 1 mg/ml BSA and 2 μL template DNA. For primer combi-

nations, PCR thermal conditions and references, see Supporting Information (S3 Table). All

PCR products were sequenced at the Beijing Genomics Institute (BGI).

Sequence editing and alignment

Raw sequences were assembled and edited using Sequencher 4.14 (GeneCodes Corp., Ann

Arbor, Michigan, USA) and deposited in GenBank (see S2 Table for GenBank accession num-

bers). Edited sequences were then aligned using Geneious 6.1.2 (Biomatters Ltd.), Clustal W

[55] and MUSCLE [56], with final manual adjustment undertaken with Geneious 6.1.2 and

BioEdit 7.0.9.0 [57]. All variable sites were rechecked on the original trace files for final confir-

mation. For the rbcL and matK markers, a global multiple sequence alignment was used. The

rbcL sequences were unambiguous, due to the absence of insertions or deletions, but alignment
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of matK was more difficult due to the insertion of triplet codons, so the alignment results were

checked visually. The trnH–psbA and ITS sequences were highly variable and very difficult to

align with Geneious, so these markers were aligned several times by Clustal W and MUSCLE

and then a supermatrix was created by concatenating them with the aligned sequences of the

remaining markers.

Data analysis

Two widely applied methods (tree-based and similarity-based) were used to evaluate species

discrimination success, following Huang et al. [22]. Five single markers and all possible combi-

nations were applied. For the tree-based method, we used Geneious 6.1.2 to construct Neigh-

bour-Joining (NJ) trees. For the similarity-based method, we used BLAST [58] for building

local reference databases against which all sequences were then queried using the blastn pro-

gram. The 22 species with only a single individual were excluded in NJ trees and BLAST

(n� 2) analyses. Species discrimination was considered successful only when all conspecific

individuals formed a single clade supported by bootstrap values greater than 50% in the NJ

tree [59], and when all individuals of the species or genus only had a top matching hit with a

conspecific/congeneric individual in BLAST (the query sequence itself was excluded from the

list of top hits when there were multiple individuals).

In detecting identification errors, a two-step procedure of reciprocal illumination was used.

We evaluated errors in the initial morphology-based identifications combining morphology

and DNA sequence data to uncover and correct mistakes in Lauraceae identification. A sche-

matic illustration is used to show the identification process in the present study (Fig 1). Firstly,

our initial morphological delimitations were identified by the Lauraceae expert and defined as

morphospecies. Then we compared the specimens with herbarium specimens from HITBC,

KUN and PYU. Finally, we combined DNA sequences with existing morphological characters.

Potential errors were identified through examination of the NJ trees (using rbcL, matK and the

combination of rbcL+matK+trnH–psbA+ITS) and BLAST. If the result indicated that the sam-

ple did not belong to an a priori assigned taxon, it was flagged as a possible error and the sam-

ple was then compared with descriptions and herbarium specimens of the species involved,

using morphological characteristics in order to confirm whether an error had been made.

In phylogenetic analyses, combined data sets are often able to generate more resolved and

better-supported phylogenies [41, 60], so this approach was also used for Lauraceae. In this

study, phylogenetic analyses are inferred from sequence variation in the four-locus combina-

tion of rbcL+matK+trnH–psbA+ITS. Bayesian Inference (BI) and Maximum Parsimony (MP)

phylogenetic analyses were conducted to reconstruct phylogenetic relationships using

PAUP�4.0b10 [61] and MrBayes 3.1.2 [62], with gaps coded as simple indels using the program

Gapcoder [63]. For the Bayesian analysis, the dataset was partitioned by markers. Modeltest

3.7 [64, 65] was used to select the best-fit evolutionary model for each partition according to

the Akaike Information Criterion (AIC) [66]. The Markov chain Monte Carlo (MCMC) algo-

rithm was run with one cold and three heated chains for 5,000,000 generations, which started

from random trees and sampling one out of every 500 generations. Inspection of the log likeli-

hood values suggested that stationarity was reached well before the first 25% implemented as

default value for the burn-in and the remaining 75% were used for constructing the consensus

tree with the proportion of bifurcations found in this consensus tree given as posterior proba-

bilities (PP). MP analysis was conducted using the following heuristic search options: tree-

bisection-reconnection (TBR) branch swapping, collapse of zero length branches and Mul-

Trees on, with 1000 random taxon additions, saving 100 trees from each random sequence

addition [66]. All character states were regarded as unordered and equally weighted. Bootstrap
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support values (BS) for internal nodes were estimated with 100 heuristic bootstrap replicates.

The reliability of clades as judged by the posterior probability in Bayesian analysis was gener-

ally higher than that as judged by the bootstrap probability in MP analysis [67]. Based on

known phylogenies and simulations, bootstrap values of 50% corresponding to posterior prob-

abilities of 90% are generally considered as moderate support of true clade probabilities, and a

strong relationship between bootstrap values of 70% corresponding to posterior probabilities

of 95% are generally considered as strong support [68, 69]. Three species of Monimiaceae, plus

Gomortega nitida Ruiz & Pav. (Gomortegaceae) were selected as outgroups, based on their sis-

ter relationship to Lauraceae in a previous study [7]. A sample of the monotypic African genus

Hypodaphnis was also included, as the genus is considered to be sister to the remainder of

Lauraceae [7], with ITS sequences for these five species downloaded from GenBank.

Fig 1. A schematic pipelines of conventional and molecular species identification analyses.

https://doi.org/10.1371/journal.pone.0175788.g001
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Results

Barcode universality and sequence characteristics

In total, we obtained 1474 sequences from the 409 samples, representing 133 species of 12 gen-

era after correction. These included 381 sequences for rbcL, 381 sequences for matK, 323 for

trnH–psbA, 228 for ITS2 and 161 for ITS (S2 Table). Sequence recovery success rates were

very high for rbcL (92.5% of individuals, 97.7% of species, 100% of genera) and matK (92.5%

of individuals, 92.5% of species, 100% of genera) with the four commonly used primers pairs

matK-1RKIM-f/matK-3FKIM-r, matK-472f/matK-1248r, matK-390f/matK-1326r and matK-

xf/matK-5r. Two regions showed moderate success: trnH–psbA region (78.4% of individuals,

86.5% of species, 100% of genera) and ITS2 (55.3% of individuals, 73.7% of species, 100% of

genera). In contrast, the ITS region showed the lowest overall recovery rates (39.1% of individ-

uals, 57.9% of species, 100% of genera) (see Table 1).

Mistakes in taxonomic identification

After combining DNA sequences with existing morphological characters, various putative spe-

cies were found to comprise 1–4 individuals that were divergent from the majority of individu-

als sequenced for their species and that were nested within other species. In these cases, a

detailed reanalysis of voucher specimens combined with NJ Tree analyses and BLAST exami-

nations was needed. The results showed that the divergent individuals had been identified

incorrectly. In total, 44 individuals (10.8%) had been misidentified by the expert (Table 2, Fig

2; S1 and S2 Figs), 34 at the generic level and 10 at the species level. Following these correc-

tions, we recognised 133 OTUs for the study. The misidentified samples and their identifica-

tion after revision are listed in Table 2.

Discrimination efficiency in Lauraceae

After morphological error correction, the resolution rates of species (8.2–57.5%) and genera

(25–70%) were calculated, both for individual barcode sequences, as well as for various combi-

nations (Table 1 and Fig 3). For single barcodes, ITS showed the highest discriminatory power

of the five markers (Figs 3 and 4), but the discrimination rate was only 57.5% at the species

level in BLAST (n� 1) (see Fig 3A). At the genus level, ITS was again the most accurate (70%)

in BLAST (n� 2) (see Fig 3B). ITS2 showed lower sequence variation and species discrimina-

tion than ITS (see Fig 3A, 44.7% at species level; Fig 3B, 63.6% at genus level), despite its

sequence recovery being more or less double that of ITS (Table 1). The discrimination rates of

rbcL were the lowest (see Fig 3B, 8.2% at species level; 25% at genus level).

Among the marker combinations (rbcL+matK, rbcL+matK+trnH–psbA, rbcL+matK
+trnH–psbA+ITS and rbcL+matK+trnH–psbA+ITS2), rbcL+matK+trnH–psbA+ITS showed

the highest discriminatory power, with discrimination rates of 50.8% at the species level in

BLAST (n� 1) (Fig 3A) and 60% at the genus level in NJ Tree (n� 2) (Fig 3B), whereas

Table 1. Sequence recovery rates for five DNA barcodes evaluated in this study.

Barcode regions rbcL matK trnH-psbA ITS ITS2

Successful individuals/sampled individuals 381/412 (92.5%) 381/412 (92.5%) 323/412 (78.4%) 161/412 (39.1%) 228/412 (55.3%)

Successful species/sampled species 130/133 (97.7%) 123/133 (92.5%) 115/133 (86.5%) 77/133 (57.9%) 98/133 (73.7%)

Successful genera/sampled genera 12/12 (100%) 12/12 (100%) 12/12 (100%) 12/12 (100%) 12/12 (100%)

For each category, the absolute number of successes is given along with the percentage relative to the total number. Successful individuals/sampled

individuals; Successful species/sampled species; Successful genera/sampled genera (n� 1).

https://doi.org/10.1371/journal.pone.0175788.t001
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Table 2. Original species determinations and correct species using DNA barcodes.

Original species Correct species

Alseodaphne andersonii J116 Cryptocarya acutifolia J116

Alseodaphne andersonii J127 Cryptocarya acutifolia J127

Alseodaphne petiolaris J470 Cryptocarya acutifolia J470

Beilschmiedia robusta G174 Beilschmiedia purpurascens G174

Beilschmiedia yunnanensis J467 Beilschmiedia purpurascens J467

Beilschmiedia yunnanensis GBOW0246 Machilus robusta GBOW0246

Beilschmiedia yunnanensis GBOW0678 Machilus yunnanensis GBOW0678

Cinnamomum chartophyllum J088 Beilschmiedia yunnanensis J088

Cinnamomum chartophyllum J193 Beilschmiedia yunnanensis J193

Cinnamomum mollifolium J677 Beilschmiedia roxburghiana J677

Cinnamomum tenuipilum J083 Litsea acutivena J083

Cryptocarya brachythyrsa J576 Beilschmiedia brachythyrsa J576

Cryptocarya calcicola L061 Beilschmiedia purpurascens L061

Cryptocarya calcicola J607 Cryptocarya acutifolia J607

Cryptocarya chinensis J386 Beilschmiedia yunnanensis J386

Cryptocarya chinensis J407 Litsea lancilimba J407

Cryptocarya densiflora GBOW0745 Caryodaphnopsis laotica GBOW0745

Cryptocarya yunnanensis J485 Beilschmiedia yunnanensis J485

Lindera latifolia CXQ09023 Phoebe neurantha CXQ09023

Lindera latifolia GBOW0930 Machilus grijsii GBOW0930

Lindera latifolia GBOW0936 Machilus grijsii GBOW0936

Litsea baviensis J227 Litsea pierrei J227

Litsea elongata G102 Litsea salicifolia G102

Litsea elongata G198 Litsea salicifolia G198

Litsea elongata J092 Litsea acutivena J092

Litsea euosma LJ2002068 Neolitsea chuii LJ2002068

Litsea glutinosa J133 Actinodaphne henryi J133

Litsea rotundifolia CXQ0069 Cryptocary calcicola CXQ0069

Machilus chuanchienensis CXQ0426 Phoebe tavoyana CXQ0426

Machilus pauhoi CXQ0080 Litsea greenmaniana var. angustifolia CXQ0080

Machilus salicina Q133 Litsea greenmaniana var. angustifolia Q133

Machilus viridis Q090 Cinnamomum chago Q090

Machilus viridis Q129 Cinnamomum chago Q129

Machilus viridis CXQ690 Cinnamomum chago CXQ690

Machilus viridis CXQ762 Cinnamomum chago CXQ762

Machilus yunnanensis LJ2002064 Cinnamomum chago LJ2002064

Machilus yunnanensis LJ2002072 Cinnamomum chago LJ2002072

Neolitsea levinei LJ2002035 Machilus tenuipilis LJ2002035

Neolitsea lunglingensis LJ0014 Cinnamomum longepaniculatum LJ0014

Neolitsea lunglingensis LJ15201 Lindera thomsonii LJ15201

Neolitsea lunglingensis LJ2002058 Neolitsea homilantha LJ2002058

Neolitsea phanerophlebia LJ2006004 Cinnamomum camphora LJ2006004

Neolitsea phanerophlebia LJ2006083 Neolitsea chuii LJ2006083

Neolitsea shingningensis CXQ0284 Lindera fragrans CXQ0284

Original species determinations based on morphological characters; correct species based on NJ trees of

matK, rbcL and rbcL+matK+trnH–psbA+ITS and BLAST plus re-examination of morphology.

https://doi.org/10.1371/journal.pone.0175788.t002
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Fig 2. Species misidentification and resolution at the genus and species levels. The NJ tree based on

the combined barcodes rbcL+matK+trnH–psbA+ITS. The bootstrap values� 50% are shown on the

branches. The stars represent corrected individuals; brackets represent successfully identified species.

https://doi.org/10.1371/journal.pone.0175788.g002
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rbcL+matK+trnH–psbA+ITS2 showed lower discrimination rates (48.2% and 40%) at the

same level (Fig 3). In contrast, the combination of rbcL+matK showed quite low discrimina-

tion rates (10.6%) at species level in both BLAST and NJ Tree (n� 2) (see Fig 3B), but discrim-

ination rate were relatively high (50%) at the genus level in NJ Tree (n� 2) (see Fig 3B).

Overall, the tree-based method (NJ Tree) and the similarity-based method (BLAST) provided

unsatisfactory discrimination rates.

Relationships within Lauraceae

Phylogenetic relationships among 133 species of Lauraceae representing 12 of the 25 genera

were analysed after correction. The four DNA markers, rbcL, matK, trnH–psbA and ITS (ITS1

+5.8S+ITS2) produced 665, 746, 508 and 845 bp aligned positions respectively, yielding 64, 50,

74, and 149 informative sites and were best fitted to the TVM (Transversional model) +I+G,

TIM (Transitional model) +G, K81uf (Two transversion-parameters model 1 unequal frecuen-

cies) +I+G and TrN (Tamura-Nei) +I+G substitution models respectively. As the consensus

trees obtained from the BI and MP analyses were almost identical in their topologies, only the

Bayesian consensus tree based on rbcL+matK+trnH–psbA+ITS with PP (Posterior Probabilities)

and BS values (Bootstrap Support values) is presented here (Fig 5). The Bayesian tree contains

three principal Lauraceae clades, with Hypodaphnis strongly supported in BI and MP analyses as

their sister group. Clade 1 (PP = 1.00, BS = 100%) includes members of the Cryptocarya group;

Caryodaphnopsis and Neocinnamomum form Clade 2 (PP = 1.00, BS = 85%); the remainder, rep-

resenting the Persea group, Laureae and Cinnamomum formed Clade 3 (PP = 1.00, BS = 98%).

In the Clade 3, there is some support for a clade including the representatives of the Persea group

(PP = 1.00, BS = 57%) and moderate support for a clade including all members of Cinnamomum
investigated here (PP = 1.00, BS = 69%). All the remaining samples, including members of Neo-
litsea, Actinodaphne, Litsea, Lindera and Iteadaphne belong to the Laureae, which do not form a

clade in our analysis, but rather a large polytomy of eight clades, plus Cinnamomum and the Per-
sea group. The outgroup samples, three species of Monimiaceae plus Gomortegaceae also form a

monophyletic lineage with strong support (PP = 1.00, BS = 97%).

Discussion

Universality of DNA barcodes

Primer universality is an important criterion for a useful DNA barcode [27]. In this regard, the

core barcodes (rbcL and matK) for Lauraceae plants had the best performance in PCR amplifi-

cation and sequencing among the five regions (successfully amplifying and sequencing 92.5%

individuals), consistent with a previous study [70]. Compared to the above core barcodes, ITS

had a relatively low sequencing success rate of 39.1%, because of the lack of universal primers

(either published or with potential development by using current information) and poor suc-

cess by using existing primers [25]. The poor success by using existing primers is probably due

largely to the problem of secondary structure formation resulting in poor quality sequence

data, multiple copy numbers, etc. [29, 32, 33, 71, 72]. Thus, this region is probably unsuitable

as a universal barcode, although it may be useful in particular cases.

Detecting identification mistakes

Characters such as phyllotaxis, perianth, inflorescence type, size of tepals, or fate of tepals in

fruit have been used to delimit the species of Lauraceae [1, 3, 5, 41]. Among these characters,

there are some polymorphic characters considered useful at the between-genus level, while

they are rarely present together on a specimen when sampled. In Cryptocarya, the fruit
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Fig 3. Species resolution at the genus and species levels for single regions and combinations. Results based

on BLAST and Neighbor-Joining Tree analyses of the samples (A: n� 1; B: n� 2).

https://doi.org/10.1371/journal.pone.0175788.g003
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Fig 4. Species resolution success at the genus and species levels for ITS. Result based on Neighbor-

Joining Tree analysis (n� 2). The bootstrap values� 50% are shown on the branches. Brackets represent

successfully identified species.

https://doi.org/10.1371/journal.pone.0175788.g004
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Fig 5. Bayesian consensus tree based on rbcL+matK+trnH–psbA+ITS. Bayesian posterior probabilities

(� 0.9) / Bootstrap support values (� 50%) are shown above the branches. Abbreviations: Act. = Actinodaphne,
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completely enclosed in the accrescent receptacular is a remarkable character distinguishing it

from other genera; however, only some species were flowering when sampled. Hence, Beilsch-
miedia purpurascens L061 was wrongly recognized as Cryptocarya calcicola (Table 2). Likewise,

the persistent and spreading to reflexed tepals in the fruit of Machilus are important morpho-

logical characters for generic delimitation from the closely related genus Phoebe, in which

tepals are leathery to woody, conspicuously thickened and clasping the base of the fruit [41].

These characters are also obviously different, but some of these species were also only flower-

ing when sampled, resulting in identification errors, such as Phoebe tavoyana CXQ0426
(Table 2). There are also some morphological identification errors due to scant information

about the species. For example, Cinnamomum chago B.S. Sun et H.L. Zhao [73], which had not

been included in Flora of China, where if the expert had seen the topotype prior to this study

(which has an axillary panicle and short perianth tube), identification errors may not have hap-

pened. Furthermore, some genera, such as Lindera, Litsea, Neolitsea and Actinodaphne, which

form the Laureae, are really not well defined. All the above factors hampered the accurate iden-

tification of Lauraceae. Although each sample in the current study is represented by a voucher

that was compared to a reference collection, some species often cannot be distinguished in the

absence of complete flowering and fruiting material.

DNA barcoding can act as a tool for detecting errors in species identifications [23]. The

tree-based and similarity-based approaches using DNA barcoding in combination with mor-

phology are thus very useful to address identification mistakes based only on morphology [22,

74–77]. Examination of the initially misidentified samples showed that misidentifications were

most likely to occur when the samples were only flowering or fruiting and their morphological

characters and geographical distributions were similar. Once morphology-based errors listed

above were taken into account, mistakes in individual identifications were then only detectable

through DNA sequencing.

Revision of morphological identifications based mainly on the core barcodes, or the combi-

nation of rbcL+matK+trnH–psbA+ITS, supplemented by BLAST analyses, determined that

10.8% individuals had been misidentified a priori based on morphology (Table 2). This error

rate is higher than those reported for some other studies (5.6–10.5%, Archaux et al. [78]; 7.4%,

Scott & Hallam [79]; 6.8–7.6%, Dexter et al. [17]; 9.9%, Huang et al. [22]), suggesting that the

Lauraceae require careful interpretation of the characters used for specific and generic defini-

tion. In particular, accurate recognition of Lauraceae would be very useful because it is the

most diverse family in China and is known to be taxonomically problematic.

Evaluation of DNA barcodes for Lauraceae

Our study gives a reliable assessment of barcoding efficacy in the family Lauraceae based on a

large sample size, comparable to the results of studies for other diverse angiosperm groups (e.

g., Percy et al.: 77 species of Salix [15]; Edwards et al.: 82 species of Aspalathus [80]; Yu et al.:
88 species of Pedicularis [81]). An ideal DNA barcode must combine conserved regions for

universal primer design, which show high rates of PCR amplification and sequencing [28] and

should also provide a high rate of success for species discrimination and identification [25, 30,

82].

In the present study, the five barcodes performed differently for all samples (Table 1 and

Fig 3) and out of all regions tested, ITS performed best, showing the greatest level of species

Bei. = Beilschmiedia, Cin. = Cinnamomum, Car. = Caryodaphnopsis, Cry. = Cryptocarya, Ite. = Iteadaphne,

Lin. = Lindera, Lit. = Litsea, Mac. = Machilus, Neoc. = Neocinnamomum, Neol. = Neolitsea, Pho. = Phoebe,

Hyp. = Hypodaphnis, Hor. = Hortonia, Pal. = Palmeria, Peu. = Peumus, Gom. = Gomortega.

https://doi.org/10.1371/journal.pone.0175788.g005
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discrimination. However, other studies have described inherent difficulties with this marker

[29, 32, 33, 71, 72] and some researchers have advocated using ITS2 alone as a replacement for

ITS because it is easier to amplify and sequence this subset of the marker [32, 33]. In contrast,

ITS2 showed lower sequence variation and species identification ability than ITS in our study,

even though its sequence recovery rate is about two times that of ITS, but we did not observe

the other difficulties usually associated with ITS as a barcode marker, so the marker appears to

have potential for Lauraceae as long as the low sequencing success rate can be addressed.

ITS was proposed as a DNA barcode for seed plants because of its high species identifica-

tion ability [25, 33] and in this study ITS provided the highest species resolution, agreeing with

the results of recent studies in other plant groups (e.g., Poaceae: Cai et al. [83]; Schisandraceae:

Zhang et al. [84]; Orchidaceae: Li et al. [85]). The other four barcoding regions investigated

here (rbcL, matK, trnH–psbA and ITS2 alone) have all been proposed as core or supplementary

regions for plant barcoding [25, 28, 29,32, 82, 86], but in our study they exhibited low species-

level resolution and only Cryptocarya and Beilschmiedia were distinguished clearly from the

other genera. This suggests that ITS is the best candidate for Lauraceae when using a single

barcode.

Combining DNA barcodes is generally considered to improve species identification [28, 33,

87, 88] and in this study, the discrimination rates of the combinations varied from 10.6% to

32.6% with rbcL+matK < rbcL+matK+trnH–psbA < rbcL+matK+trnH–psbA+ITS2 < rbcL

+matK+trnH–psbA+ITS at the species level (Fig 3). However, we can see that the discrimina-

tion rates of rbcL+matK are higher than those of rbcL+matK+trnH–psbA and rbcL+matK
+trnH–psbA+ITS2 at the genus level. The utility of a marker is not only affected by its discrim-

inatory power, but also by its rate of sequence recovery (Figs 2–5).

Species delimitation in Lauraceae is often complicated by a lack of unique qualitative mor-

phological characters that can be used to define them. DNA barcode data can therefore pro-

vide useful additional information for evaluation of observed morphological diversity [89].

Efficient species identification is also important for customs and other authorities to prevent

the illegal export and commercial use of protected or rare species [90]. Thus, it is suggested

here that using ITS as single barcode, or a combination of barcode markers that included ITS,

would be the most suitable approach for barcoding in Lauraceae.

Relationships among major clades

The BI and MP analyses provided relatively good phylogenetic resolution for Lauraceae at

both generic and intrageneric levels (Fig 5), especially in basal lineages, with the Cryptocarya
group, the Caryodaphnopsis–Neocinnamomum group and the Persea group plus Laureae and

Cinnamomum corresponding to our Clades 1, 2 and 3 respectively. Within the Cryptocarya
group, which is basal within Lauraceae [7, 47], Cryptocarya is sister to the non-cupulate clade

of Beilschmiedia. Cryptocarya has a deeply urceolate floral hypanthium that develops into a

deep cupule enclosing the drupe at maturity, except for a small terminal orifice [7, 46], but

Beilschmiedia lacks these characters; a synapomorphy that separates Beilschmiedia and related

genera (Endiandra and Syndiclis) from the rest of the Cryptocarya group.

Caryodaphnopsis and Neocinnamomum are associated in the present study and have been

found previously to have a relatively close relationship [47, 91, 92]. They share triplinerved

venation and four-locular anthers with the loculi arranged in a shallow arc [7], sometimes

two-locular in Caryodaphnopsis, or in a horizontal row, such as in Neocinnamomum delavayi
(Lecomte) H. Liu.

The remaining clade (the Persea group, Laureae and Cinnamomum) with Machilus and

Phoebe as subsets of the Persea group received moderate support, agreeing with the studies of
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Chanderbali et al. [7], Li et al. [41] and Rohwer et al. [44]. However, as with these earlier stud-

ies, there was poor resolution for species relationships within Machilus and its presently

accepted sections and subsections (e.g. Li et al. [93]) are still questionable. Nevertheless, the

present study does suggest that M. fasciculata H. W. Li belongs in Phoebe. Cinnamomum was

divided into two clades corresponding to sect. Camphora Meissn. and sect. Cinnamomum
[63], reflecting morphological traits such as leaf arrangement, leaf venation pattern, presence

or absence of perulate buds or domatia.

The remaining sampled Laureae were poorly resolved, even though a close relationship

between Actinodaphne, Lindera, Litsea and Neolitsea has been recognized in almost all Laura-

ceae classifications [7]. All of these genera are dioecious and most have umbellate inflores-

cences subtended by involucral bracts [7], but further character evolution study is needed to

determine if these features actually represent synplesiomorphies. This suggests that although

multilocus molecular markers still do not give well-resolved phylogenies for all Lauraceae,

DNA barcoding is nevertheless useful for resolving phylogenetic relationships at the generic or

species level within some groups in the family.

Conclusions

The barcodes used here produced positive results for correcting species identification errors

and reconstructing phylogenetic relationships of Lauraceae, even though identification rates

were not high. Furthermore, because DNA barcoding plays an important role in the conserva-

tion of rare species and for forest crime prosecutions, we advocate the use of DNA barcodes,

in combination with other techniques, in order to develop adequate management strategies

for the long term conservation of Lauraceae. In particular, barcodes such as ITS show promise

for large-scale biodiversity assessment and inventory, particularly for tropical tree species,

where the use of a single barcode could significantly reduce the time and costs involved with

species identification. However, our study also indicates the critical need for additional data

from both more taxa and more sequence regions to help resolve issues in Lauraceae taxonomy

and conservation, as there is clearly no simple one-size-fits-all barcoding solution for the

family.
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